JPH05143169A - Start controlling method for water cooling device - Google Patents

Start controlling method for water cooling device

Info

Publication number
JPH05143169A
JPH05143169A JP30751791A JP30751791A JPH05143169A JP H05143169 A JPH05143169 A JP H05143169A JP 30751791 A JP30751791 A JP 30751791A JP 30751791 A JP30751791 A JP 30751791A JP H05143169 A JPH05143169 A JP H05143169A
Authority
JP
Japan
Prior art keywords
water
heat exchanger
temperature
cooled
mixing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30751791A
Other languages
Japanese (ja)
Inventor
Hiroyuki Ueda
裕之 上田
富夫 ▲吉▼川
Tomio Yoshikawa
Takeshi Sasada
武 笹田
Masahiko Komaki
昌彦 古牧
Katsuji Mitsui
勝司 三ツ井
Tetsuharu Yamashita
徹治 山下
Kyoshiro Murakami
恭志郎 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP30751791A priority Critical patent/JPH05143169A/en
Publication of JPH05143169A publication Critical patent/JPH05143169A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Temperature (AREA)

Abstract

PURPOSE:To prevent the generation of dew condensation on a cooled body at the time of starting a water cooling device without using a dew condensation preventing additional device such as a heater. CONSTITUTION:When the temperature of cooling water is less than a prescribed value in a closed loop consisting of a water/water heat exchanger 1, a mixing three-way valve 2, a cooled body 3, a pump 4, and a by-pass 5 for the heat exchange, the flow rate of the by-pass 5 is increased, the inflow of water into the heat exchanger 1 is restricted for a prescribed time to suppress the temperature drop of cooling water in the closed loop and prevent the generation of dew condensation on the cooled body 3, and when the temperature of the cooling water reaches a prescribed temperature range, water temperature control for a normal state is started. Even when water temperature of the closed loop is low, the temperature drop of the cooling water in the heat exchanger 1 at the time of starting the water cooling device can be suppressed to its minimum and the generation of dew condensation on the cooled body 3 can be prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水冷却装置の始動制御
方法に係り、特に、大型コンピュータ等の発熱を伴なう
電子機器を水冷却するシステムにおいて、一定水温の冷
水を供給する水冷却装置の始動制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a start control method for a water cooling device, and more particularly, to a water cooling system for cooling an electronic device such as a large computer which is accompanied by heat generation. The present invention relates to a start control method for a device.

【0002】[0002]

【従来の技術】水冷却装置を始動する際に、水冷却装置
から送り出される冷水の温度が低下すると、被冷却体で
ある電子機器の内部において結露が生ずる可能性があ
る。この結露は、電子機器や電子回路に悪影響を及ぼ
し、故障の原因となる場合がある。
2. Description of the Related Art When starting the water cooling device, if the temperature of the cold water sent out from the water cooling device drops, dew condensation may occur inside the electronic equipment which is the object to be cooled. This dew condensation adversely affects electronic devices and circuits and may cause a failure.

【0003】結露を防止する手段としては、温湿度検出
値から算出した露点温度と冷却水温度とを比較し、冷却
水温度が露点温度以下にならないようにヒーターで加熱
する方式(特開昭62−139015号)、温度センサ,結露セ
ンサ,乾燥ファン,ヒータ等を使用し、結露していなけ
れば直ちに電子機器の電源を投入する一方で、結露して
いた場合はヒータで加熱し、結露が無くなった時点で電
子機器の電源を投入する方式(特開昭62−119621号)等
がある。
As a means for preventing dew condensation, a method of comparing the dew point temperature calculated from the detected temperature and humidity with the cooling water temperature and heating with a heater so that the cooling water temperature does not fall below the dew point temperature (Japanese Patent Laid-Open No. 62-62). -139015), a temperature sensor, a condensation sensor, a drying fan, a heater, etc., and immediately turn on the power to the electronic device if there is no condensation, but if there is condensation, heat it with the heater to eliminate condensation. There is a method of turning on the power supply of the electronic device at the time (Japanese Patent Application Laid-Open No. 62-119621).

【0004】[0004]

【発明が解決しようとする課題】水冷却装置は、基本的
には、例えば、外部の冷却水設備からの冷却水と被冷却
体により加熱された水とを熱交換させる水−水熱交換器
と、この熱交換器により冷却された水と前記熱交換器を
バイパスした水とを混合させる混合三方弁と、混合三方
弁を駆動しその開度を変更するモータと、混合三方弁を
介在させて水−水熱交換器と被冷却体との間で形成され
る閉ループに水を循環させるポンプとからなる。
The water cooling device is basically a water-water heat exchanger for exchanging heat between cooling water from an external cooling water facility and water heated by the object to be cooled. A mixing three-way valve for mixing water cooled by this heat exchanger and water bypassing the heat exchanger, a motor for driving the mixing three-way valve to change its opening, and a mixing three-way valve. And a pump for circulating water in a closed loop formed between the water-water heat exchanger and the object to be cooled.

【0005】このような系統構成の水冷却装置を始動さ
せる際に、混合三方弁の開度,冷却水設備側から送り出
される冷却水の温度,被冷却体から戻される水温という
少なくとも3つのパラメータに対する混合三方弁の開度
が不定状態となるため、水冷却装置から送り出される冷
水温度が不安定となる。特に、冷却水設備側の冷却水温
度が低い場合、低温の冷水が被冷却体に供給され、電子
機器等の被冷却体に結露を生ずる可能性がある。
At the time of starting the water cooling device having such a system configuration, at least three parameters, that is, the opening degree of the mixing three-way valve, the temperature of the cooling water sent from the cooling water facility side, and the water temperature returned from the object to be cooled are satisfied. Since the opening degree of the mixing three-way valve becomes indefinite, the temperature of cold water sent from the water cooling device becomes unstable. Particularly, when the cooling water temperature on the cooling water facility side is low, low-temperature cold water may be supplied to the object to be cooled, and dew condensation may occur on the object to be cooled such as electronic equipment.

【0006】上記従来の各方式では、本来は冷却のため
の装置に、加熱用ヒータを設ける等のむだがあり、装置
の構造も制御方法もそれを実行するコントローラの構成
も複雑となる欠点があった。
[0006] In each of the above-mentioned conventional methods, there is a problem in that a heater for heating is originally provided in the device for cooling, but there is a drawback that the structure of the device, the control method, and the configuration of the controller for executing the device are complicated. there were.

【0007】本発明の目的は、結露防止のためにヒータ
等の装置を付加することなく、混合三方弁の開度の制御
のみにより、始動時の被冷却体の結露を確実に防止でき
る水冷却装置の始動制御方法を提供することである。
An object of the present invention is to provide a water cooling system capable of reliably preventing dew condensation on a cooled object at the time of start-up only by controlling the opening degree of a mixing three-way valve without adding a device such as a heater to prevent dew condensation. A starting control method for an apparatus is provided.

【0008】[0008]

【課題を解決するための手段】本発明は、上記目的を達
成するために、外部の冷却水設備からの冷却水と被冷却
体により加熱された水とを熱交換させる水−水熱交換器
と、この熱交換器により冷却された水と熱交換器をバイ
パスした水とを混合させる混合三方弁と、混合三方弁を
介在させて水−水熱交換器と被冷却体との間で形成され
る閉ループに水を循環させるポンプとからなり、被冷却
体に送り出す冷水の検知水温に基づいて混合三方弁の開
度を制御し被冷却体に所定水温の冷水を供給する水冷却
装置の始動制御方法において、水冷却装置の始動時に、
水−水熱交換器から被冷却体に送り出される冷水の水温
が設定水温を基準として所定幅よりも低い場合は、混合
三方弁の水−水熱交換器側流路を所定時間だけ一旦絞
り、被冷却体に送り出す冷水の水温を所定幅以内まで上
昇させ、その後に定常時の水温制御に移行する水冷却装
置の始動制御方法を提案するものである。
In order to achieve the above object, the present invention is a water-water heat exchanger for exchanging heat between cooling water from an external cooling water facility and water heated by an object to be cooled. And a mixing three-way valve that mixes water cooled by this heat exchanger with water that bypasses the heat exchanger, and a water-water heat exchanger and a cooled object with a mixing three-way valve interposed. It is composed of a pump that circulates water in a closed loop, and controls the opening of the mixing three-way valve based on the detected water temperature of the cold water sent to the object to be cooled and starts the water cooling device that supplies the cold water of a predetermined water temperature to the object to be cooled. In the control method, when starting the water cooling device,
If the water temperature of the cold water sent from the water-water heat exchanger to the object to be cooled is lower than the predetermined width based on the set water temperature, the water-water heat exchanger side flow path of the mixing three-way valve is temporarily throttled for a predetermined time, The present invention proposes a start control method for a water cooling device that raises the temperature of cold water sent to an object to be cooled to within a predetermined range and then shifts to steady-state water temperature control.

【0009】水−水熱交換器と被冷却体との間で形成さ
れる閉ループ側でなく、水−水熱交換器に対して前記外
部の冷却水設備側に前記バイパスと混合三方弁とを設け
た水冷却装置においても、水冷却装置の始動時に、水−
水熱交換器から被冷却体に送り出される冷水の水温が設
定水温を基準として所定幅よりも低い場合は、混合三方
弁の水−水熱交換器側流路を所定時間だけ一旦絞り、被
冷却体に送り出す冷水の水温を所定幅以内まで上昇さ
せ、その後に定常時の水温制御に移行する水冷却装置の
始動制御方法を採用できる。
The bypass and the mixing three-way valve are provided not on the closed loop side formed between the water-water heat exchanger and the object to be cooled but on the cooling water facility side outside the water-water heat exchanger. Even when the water cooling device is installed, water-
If the temperature of the cold water sent from the water heat exchanger to the object to be cooled is lower than the specified width based on the set water temperature, the flow path on the water-water heat exchanger side of the mixing three-way valve is temporarily throttled for the specified time and cooled. It is possible to employ a start control method of the water cooling device in which the water temperature of the cold water sent to the body is raised to within a predetermined range and then the water temperature control in the steady state is performed.

【0010】[0010]

【作用】水冷却装置の始動時に、水−水熱交換器から被
冷却体に送り出される冷水の温度が設定水温を基準とし
て所定幅よりも低い場合は、混合三方弁の水−水熱交換
器側流路を最小になるまで一旦絞り、水−水熱交換器の
熱交換量を最小とし、被冷却体に送り出す水温をできる
だけ低下させないようにする。この操作により、被冷却
体に送り出される冷水は、始動時点の温度からほとんど
低下することなく上昇に転じ、設定水温に向かって上が
るので、水温の安定性が良くなるのはもちろん、設定値
よりも極端に低い温度の冷水が被冷却体に供給されるこ
とがなくなる。したがって、被冷却体の結露を確実に防
止できる。
When the temperature of the cold water sent from the water-water heat exchanger to the object to be cooled is lower than the predetermined width based on the set water temperature when the water cooling device is started, the water-water heat exchanger of the mixed three-way valve is used. The side flow path is once narrowed to the minimum, the heat exchange amount of the water-water heat exchanger is minimized, and the water temperature sent to the object to be cooled is not lowered as much as possible. By this operation, the cold water sent to the object to be cooled starts to rise from the temperature at the time of start-up and rises toward the set water temperature, so the stability of the water temperature is improved and, of course, it is better than the set value. Cold water having an extremely low temperature will not be supplied to the object to be cooled. Therefore, it is possible to reliably prevent dew condensation on the cooled object.

【0011】なお、水−水熱交換器から被冷却体に送り
出される冷水の温度が設定水温を基準として所定幅以内
の場合、および、設定値から高い方の所定幅よりもさら
に高い場合は、結露の心配が無いことから、従来と同様
に、通常の水温制御を実行する。前記設定値からの上下
所定値の幅は、必ずしも同じでなくともよいことは、い
うまでもない。
When the temperature of the cold water sent out from the water-water heat exchanger to the object to be cooled is within a predetermined range based on the set water temperature, and when it is higher than the predetermined range higher than the set value, Since there is no concern about dew condensation, normal water temperature control is executed as in the conventional case. It goes without saying that the width of the predetermined value above and below the set value does not necessarily have to be the same.

【0012】[0012]

【実施例】次に、図1〜図4を参照して、本発明の実施
例を説明する。図1は、本発明による始動制御方法を適
用すべき水冷却装置の系統構成の一例を示す図である。
二点鎖線により囲んで示した水冷却装置は、基本的に
は、図示しない外部の冷却水設備からの冷却水と本装置
の水とを熱交換させる水−水熱交換器1と、水−水熱交
換器1により冷却された水と被冷却体3により加熱され
た水とを混合させる混合三方弁2と、混合三方弁2を駆
動するモータ6と、混合三方弁2を介在させて水−水熱
交換器1と被冷却体3との間で形成される閉ループに水
を循環させるポンプ4とからなる。すなわち、ポンプ4
は、水−水熱交換器1と混合三方弁2と被冷却体3との
閉ループに冷水を循環させている。ここで、被冷却体と
は、例えば、半導体などの高集積化により発熱量の増大
したコンピュータ等の電子機器である。
EXAMPLES Examples of the present invention will now be described with reference to FIGS. FIG. 1 is a diagram showing an example of a system configuration of a water cooling device to which the starting control method according to the present invention is applied.
The water cooling device surrounded by the chain double-dashed line is basically a water-water heat exchanger 1 for exchanging heat between the cooling water from an external cooling water facility (not shown) and the water of this device; A mixing three-way valve 2 for mixing water cooled by the water heat exchanger 1 and water heated by the object to be cooled 3, a motor 6 for driving the mixing three-way valve 2, and a water mixture with the mixing three-way valve 2 interposed. A pump 4 for circulating water in a closed loop formed between the water heat exchanger 1 and the body 3 to be cooled. That is, the pump 4
Circulates cold water in a closed loop of the water-water heat exchanger 1, the mixing three-way valve 2 and the body to be cooled 3. Here, the object to be cooled is, for example, an electronic device such as a computer that has increased heat generation due to high integration of semiconductors and the like.

【0013】水−水熱交換器1と並列にバイパス流路5
が設けられ、混合三方弁2の開度の変化により水−水熱
交換器1とバイパス流路5との流量比が決められる。混
合三方弁1を駆動するモータ6は、可逆回転型モータで
あり、コントローラ8からの2種類の駆動信号により、
正転または逆転する。正転側に通電すると、水−水熱交
換器1側の流量が増加し、バイパス流路5側の流量が減
少する。一方、逆転側に通電すると、正転時とは逆に、
水−水熱交換器1側の流量が減少し、バイパス流路5側
の流量が増加する。閉ループの流量は、水−水熱交換器
1側流量とバイパス流路5側流量との合計流量であり、
混合三方弁2の開度にかかわらず、一定となっている。
水冷却装置から被冷却体3への送り出し流路には、水温
検知センサ7が設けられている。コントローラ8は、こ
の検出水温と設定水温との差に応じて、混合三方弁2の
開度を制御するために、混合三方弁駆動モータ6を駆動
する。また、検出水温と設定水温との差に応じて、被冷
却体3に始動可能か否かを示す信号を送る。
A bypass passage 5 is provided in parallel with the water-water heat exchanger 1.
Is provided, and the flow rate ratio between the water-water heat exchanger 1 and the bypass passage 5 is determined by the change in the opening degree of the mixing three-way valve 2. The motor 6 that drives the mixed three-way valve 1 is a reversible rotation type motor, and two types of drive signals from the controller 8 cause
Forward or reverse. When the normal rotation side is energized, the flow rate on the water-water heat exchanger 1 side increases and the flow rate on the bypass flow path 5 side decreases. On the other hand, when the reverse rotation side is energized, contrary to the forward rotation,
The flow rate on the water-water heat exchanger 1 side decreases and the flow rate on the bypass flow path 5 side increases. The closed loop flow rate is the total flow rate of the water-water heat exchanger 1 side flow rate and the bypass flow path 5 side flow rate,
It is constant regardless of the opening degree of the mixing three-way valve 2.
A water temperature detection sensor 7 is provided in the flow passage from the water cooling device to the cooled body 3. The controller 8 drives the mixing three-way valve drive motor 6 in order to control the opening degree of the mixing three-way valve 2 according to the difference between the detected water temperature and the set water temperature. In addition, a signal indicating whether or not the cooling target 3 can be started is sent according to the difference between the detected water temperature and the set water temperature.

【0014】冷水の水温が安定した定常運転時に、ポン
プ4が起動すると、被冷却体3を通る間に暖められた水
が水−水熱交換器1とバイパス流路5とに送り込まれ
る。水−水熱交換器1で冷却水設備からの冷却水により
冷やされた水と単純にバイパス流路を通った暖かい水と
は、混合三方弁2において撹拌され、被冷却体6に送ら
れる。冷却水設備を通る水とバイパス流路を通る水との
比を変えて閉ループ内を循環させると、被冷却体3には
常に一定温度の冷水が供給される。
When the pump 4 is started during steady operation in which the water temperature of the cold water is stable, the water warmed while passing through the body to be cooled 3 is sent to the water-water heat exchanger 1 and the bypass passage 5. The water cooled by the cooling water from the cooling water facility in the water-water heat exchanger 1 and the warm water simply passing through the bypass flow path are agitated by the mixing three-way valve 2 and sent to the cooled object 6. If the ratio of the water passing through the cooling water facility and the water passing through the bypass flow passage is changed to circulate in the closed loop, cold water having a constant temperature is always supplied to the cooled body 3.

【0015】一方、始動時には、 a.冷却水設備からの水温が安定供給されない b.冷却水設備に外部から供給される水温が顧客の環境
毎に異なる c.被冷却体の熱負荷も始動時の過渡領域にある d.混合三方弁の開度が前回運転していた時の安定制御
状態の位置にある などの理由により、設定水温に近い冷水が被冷却体3に
安定して供給されることは期待できない。特に、冷却水
設備に外部から供給される水温が低い場合や、混合三方
弁2の水−水熱交換器1側の開度が大きく熱交換量が多
い場合などには、被冷却体3に送り出される水温が設定
水温よりも極端に低くなり、設定水温までの立上りが遅
くなるとともに、被冷却体3に結露し、被冷却体3を破
損させるなどのおそれがある。
On the other hand, at the time of starting, a. Water temperature is not stably supplied from the cooling water facility b. The temperature of the water supplied from outside to the cooling water facility differs depending on the customer's environment. C. The heat load of the cooled object is also in the transient region at the time of starting d. Due to the reason that the opening degree of the mixing three-way valve is in the position of the stable control state during the previous operation, it cannot be expected that cold water close to the set water temperature is stably supplied to the cooled body 3. In particular, when the temperature of the water supplied from the outside to the cooling water facility is low, or when the opening of the mixing three-way valve 2 on the water-water heat exchanger 1 side is large and the amount of heat exchange is large, the cooling target 3 is The temperature of the water to be sent becomes extremely lower than the set water temperature, the rise to the set water temperature is delayed, and there is a risk that dew condensation will occur on the cooled body 3 and damage the cooled body 3.

【0016】そこで、始動時に、図2のフローチャート
に示すような制御を実行する。ステップ10において、
ポンプ4を起動し、ステップ12において、混合三方弁
駆動モータ6を所定時間t1だけ逆転させる。この混合
三方弁2の逆転により、水−水熱交換器1側の冷水の流
量が減少し、バイパス流路5側の冷水の流量が増加して
いく。したがって、水−水熱交換器1における冷却水設
備から供給されてくる冷却水と閉ループ内の冷水との熱
交換量は徐々に減少する。水−水熱交換器1を通る流量
が零になれば、熱交換量も零となり、閉ループ内の冷水
には、ポンプ4の発熱分と、混合三方弁2が全閉するま
での過渡的な放熱分があるだけとなるので、被冷却体3
に供給される冷水の温度は始動時からほとんど低下しな
い。ここで、混合三方弁駆動モータ6への通電の所定時
間t1は、混合三方弁2が全開の位置から全閉の位置に
なるまでの時間、または、全閉状態にならなくても発熱
量と放熱量との関係で、被冷却体3に結露しない開度に
なるまでの時間に基づいて決められる。
Therefore, at the time of starting, the control shown in the flowchart of FIG. 2 is executed. In step 10,
The pump 4 is started, and in step 12, the mixing three-way valve drive motor 6 is reversely rotated for a predetermined time t 1 . Due to the reverse rotation of the mixing three-way valve 2, the flow rate of cold water on the water-water heat exchanger 1 side decreases and the flow rate of cold water on the bypass flow path 5 side increases. Therefore, the amount of heat exchange between the cooling water supplied from the cooling water facility in the water-water heat exchanger 1 and the cold water in the closed loop gradually decreases. When the flow rate through the water-water heat exchanger 1 becomes zero, the heat exchange amount also becomes zero, and in the cold water in the closed loop, the heat generated by the pump 4 and the transient until the mixing three-way valve 2 is fully closed. Since there is only heat dissipation, the cooled object 3
The temperature of the chilled water supplied to the unit does not decrease from the start. Here, the predetermined time t 1 for energizing the mixing three-way valve drive motor 6 is the time until the mixing three-way valve 2 changes from the fully open position to the fully closed position, or the calorific value even if the mixed three-way valve 2 is not in the fully closed state. And the amount of heat radiation are determined based on the time required to reach the degree of opening where dew condensation does not occur on the cooled body 3.

【0017】ステップ14において、所定時間t1が経
過したか否かを判定する。経過したら、ステップ16に
おいて、混合三方弁駆動モータ6を一旦停止させる。ス
テップ18において、被冷却体3への送出水温Twを検
知する。ステップ20において、Twが水温設定値Twse
tから一定範囲(−△T)以上にあれば、すなわち、Tw
set−△T以上であれば、定常時の水温制御に移行す
る。
At step 14, it is judged whether or not a predetermined time t 1 has elapsed. After the lapse of time, in step 16, the mixing three-way valve drive motor 6 is temporarily stopped. In step 18, the sending water temperature Tw to the cooled body 3 is detected. In step 20, Tw is the water temperature set value Twse
If it is within a certain range (-ΔT) from t, that is, Tw
If it is equal to or more than set-ΔT, the water temperature control in the steady state is performed.

【0018】一方、Twset−△Tよりも低ければ、ステ
ップ22において、混合三方弁駆動モータ6をさらに逆
転側に運転し、水−水熱交換器1との熱交換量を減少さ
せ、冷水の水温立上りを速くさせる。再び、ステップ1
8において、被冷却体3への送出水温Twを検知する。
ステップ20において、水温TwがTwset−△T以上で
あれば、定常時の水温制御に移行する。
On the other hand, if it is lower than Twset-ΔT, in step 22, the mixing three-way valve drive motor 6 is further driven to the reverse rotation side to reduce the amount of heat exchange with the water-water heat exchanger 1 and to cool water. Make the water temperature rise faster. Step 1 again
At 8, the sending water temperature Tw to the cooled body 3 is detected.
In step 20, if the water temperature Tw is equal to or higher than Twset-ΔT, the control proceeds to steady-state water temperature control.

【0019】このとき、冷水の水温立上りを速くさせる
ために、被冷却体3を作動させ発熱させることもでき
る。また、前記実施例においては、ポンプ4の運転と同
時に混合三方弁駆動モータ6を逆転側に運転している
が、ポンプ4を起動するまでに、所定時間t1の逆転操
作を完了していてもよい。
At this time, in order to accelerate the rise of the temperature of the cold water, the body to be cooled 3 can be operated to generate heat. Further, in the above-described embodiment, the mixing three-way valve drive motor 6 is driven to the reverse rotation side at the same time as the pump 4 is driven, but the reverse rotation operation for the predetermined time t 1 is completed before the pump 4 is started. Good.

【0020】図3は、上記動作時の閉ループ内の水温T
wの経時変化を示すタイムチャートである。曲線Aは、
水温Twが本発明の始動制御を必要とする低温からの始
動の場合を示している。曲線Bは、水温Twが設定水温
Twsetに対して±△T以内にあり、直ちに定常時の水温
制御を開始できる場合を示している。曲線Cは、水温T
wが設定水温Twsetに対して+△Tよりもさらに高く、
始動時から冷却し、設定水温Twsetに対して±△T以内
に入ったところで、定常時の水温制御を開始しなければ
ならない場合を示している。
FIG. 3 shows the water temperature T in the closed loop during the above operation.
It is a time chart which shows the change over time of w. Curve A is
It shows a case where the water temperature Tw is a low temperature start requiring the start control of the present invention. The curve B shows the case where the water temperature Tw is within ± ΔT with respect to the set water temperature Twset, and the water temperature control in the steady state can be immediately started. Curve C is the water temperature T
w is higher than + ΔT with respect to the set water temperature Twset,
The figure shows a case where the water temperature control in the steady state must be started when the cooling is performed from the start and the temperature is within ± ΔT with respect to the set water temperature Twset.

【0021】本実施例においては、始動後、所定時間t
1だけ混合三方弁駆動モータ6を逆転させて、水−水熱
交換器1における熱交換量を減少させ、被冷却体3への
送出水温の低下をほとんど防いでいる。もし、この動作
が無く、冷却水設備側から供給される水温が低い場合
は、図3に破線で示すように、被冷却体3に送り出され
る水温が極端に低下し、被冷却体3に結露を生ずる事態
が発生する。
In the present embodiment, after the start, a predetermined time t
By rotating the mixing three-way valve drive motor 6 by 1 only, the amount of heat exchange in the water-water heat exchanger 1 is reduced, and a decrease in the temperature of the water delivered to the cooled object 3 is almost prevented. If this operation does not occur and the temperature of the water supplied from the cooling water facility side is low, the temperature of the water sent to the cooled body 3 is extremely lowered as shown by the broken line in FIG. Occurs.

【0022】本実施例によれば、被冷却体3への結露を
防止するだけでなく、定常時の制御に移行する際の水温
制御性が良くなり、設定水温にTwset対してオーバーシ
ュートまたはアンダーシュートが少なく、収束が速くな
る効果も得られる。
According to the present embodiment, not only the dew condensation on the cooled body 3 is prevented, but also the water temperature controllability at the time of shifting to the control in the steady state is improved, and the set water temperature is overshooted or undershot with respect to Twset. There are also few shots, and the effect of quick convergence can be obtained.

【0023】なお、上記実施例においては、バイパス流
路5と混合三方弁2とを閉ループ側に設けた装置構成に
本発明を適用した例を説明したが、図4のように、水−
水熱交換器1の冷却水設備側にバイパス流路5Aと混合
三方弁2Aと混合三方弁駆動モータ6Aとを配置した場
合も、本発明が有効であることは、容易に理解できるで
あろう。
In the above embodiment, an example in which the present invention is applied to an apparatus configuration in which the bypass flow path 5 and the mixing three-way valve 2 are provided on the closed loop side has been described. However, as shown in FIG.
It can be easily understood that the present invention is effective even when the bypass passage 5A, the mixing three-way valve 2A, and the mixing three-way valve drive motor 6A are arranged on the cooling water facility side of the water heat exchanger 1. ..

【0024】[0024]

【発明の効果】本発明によれば、閉ループ内の冷水の温
度が低い場合、始動後の所定時間t1だけ混合三方弁駆
動モータを逆転させ、水−水熱交換器における熱交換量
を減少させるだけで、被冷却体に送り出す水温の低下を
ほとんど防止できるので、結露防止装置をなんら付加す
ることなく、水冷却装置の始動時における被冷却体の結
露を確実に防ぐことが可能となる。
According to the present invention, when the temperature of the cold water in the closed loop is low, the mixing three-way valve drive motor is reversed for a predetermined time t 1 after the start, and the heat exchange amount in the water-water heat exchanger is reduced. Only by doing so, it is possible to almost prevent the temperature of the water to be sent to the cooled object from decreasing. Therefore, it is possible to reliably prevent the dew condensation of the cooled object at the time of starting the water cooling device without adding any dew condensation preventing device.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による始動制御方法を適用すべき水冷却
装置の系統構成の一例を示す図である。
FIG. 1 is a diagram showing an example of a system configuration of a water cooling device to which a starting control method according to the present invention is applied.

【図2】図1の実施例の動作を説明するフローチャート
である。
FIG. 2 is a flowchart illustrating the operation of the embodiment of FIG.

【図3】図2の動作時の閉ループ内の水温の経時変化を
示すタイムチャートである。
FIG. 3 is a time chart showing the change over time in the water temperature in the closed loop during the operation of FIG.

【図4】本発明による始動制御方法を適用すべき水冷却
装置の系統構成の他の例を示す図である。
FIG. 4 is a diagram showing another example of the system configuration of the water cooling device to which the starting control method according to the present invention is applied.

【符号の説明】[Explanation of symbols]

1 水−水熱交換器 2 混合三方弁 3 被冷却体 4 ポンプ 5 バイパス 6 混合三方弁駆動モータ 7 水温検知センサ 8 コントローラ 1 Water-water heat exchanger 2 Mixed three-way valve 3 Cooled body 4 Pump 5 Bypass 6 Mixed three-way valve drive motor 7 Water temperature detection sensor 8 Controller

───────────────────────────────────────────────────── フロントページの続き (72)発明者 古牧 昌彦 静岡県清水市村松390番地 株式会社日立 製作所清水工場内 (72)発明者 三ツ井 勝司 静岡県清水市村松390番地 株式会社日立 製作所清水工場内 (72)発明者 山下 徹治 静岡県清水市村松390番地 株式会社日立 製作所清水工場内 (72)発明者 村上 恭志郎 静岡県清水市村松390番地 株式会社日立 製作所清水工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masahiko Komaki 390 Muramatsu, Shimizu City Shizuoka Prefecture, Hitachi Shimizu Plant (72) Inventor Katsushi Mitsui 390 Muramatsu Shimizu City Shizuoka Prefecture Hitachi, Ltd. Shimizu Plant, Ltd. (72) Inventor Tetsuji Yamashita 390 Muramatsu, Shimizu City, Shizuoka Hitachi, Ltd. Shimizu Plant (72) Inventor Kashiro Murakami 390 Muramatsu, Shimizu City, Shizuoka Hitachi Ltd. Shimizu Plant

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 外部の冷却水設備からの冷却水と被冷却
体により加熱された水とを熱交換させる水−水熱交換器
と、当該熱交換器により冷却された水と前記熱交換器を
バイパスした水とを混合させる混合三方弁と、前記混合
三方弁を介在させて前記水−水熱交換器と前記被冷却体
との間で形成される閉ループに水を循環させるポンプと
からなり、前記被冷却体に送り出す冷水の検知水温に基
づいて前記混合三方弁の開度を制御し前記被冷却体に所
定水温の冷水を供給する水冷却装置の始動制御方法にお
いて、 前記水冷却装置の始動時に、前記水−水熱交換器から前
記被冷却体に送り出される冷水の水温が設定水温を基準
として所定幅よりも低い場合は、前記混合三方弁の前記
水−水熱交換器側流路を所定時間だけ一旦絞り、前記被
冷却体に送り出す冷水の水温を前記所定幅以内まで上昇
させ、 その後に定常時の水温制御に移行することを特徴とする
水冷却装置の始動制御方法。
1. A water-water heat exchanger for exchanging heat between cooling water from an external cooling water facility and water heated by an object to be cooled, and water cooled by the heat exchanger and the heat exchanger. A mixing three-way valve for mixing with water bypassed, and a pump for circulating water in a closed loop formed between the water-water heat exchanger and the body to be cooled with the mixing three-way valve interposed. In the starting control method of the water cooling device that controls the opening degree of the mixing three-way valve based on the detected water temperature of the cold water sent to the cooled object and supplies the cold water of a predetermined water temperature to the cooled object, At the time of start-up, if the water temperature of the cold water sent from the water-water heat exchanger to the object to be cooled is lower than a predetermined width based on the set water temperature, the water-water heat exchanger side flow path of the mixing three-way valve Squeezed for a predetermined time and sent to the object to be cooled. Cold water temperature is increased to within the predetermined range, the start control method for subsequently moving to the water temperature control during steady water cooler, characterized in issue.
【請求項2】 外部の冷却水設備からの冷却水と水とを
熱交換させる水−水熱交換器と、当該熱交換器を冷却す
る冷却水と前記熱交換器をバイパスした冷却水とを前記
外部の冷却水設備側で混合させる混合三方弁と、前記水
−水熱交換器と前記被冷却体との間で形成される閉ルー
プに水を循環させるポンプとからなり、被冷却体に送り
出す冷水の検知水温に基づいて前記混合三方弁の開度を
制御し前記被冷却体に一定水温の冷水を供給する水冷却
装置の始動制御方法において、 前記水冷却装置の始動時に、前記水−水熱交換器から前
記被冷却体に送り出される冷水の水温が設定水温を基準
として所定幅よりも低い場合は、前記混合三方弁の前記
水−水熱交換器側流路を所定時間だけ一旦絞り、前記被
冷却体に送り出す冷水の水温を前記所定幅以内まで上昇
させ、 その後に定常時の水温制御に移行することを特徴とする
水冷却装置の始動制御方法。
2. A water-water heat exchanger for exchanging heat between cooling water from an external cooling water facility and water, cooling water for cooling the heat exchanger, and cooling water for bypassing the heat exchanger. It consists of a mixing three-way valve for mixing on the side of the external cooling water facility and a pump for circulating water in a closed loop formed between the water-water heat exchanger and the object to be cooled, and sends it to the object to be cooled. In a start control method of a water cooling device that controls the opening degree of the mixing three-way valve based on the detected water temperature of cold water to supply cold water of a constant water temperature to the cooled object, at the time of starting the water cooling device, the water-water When the water temperature of the cold water sent from the heat exchanger to the cooled object is lower than the predetermined width based on the set water temperature, the water-water heat exchanger side flow path of the mixing three-way valve is temporarily throttled for a predetermined time, The temperature of the cold water sent to the cooled object is set to the predetermined range. It is raised to the inner, starting control method for subsequently moving to the water temperature control during steady water cooling apparatus according to claim.
JP30751791A 1991-11-22 1991-11-22 Start controlling method for water cooling device Pending JPH05143169A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30751791A JPH05143169A (en) 1991-11-22 1991-11-22 Start controlling method for water cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30751791A JPH05143169A (en) 1991-11-22 1991-11-22 Start controlling method for water cooling device

Publications (1)

Publication Number Publication Date
JPH05143169A true JPH05143169A (en) 1993-06-11

Family

ID=17970037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30751791A Pending JPH05143169A (en) 1991-11-22 1991-11-22 Start controlling method for water cooling device

Country Status (1)

Country Link
JP (1) JPH05143169A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07204984A (en) * 1994-01-21 1995-08-08 Fsi Internatl Inc Temperature controller using circulation coolant and temperature control method thereof
JP2002144181A (en) * 2000-11-10 2002-05-21 Disco Abrasive Syst Ltd Vacuum generating mechanism for machining device
JP2011247573A (en) * 2010-04-26 2011-12-08 Gac Corp Cooling system
JP2013145105A (en) * 2011-12-12 2013-07-25 Gigaphoton Inc Device for controlling temperature of cooling water
JP2018116696A (en) * 2011-12-12 2018-07-26 ギガフォトン株式会社 Cooling water temperature controller
CN109737797A (en) * 2018-12-11 2019-05-10 彩虹(合肥)液晶玻璃有限公司 Heat Exchanger Control System and method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07204984A (en) * 1994-01-21 1995-08-08 Fsi Internatl Inc Temperature controller using circulation coolant and temperature control method thereof
US6308776B1 (en) 1994-01-21 2001-10-30 Fsi International, Inc. Temperature control apparatus with recirculated coolant
US6854514B2 (en) 1994-01-21 2005-02-15 Fsi International, Inc. Temperature control apparatus and method with recirculated coolant
JP2002144181A (en) * 2000-11-10 2002-05-21 Disco Abrasive Syst Ltd Vacuum generating mechanism for machining device
JP4608074B2 (en) * 2000-11-10 2011-01-05 株式会社ディスコ Vacuum generation mechanism of processing equipment
JP2011247573A (en) * 2010-04-26 2011-12-08 Gac Corp Cooling system
JP2013145105A (en) * 2011-12-12 2013-07-25 Gigaphoton Inc Device for controlling temperature of cooling water
US9891012B2 (en) 2011-12-12 2018-02-13 Gigaphoton Inc. Device for controlling temperature of cooling water
JP2018116696A (en) * 2011-12-12 2018-07-26 ギガフォトン株式会社 Cooling water temperature controller
US10371469B2 (en) 2011-12-12 2019-08-06 Gigaphoton Inc. Device for controlling temperature of cooling water
CN109737797A (en) * 2018-12-11 2019-05-10 彩虹(合肥)液晶玻璃有限公司 Heat Exchanger Control System and method

Similar Documents

Publication Publication Date Title
JP2005090480A (en) Vehicle engine cooling system control device and its method
JP2000335230A (en) Heating device for vehicle
KR940010453A (en) Electric motor cooling system and electric motor used for this
JP2006046755A (en) Air conditioner
JPH05143169A (en) Start controlling method for water cooling device
US5467605A (en) System for preventing fogging in climate control system
JPH05136587A (en) Water cooler
JP2004316472A (en) Cooling system for internal combustion engine
JP3298026B2 (en) Operating device for cold / hot water pump
JP2002213242A (en) Cooling controller for movable body
WO2018155499A1 (en) Engine cooling apparatus
JP2009293554A (en) Electric fan control device
JP2894817B2 (en) Cooling device for electronic equipment
JPH06330748A (en) Cooling fan activator for engine
JP3227531B2 (en) Cooling operation method of absorption refrigerator
JP2582301B2 (en) Engine exhaust heat recovery device
JPH01155020A (en) Exhaust heat recovering device for engine
JPH02126057A (en) Driving control method of outside heat source for heat pump apparatus
JPH11257076A (en) Controller of cooling fan
JP2005147028A (en) Cooling device and method of hybrid car
JP3046994B2 (en) Engine driven refrigeration system
JP3112596B2 (en) Absorption refrigerator and control method thereof
JPH074758A (en) Cooling device
JP2002188443A (en) Cooling device for internal combustion engine
JP3099422B2 (en) Control device for air conditioner equipped with refrigerant heating device