JPH05142603A - Nonlinear optical material - Google Patents

Nonlinear optical material

Info

Publication number
JPH05142603A
JPH05142603A JP3332764A JP33276491A JPH05142603A JP H05142603 A JPH05142603 A JP H05142603A JP 3332764 A JP3332764 A JP 3332764A JP 33276491 A JP33276491 A JP 33276491A JP H05142603 A JPH05142603 A JP H05142603A
Authority
JP
Japan
Prior art keywords
mol
present
optical
thf
dissolved
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3332764A
Other languages
Japanese (ja)
Inventor
Akira Tomaru
暁 都丸
Takashi Kurihara
栗原  隆
Yuhei Mori
裕平 森
Toshikuni Kaino
俊邦 戒能
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP3332764A priority Critical patent/JPH05142603A/en
Publication of JPH05142603A publication Critical patent/JPH05142603A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polyesters Or Polycarbonates (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To obtain a low mol.wt. org. material having x<(3)> equal to or larger than that of pi conjugate polymers by using such an org. material having substitution of alkyl amino groups for both ends of the molecule and two or more specified conjugate bonds. CONSTITUTION:This material has substitution of alkyl amino groups for both ends of the molecule and two or more -CH=CH-CO as conjugate bonds. The material has high x<(3)> which exceeds 10<-10> esu, and is a pi-conjugate compd. having a symmetric structure with substitution of electron donating groups (donors) at both ends of the molecule. By using this material to constitute a principal-chain or side-chain polymer material, for example, with even 50mol% introduction rate, a material having high light transmitting property and formability can be produced since the low mol.wt. material can be easily coupled with a polymer material having excellent light transmitting property and formability.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光コンピューティング
の基本素子となる光ゲート素子や光双安定素子などへの
適用が可能な光非線形主鎖型高分子材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical nonlinear main chain type polymer material applicable to an optical gate device, an optical bistable device and the like which are basic devices of optical computing.

【0002】[0002]

【従来の技術】物質に光が入射したとき、光電場:Eに
よって誘起される物質の電気分極:Pは、下記一般式
(数1)の形で表すことができる。
2. Description of the Related Art When light is incident on a substance, the electric polarization P of the substance induced by a photoelectric field E can be expressed by the following general formula (Equation 1).

【0003】[0003]

【数1】 P=χ(1) E+χ(2) EE+χ(3) EEE+・・・・・・・[Equation 1] P = χ (1) E + χ (2) EE + χ (3) EEE + ...

【0004】このとき、χ(i) (i≧2)をi次の非線
形感受率とよぶ。第2項による第2高調波発生(SH
G)や、第3項による第3高調波発生(THG)は、波
長変換効果としてよく知られている。第3項はまた、光
強度に応じた光学定数の変化、例えば非線形屈折率効果
や非線形吸収効果を与えるものとして重要である。中で
も、非線形屈折率効果は物質の屈折率nが入射光強度に
比例して変化するものであり、下記式(数2)で記述さ
れる。
At this time, χ (i) (i ≧ 2) is called an i-th order nonlinear susceptibility. Second harmonic generation (SH
G) and the third harmonic generation (THG) according to the third term are well known as the wavelength conversion effect. The third term is also important as giving a change in the optical constant according to the light intensity, for example, a nonlinear refractive index effect or a nonlinear absorption effect. Among them, the nonlinear refractive index effect is such that the refractive index n of a substance changes in proportion to the incident light intensity, and is described by the following formula (Equation 2).

【0005】[0005]

【数2】n=n0 +n2 ## EQU2 ## n = n 0 + n 2 I

【0006】n0 は弱光強度での屈折率、Iは入射光強
度である。n2 が非線形屈折率であり、n2 と3次の非
線形感受率:χ(3) の間には下記式(数3)の関係が成
立つ(Cは光速である)。n2 とχ(3) は、共に非線形
効果の大きさを表す指標として用いられる。
N 0 is the refractive index at weak light intensity, and I is the incident light intensity. n 2 is a nonlinear refractive index, and the relationship of the following equation (Equation 3) holds between n 2 and the third-order nonlinear susceptibility: χ (3) (C is the speed of light). Both n 2 and χ (3) are used as an index indicating the magnitude of the nonlinear effect.

【0007】[0007]

【数3】n2 =(16π2 /Cn0 2 )χ(3) N 2 = (16π 2 / Cn 0 2 ) χ (3)

【0008】この効果を示す材料と、光共振器や偏光子
や反射鏡など他の光学素子とを組合せると光双安定素
子、光ゲート素子、位相共役波発生器などの光非線形素
子の実現が可能となる。これらの光非線形素子は、将来
の光コンピューティング・光交換技術のキーデバイスと
して、大きな期待が寄せられている〔光非線形素子全般
については、文献 コンファレンス レクチャー オブ
IEEE インターナショナル コンファレンス コ
ミュニケーションズ( Conf.Lec. IEEE Int. Conf. Com
mun. )1990年版、第1152頁(1990)に詳
しい〕。3次の非線形光学効果を示す材料のうちでも、
高速応答可能なπ電子共役をもつ有機材料が、最近特に
注目されている。具体的には、ポリジアセチレン、ポリ
アセチレン、ポリアリレンビニレンなどのπ共役高分子
を挙げることができる。π電子共役をもつ有機材料の非
線形光学効果は、半導体や誘電体のように格子相互作用
によらず、純粋に電子分極に由来するものであるため、
光信号の強度変化に追随可能な応答速度が10-14 sec
と極めて高速である。更に、ポリジアセチレンの一種で
あるポリ〔2,4−ヘキサジイン−1,6−(p−トル
エンスルホナート)〕(略称:PTS)を例にあげて説
明するならば、使用できる入力波長範囲は0.65μm
付近から2.0μm以上の広い範囲にわたり、非線形屈
折率(n2 )は2×10-12 (W/cm2 -1であり上記
のCS2 液体よりも2桁大きい。したがって、π電子共
役をもつ有機材料は、光非線形素子の実現のための多く
の候補材料の中で最も有望な材料系と考えられている
〔PTSの光非線形特性については、文献 フィジカル
レビュー レターズ ( Physical Review Letters)第3
6巻、第956頁(1976)に記載されている〕。し
かしながら、χ(3) の大きなπ共役高分子の多くは不溶
不融で加工性に乏しい。たとえ膜化することができて
も、その剛直性・結晶性のため、光透過性が低く、所望
の導波構造への成形性に欠け、そのままで素子化に供す
ることは非常に困難が伴った。
When a material exhibiting this effect is combined with another optical element such as an optical resonator, a polarizer or a reflecting mirror, an optical non-linear element such as an optical bistable element, an optical gate element or a phase conjugate wave generator is realized. Is possible. These optical non-linear elements are highly expected as key devices for future optical computing / optical switching technologies. [For general information on optical non-linear elements, refer to the Conference on Lectures of the IEEE International Conference Communications (Conf.Lec. IEEE). Int. Conf. Com
mun.) 1990 edition, page 1152 (1990)]. Among the materials that exhibit the third-order nonlinear optical effect,
Recently, an organic material having a π-electron conjugation capable of high-speed response has been particularly attracting attention. Specific examples thereof include π-conjugated polymers such as polydiacetylene, polyacetylene, and polyarylene vinylene. The nonlinear optical effect of organic materials with π-electron conjugation is purely due to electronic polarization, not due to lattice interaction like semiconductors and dielectrics.
The response speed that can follow the intensity change of the optical signal is 10 -14 sec
And is extremely fast. Furthermore, if poly [2,4-hexadiyne-1,6- (p-toluenesulfonate)] (abbreviation: PTS), which is one type of polydiacetylene, is taken as an example and described, the usable input wavelength range is 0. .65 μm
The nonlinear refractive index (n 2 ) is 2 × 10 −12 (W / cm 2 ) −1 over a wide range from the vicinity to 2.0 μm or more, which is two orders of magnitude higher than that of the CS 2 liquid. Therefore, organic materials with π-electron conjugation are considered to be the most promising material system among many candidate materials for the realization of optical nonlinear devices [For the optical nonlinear characteristics of PTS, see Physical Review Letters (Physical Review Letters). Physical Review Letters) 3rd
6, Vol. 956 (1976)]. However, most of π-conjugated polymers with large χ (3) are insoluble and infusible and poor in workability. Even if it can be formed into a film, it has low optical transparency due to its rigidity and crystallinity, lacks formability into a desired waveguide structure, and it is extremely difficult to use it as an element as it is. It was

【0009】そこで、高χ(3) 有機低分子材料を加工性
に富む高分子材料の側鎖、あるいは主鎖中に組込んで高
χ(3) を有しつつ、しかも加工性に富む材料が最近提案
され始めており、これに適した材料も報告され始めてい
る〔文献:栗原ほか:ジャーナル オブ アプライド
フィジクス( Jounal of Appl. Phys. )、第70巻、第
17頁(1991)〕。しかしながら、この様な高χ
(3) 有機低分子材料の種類はそれほど多くなく上記文献
に挙げた例のほか数種の材料があるのみである。
Therefore, a high χ (3) organic low-molecular material is incorporated into the side chain or the main chain of a polymer material having a high processability, and a material having a high χ (3) and a high processability is obtained. Has recently been proposed, and materials suitable for this have also been reported [Reference: Kurihara et al .: Journal of Applied.
Physics (Jounal of Appl. Phys.), Vol. 70, p. 17 (1991)]. However, such high χ
(3) There are not so many kinds of organic low molecular weight materials, and there are only several kinds of materials in addition to the examples given in the above literature.

【0010】[0010]

【発明が解決しようとする課題】したがって、本発明
は、以上の問題点を解決すべく、π共役高分子に匹敵又
はこれを超えるχ(3) を有する低分子有機材料を提案
し、またその材料を加工性に富む高分子材料の側鎖、あ
るいは主鎖中に組込んで高χ(3) を有しつつ、しかも加
工性に富む材料を提供することを狙いとしている。
Therefore, in order to solve the above problems, the present invention proposes a low molecular weight organic material having χ (3) comparable to or exceeding a π-conjugated polymer, and The purpose of the present invention is to provide a material having high χ (3) by incorporating the material into the side chain or main chain of a polymer material having high processability and yet having high processability.

【0011】[0011]

【課題を解決するための手段】本発明を概説すれば、本
発明は3次の非線形光学材料に関する発明であって、分
子両末端がアルキルアミノ基で置換され、且つ、π共役
結合子として−CH=CH−CO−を2個以上有するこ
とを特徴とする。
The present invention will be described in brief. The present invention relates to a third-order nonlinear optical material, wherein both ends of the molecule are substituted with alkylamino groups, and as a π-conjugated bond, It is characterized by having two or more CH = CH-CO-.

【0012】本発明で提案される高χ(3) 物質は、分子
両末端が電子供与性基(ドナー)で置換された対称構造
のπ共役化合物であり、そのχ(3) は、優に10-10 es
u を超える。また、主鎖型あるいは側鎖型高分子材料と
することにより、その導入率を50 mol%としても透明
性、加工性に優れた高分子材料と容易に結合させること
ができるため光透過性・易加工性の材料を作り出すこと
ができる。
[0012] High chi (3) substances that are proposed in the present invention, both ends of the molecule are π-conjugated compounds of the symmetrical structure substituted with an electron donating group (donor), the chi (3) is well 10 -10 es
exceeds u. Also, by using a main chain type or side chain type polymer material, even if the introduction rate is 50 mol%, it can be easily bonded to a polymer material excellent in transparency and processability, so that the light transmittance It is possible to create easily workable materials.

【0013】本発明で用いられるχ(3) 発現物質はπ電
子共役鎖中のπ共役結合子としてアクセプター性の比較
的強いカルボニル基(CO基)を有するπ共役結合子C
=C−COを有し、しかもπ電子共役鎖の両末端にドナ
ー性の置換基であるアルキルアミノ基を持つため、例え
ばC=Cの様なπ共役結合子のみで単純に結合するπ電
子共役鎖を有する材料に比較すると励起状態での光との
強いインタラクションが期待でき、同じ分子鎖長ではは
るかに大きな3次の非線形感受率を有することができ
る。π共役結合子としてC=C−COは少なくとも2個
以上を分子中に有することが必要である。すなわち、1
個の場合には対称構造とすることができず、また大きな
光非線形性を発現するに足りる十分なπ共役長とするこ
とができない。
The χ (3) expressing substance used in the present invention is a π-conjugated bond C having a carbonyl group (CO group) having a relatively strong acceptor property as a π-conjugated bond in a π-electron conjugated chain.
= C-CO, and since it has an alkylamino group that is a donor substituent at both ends of the π-electron conjugated chain, a π-electron that simply bonds only with a π-conjugated bond such as C = C Strong interaction with light in an excited state can be expected as compared with a material having a conjugated chain, and a much larger third-order nonlinear susceptibility can be obtained with the same molecular chain length. It is necessary that C = C-CO as a π-conjugated bond have at least two or more in the molecule. Ie 1
In the case of individual pieces, a symmetric structure cannot be obtained, and a sufficient π-conjugation length sufficient to exhibit a large optical nonlinearity cannot be obtained.

【0014】また、本発明の対称置換の高χ(3) 物質
は、あらかじめ、その分子両末端のドナーに水酸基の様
な反応性に富む置換基を有することも可能なため、ジイ
ソシアン酸化合物との重合加反応やジカルボン酸との重
縮合反応により、容易にポリウレタン構造あるいはポリ
エステル構造の主鎖型高分子材料とすることができる。
また、メタクリル酸との反応も可能であり、本発明の対
称置換の高χ(3) 物質を側鎖にぶら下げた側鎖型高分子
材料とすることも容易である。
Further, the symmetric-substitution high χ (3) substance of the present invention can have a highly reactive substituent such as a hydroxyl group in the donors at both ends of the molecule in advance. The main chain type polymer material having a polyurethane structure or a polyester structure can be easily obtained by the above-mentioned polymerization addition reaction or polycondensation reaction with dicarboxylic acid.
Further, it is possible to react with methacrylic acid, and it is easy to form a side chain type polymer material in which the symmetrically substituted high χ (3) substance of the present invention is hung on the side chain.

【0015】本発明の高分子材料において、高χ(3)
料をつなぐ主鎖型高分子の結合部はポリウレタン、ポリ
エステルのみを記述し、また高χ(3) 材料を側鎖にぶら
下げる高分子における主鎖高分子はポリメタクリレート
のみを記述したが、本発明材料はこれに限定されるもの
ではなく、これ以外の高分子材料でも同様の効果が期待
できる。
In the polymer material of the present invention, the main chain type polymer connecting the high χ (3) materials is described only with polyurethane or polyester, and the polymer that hangs the high χ (3) material on the side chain is described. In the above description, the main chain polymer in (1) is only polymethacrylate, but the material of the present invention is not limited to this, and similar effects can be expected with other polymer materials.

【0016】[0016]

【実施例】以下に、実施例を示し、本発明を更に詳しく
説明するが、本発明はこれら実施例に限定されない。
The present invention will be described in more detail below with reference to examples, but the present invention is not limited to these examples.

【0017】実施例1 p−ジアセチルベンゼン0.1モルに対し、4−ジエチ
ルアミノベンズアルデヒド0.2モルを溶かしたテトラ
ヒドロフラン(THF)溶液200ccに10%水酸化ナ
トリウム水溶液を添加し、1昼夜加熱還流した。析出す
る結晶をTHF溶液にて再結晶し、本発明材料の1つで
ある下記式(化1)で表される化合物Aを得た。(融点
160℃)
Example 1 To 200 cc of a tetrahydrofuran (THF) solution prepared by dissolving 0.2 mol of 4-diethylaminobenzaldehyde in 0.1 mol of p-diacetylbenzene was added a 10% sodium hydroxide aqueous solution, and the mixture was heated under reflux for one day. .. The precipitated crystals were recrystallized with a THF solution to obtain a compound A represented by the following formula (Formula 1), which is one of the materials of the present invention. (Melting point 160 ° C)

【0018】[0018]

【化1】 [Chemical 1]

【0019】次にこの材料の薄膜のχ(3) 値を第3高調
波(THG)強度により測定した。この材料の薄膜化は
真空蒸着法により作製した。ガラス基板上に真空蒸着で
500Å堆積した。THG強度を石英ガラスからのTH
G強度と比較することによりχ(3) 値を求めたところ、
基本波1.5μmで7×10-11 esu 程度であった。
Next, the χ (3) value of the thin film of this material was measured by the third harmonic (THG) intensity. This material was thinned by a vacuum evaporation method. It was deposited on the glass substrate by vacuum evaporation to a volume of 500 liters. THG strength from TH from quartz glass
When the χ (3) value was obtained by comparing with the G intensity,
The fundamental wave was 1.5 μm and was about 7 × 10 −11 esu.

【0020】実施例2 p−ジアセチルベンゼン0.1モルに対し、4−ジエチ
ルアミノシンナムアルデヒド0.2モルを溶かしたTH
F溶液200ccに10%水酸化ナトリウム水溶液を添加
し、1昼夜加熱還流した。析出する結晶をTHF溶液に
て再結晶し、本発明材料の1つである下記式(化2)で
表される化合物Bを得た。(融点260℃)
Example 2 TH in which 0.2 mol of 4-diethylaminocinnamaldehyde was dissolved in 0.1 mol of p-diacetylbenzene
An aqueous solution of 10% sodium hydroxide was added to 200 cc of the F solution, and the mixture was heated under reflux for one day. The precipitated crystals were recrystallized with a THF solution to obtain a compound B represented by the following formula (Formula 2), which is one of the materials of the present invention. (Melting point 260 ° C)

【0021】[0021]

【化2】 [Chemical 2]

【0022】次にこの材料の薄膜のχ(3) 値を第3高調
波(THG)強度により測定した。この材料の薄膜化は
真空蒸着法により作製した。ガラス基板上に真空蒸着で
500Å堆積した。THG強度を石英ガラスからのTH
G強度と比較することによりχ(3) 値を求めたところ、
基本波1.6μmで2×10-10 esu 程度であった。
Next, the χ (3) value of the thin film of this material was measured by the third harmonic (THG) intensity. This material was thinned by a vacuum evaporation method. It was deposited on the glass substrate by vacuum evaporation to a volume of 500 liters. THG strength from TH from quartz glass
When the χ (3) value was obtained by comparing with the G intensity,
It was about 2 × 10 −10 esu at a fundamental wave of 1.6 μm.

【0023】実施例3 2,5−ジクロロテレフタルアルデヒド0.1モルに対
し、1−ジエチルアミノ−4−アセチルベンゼン0.2
モルを溶かしたTHF溶液200ccに10%水酸化ナト
リウム水溶液を添加し、1昼夜加熱還流した。析出する
結晶をTHF溶液にて再結晶し、本発明材料の1つであ
る下記式(化3)で表される化合物Cを得た。
Example 3 0.2 mol of 1-diethylamino-4-acetylbenzene to 0.1 mol of 2,5-dichloroterephthalaldehyde
A 10% aqueous sodium hydroxide solution was added to 200 cc of a THF solution in which mols were dissolved, and the mixture was heated under reflux for 24 hours. The precipitated crystal was recrystallized with a THF solution to obtain a compound C represented by the following formula (Formula 3), which is one of the materials of the present invention.

【0024】[0024]

【化3】 [Chemical 3]

【0025】次にこの材料の薄膜のχ(3) 値を第3高調
波(THG)強度により測定した。この材料の薄膜化は
真空蒸着法により作製した。ガラス基板上に真空蒸着で
500Å堆積した。THG強度を石英ガラスからのTH
G強度と比較することによりχ(3) 値を求めたところ、
基本波1.6μmで3×10-10 esu 程度であった。
Next, the χ (3) value of the thin film of this material was measured by the third harmonic (THG) intensity. This material was thinned by a vacuum evaporation method. It was deposited on the glass substrate by vacuum evaporation to a volume of 500 liters. THG strength from TH from quartz glass
When the χ (3) value was obtained by comparing with the G intensity,
The fundamental wave was 1.6 μm and was about 3 × 10 −10 esu.

【0026】実施例4 p−ジアセチルベンゼン1モルに対し、4−〔エチル
(ヒドロキシエチル)〕アミノベンズアルデヒド2モル
を溶かしたTHF溶液200ccに10%水酸化ナトリウ
ム水溶液を添加し、1昼夜加熱還流した。析出する結晶
をTHF溶液にて再結晶し、本発明材料の1つである下
記式(化4)で表される化合物Dを得た。
Example 4 A 10% aqueous sodium hydroxide solution was added to 200 cc of a THF solution in which 2 mol of 4- [ethyl (hydroxyethyl)] aminobenzaldehyde was dissolved in 1 mol of p-diacetylbenzene, and the mixture was heated under reflux for one day. .. The precipitated crystals were recrystallized with a THF solution to obtain a compound D represented by the following formula (Formula 4), which is one of the materials of the present invention.

【0027】[0027]

【化4】 [Chemical 4]

【0028】次に化合物D1モルをTHF中に溶かし室
温でアジピン酸ジクロライド1モルを反応させた。反応
物はメタノールで再沈し、本発明材料の高χ(3) 材料を
ポリエステル中に組込んだ本発明材料の主鎖型高分子材
料の1つD′を得た。
Next, 1 mol of compound D was dissolved in THF and reacted with 1 mol of adipic dichloride at room temperature. The reaction product was reprecipitated with methanol to obtain one of the main chain polymer materials D'of the present invention in which the high χ (3) material of the present invention was incorporated into polyester.

【0029】この材料の薄膜のχ(3) 値を第3高調波
(THG)強度により測定した。この材料の薄膜化はス
ピンコート法により可能であった。500Åの膜でχ
(3) 値を求めたところ、基本波1.5μmにおいて3光
子共鳴χ(3) 〜4×10-11 esuの値を得た。また、こ
の材料はスピンコートにより容易に4μm程度の膜形成
が可能であり、スラブ導波路を作製することができた。
膜の吸収端波長よりも長波長側での励起光源、波長1.
3μmのLDレーザを用いてプリズムカップリング法に
より導波路損失を測定したところ、1dB/cm以下であっ
た。
The χ (3) value of a thin film of this material was measured by the third harmonic (THG) intensity. Thinning of this material was possible by spin coating. Χ with a 500 Å film
(3) When the value was determined, a value of three-photon resonance χ (3) to 4 × 10 -11 esu was obtained at a fundamental wave of 1.5 μm. In addition, a film of about 4 μm can be easily formed from this material by spin coating, and a slab waveguide can be manufactured.
Excitation light source on wavelength side longer than absorption edge wavelength of film, wavelength 1.
When the waveguide loss was measured by the prism coupling method using a 3 μm LD laser, it was 1 dB / cm or less.

【0030】次に化合物D1モルをTHF中に溶かし室
温でブチレンジイソシアナート1モルを反応させた。反
応物はメタノールで再沈し、本発明材料の高χ(3) 材料
をポリウレタン中に組込んだ本発明材料の主鎖型高分子
材料の1つD″を得た。
Next, 1 mol of the compound D was dissolved in THF and reacted with 1 mol of butylene diisocyanate at room temperature. The reaction product was reprecipitated with methanol to obtain D ″, which is one of the main chain polymer materials of the present invention material, in which the high χ (3) material of the present invention material was incorporated into polyurethane.

【0031】この材料のスピンコート膜のχ(3) 値を第
3高調波(THG)強度により測定した。500Åの膜
でχ(3) 値を求めたところ、基本波1.5μmにおいて
3光子共鳴χ(3) 〜4×10-10 esu の値を得た。ま
た、この材料もスピンコートにより容易に4μm程度の
膜形成が可能であり、スラブ導波路を作製することがで
き、励起光源、波長1.3μmのLDレーザを用いて導
波路損失を測定したところ、1dB/cm以下であった。
The χ (3) value of the spin coat film of this material was measured by the third harmonic (THG) intensity. When the χ (3) value was obtained for a 500 Å film, a value of three-photon resonance χ (3) to 4 × 10 -10 esu was obtained at a fundamental wave of 1.5 μm. Also, this material can be easily formed into a film of about 4 μm by spin coating, a slab waveguide can be produced, and the waveguide loss was measured using an excitation light source and an LD laser with a wavelength of 1.3 μm. It was 1 dB / cm or less.

【0032】更に化合物D1モルをTHF中に溶かし室
温でメタクリル酸クロライド1モルを反応させた。生成
するメタクリル化合物とメタクリル酸メチルをモル比
1:2で混合し重合開始材と共にガラス容器中に封入
し、60℃で24時間反応させたところ共重合し、ポリ
マーが得られた。重合物をメタノールで再沈精製し、本
発明材料の側鎖型高分子材料D″′を得た。
Further, 1 mol of the compound D was dissolved in THF and reacted with 1 mol of methacrylic acid chloride at room temperature. The resulting methacrylic compound and methyl methacrylate were mixed at a molar ratio of 1: 2, enclosed with a polymerization initiator in a glass container, and allowed to react at 60 ° C. for 24 hours for copolymerization to obtain a polymer. The polymer was reprecipitated and purified with methanol to obtain a side chain type polymer material D ″ ″ of the present invention material.

【0033】この材料のスピンコート膜のχ(3) 値を第
3高調波(THG)強度により測定した。500Åの膜
でχ(3) 値を求めたところ、基本波1.5μmにおいて
3光子共鳴χ(3) 〜4×10-11 esu の値を得た。ま
た、この材料はスピンコートにより容易に10μm程度
の膜形成が可能であり、スラブ導波路を作製することが
でき、励起光源、波長1.3μmのLDレーザを用いて
導波路損失を測定したところ、1dB/cm以下であった。
The χ (3) value of the spin coat film of this material was measured by the third harmonic (THG) intensity. When the χ (3) value was obtained for a 500 Å film, a value of three-photon resonance χ (3) to 4 × 10 -11 esu was obtained at a fundamental wave of 1.5 μm. In addition, a film of about 10 μm can be easily formed from this material by spin coating, a slab waveguide can be manufactured, and the waveguide loss is measured using an excitation light source and an LD laser with a wavelength of 1.3 μm. It was 1 dB / cm or less.

【0034】実施例5 p−ジアセチルベンゼン1モルに対し、4−〔エチル
(ヒドロキシエチル)〕アミノシンナムアルデヒド2モ
ルを溶かしたTHF溶液200ccに10%水酸化ナトリ
ウム水溶液を添加し、1昼夜加熱還流した。析出する結
晶をTHF溶液にて再結晶し、本発明材料の1つである
下記式(化5)で表される化合物Eを得た。
Example 5 To a 200 ml solution of THF in which 2 mol of 4- [ethyl (hydroxyethyl)] aminocinnamaldehyde was dissolved in 1 mol of p-diacetylbenzene was added a 10% aqueous sodium hydroxide solution, and the mixture was heated under reflux for one day. did. The precipitated crystal was recrystallized with a THF solution to obtain a compound E represented by the following formula (Formula 5), which is one of the materials of the present invention.

【0035】[0035]

【化5】 [Chemical 5]

【0036】次に化合物E1モルをTHF中に溶かし室
温でアジピン酸ジクロライド1モルを反応させた。反応
物はメタノールで再沈し、本発明材料の高χ(3) 材料を
ポリエステル中に組込んだ本発明材料の主鎖型高分子材
料の1つE′を得た。
Next, 1 mol of the compound E was dissolved in THF and reacted with 1 mol of adipic dichloride at room temperature. The reaction product was reprecipitated with methanol to obtain one of the main chain polymer materials E'of the present invention in which the high χ (3) material of the present invention was incorporated into polyester.

【0037】この材料の薄膜のχ(3) 値を第3高調波
(THG)強度により測定した。この材料の薄膜化はス
ピンコート法により可能であった。500Åの膜でχ
(3) 値を求めたところ、基本波1.6μmにおいて3光
子共鳴χ(3) 〜8×10-11 esuの値を得た。また、こ
の材料もスピンコートにより容易に4μm程度の膜形成
が可能であり、スラブ導波路を作製することができ、励
起光源、波長1.3μmのLDレーザを用いて導波路損
失を測定したところ、1dB/cm程度であった。
The χ (3) value of a thin film of this material was measured by the third harmonic (THG) intensity. Thinning of this material was possible by spin coating. Χ with a 500 Å film
When the value (3) was determined, a value of three-photon resonance χ (3) to 8 × 10 -11 esu was obtained at a fundamental wave of 1.6 μm. Also, this material can be easily formed into a film of about 4 μm by spin coating, a slab waveguide can be produced, and the waveguide loss was measured using an excitation light source and an LD laser with a wavelength of 1.3 μm. It was about 1 dB / cm.

【0038】次に化合物E1モルをTHF中に溶かし室
温でブチレンジイソシアナート1モルを反応させた。反
応物はメタノールで再沈し、本発明材料の高χ(3) 材料
をポリウレタン中に組込んだ本発明材料の主鎖型高分子
材料の1つE″を得た。この材料のスピンコート膜のχ
(3) 値は500Åの膜で、基本波1.6μmにおいて3
光子共鳴χ(3) 〜1×10-10 esu であった。また、こ
の材料もスピンコートにより容易に4μm程度の膜形成
が可能であり、スラブ導波路を作製することができ、励
起光源、波長1.3μmのLDレーザを用いて導波路損
失を測定したところ、1dB/cm程度であった。
Then, 1 mol of the compound E was dissolved in THF and reacted with 1 mol of butylene diisocyanate at room temperature. The reactants were reprecipitated with methanol to obtain E ″, one of the main chain polymer materials of the material of the present invention, in which the high χ (3) material of the material of the present invention was incorporated into polyurethane. Membrane χ
(3) The value is 500 Å, and it is 3 at the fundamental wave of 1.6 μm.
The photon resonance was χ (3) 〜 1 × 10 -10 esu. Also, this material can be easily formed into a film of about 4 μm by spin coating, a slab waveguide can be produced, and the waveguide loss was measured using an excitation light source and an LD laser with a wavelength of 1.3 μm. It was about 1 dB / cm.

【0039】次に化合物E1モルをTHF中に溶かし室
温でメタクリル酸クロライド1モルを反応させた。生成
するメタクリル化合物とメタクリル酸メチルをモル比
1:2で混合し、重合開始材と共にガラス容器中に封入
し、60℃で24時間反応させたところ共重合し、ポリ
マーが得られた。重合物をメタノールで再沈精製し、本
発明材料の側鎖型高分子材料E″′を得た。この材料の
χ(3) 値を求めたところ、基本波1.6μmにおいて3
光子共鳴χ(3) 〜5×10-11 esu の値を得た。また、
この材料はスピンコートにより容易に10μm程度の膜
形成が可能で、スラブ導波路を作製することができた。
励起光源、波長1.3μmのLDレーザを用いて導波路
損失を測定したところ、1dB/cm以下であった。
Next, 1 mol of the compound E was dissolved in THF and reacted with 1 mol of methacrylic acid chloride at room temperature. The resulting methacrylic compound and methyl methacrylate were mixed at a molar ratio of 1: 2, enclosed with a polymerization initiator in a glass container, and allowed to react at 60 ° C. for 24 hours for copolymerization to obtain a polymer. The polymer was reprecipitated and purified with methanol to obtain a side chain type polymer material E ″ ″ of the material of the present invention. The χ (3) value of this material was determined to be 3 at a fundamental wave of 1.6 μm.
The values of photon resonance χ (3) -5 × 10 -11 esu were obtained. Also,
A film of about 10 μm can be easily formed from this material by spin coating, and a slab waveguide can be manufactured.
When the waveguide loss was measured using an excitation light source and an LD laser having a wavelength of 1.3 μm, it was 1 dB / cm or less.

【0040】実施例6 2,5−ジクロロテレフタルアルデヒド1モルに対し、
1−〔エチル(ヒドロキシエチル)〕アミノ−4−アセ
チルベンゼン2モルを溶かしたTHF溶液200ccに1
0%水酸化ナトリウム水溶液を添加し、1昼夜加熱還流
した。析出する結晶をTHF溶液にて再結晶し、本発明
材料の1つである下記式(化6)で表される化合物Fを
得た。
Example 6 With respect to 1 mol of 2,5-dichloroterephthalaldehyde,
1 to 200 cc of THF solution containing 2 mol of 1- [ethyl (hydroxyethyl)] amino-4-acetylbenzene.
A 0% sodium hydroxide aqueous solution was added, and the mixture was heated under reflux for one day. The precipitated crystal was recrystallized with a THF solution to obtain a compound F represented by the following formula (Formula 6), which is one of the materials of the present invention.

【0041】[0041]

【化6】 [Chemical 6]

【0042】次に化合物F1モルをTHF中に溶かし室
温でヘキシレンジイソシアナート1モルを反応させた。
反応物はメタノールで再沈し、本発明材料の高χ(3)
料をポリウレタン中に組込んだ本発明材料の主鎖型高分
子材料の1つF′を得た。この材料のスピンコート膜の
χ(3) 値を第3高調波(THG)強度により測定した。
500Åの膜でχ(3) 値を求めたところ、基本波1.6
μmにおいて3光子共鳴χ(3) 〜2×10-10 esu の値
を得た。この材料もスピンコートにより容易に4μm程
度の膜形成が可能であり、スラブ導波路を作製すること
ができ、励起光源、波長1.3μmのLDレーザを用い
て導波路損失を測定したところ、1dB/cm程度であっ
た。
Next, 1 mol of the compound F was dissolved in THF and reacted with 1 mol of hexylene diisocyanate at room temperature.
The reaction product was reprecipitated with methanol to obtain one of the main chain polymer materials of the present invention F'in which the high χ (3) material of the present invention was incorporated into polyurethane. The χ (3) value of the spin coat film of this material was measured by the third harmonic (THG) intensity.
When the χ (3) value was obtained for a 500 Å film, the fundamental wave was 1.6
The value of three-photon resonance χ (3) to 2 × 10 -10 esu was obtained at μm. This material can be easily spin-coated to form a film with a thickness of about 4 μm, and a slab waveguide can be produced. When the waveguide loss is measured using an excitation light source and an LD laser with a wavelength of 1.3 μm, it is 1 dB. It was about / cm.

【0043】次に化合物F1モルをTHF中に溶かし室
温でアジピン酸ジクロライド1モルを反応させた。反応
物はメタノールで再沈し、本発明材料の高χ(3) 材料を
ポリエステル中に組込んだ本発明材料の主鎖型高分子材
料の1つF″を得た。この材料のスピンコート膜のχ
(3) 値は500Å厚で、基本波1.6μmにおいて3光
子共鳴χ(3) 〜2×10-10 esu であった。この材料も
スピンコートにより容易にスラブ導波路を作製すること
ができ、励起光源、波長1.3μmのLDレーザを用い
て導波路損失を測定したところ、1dB/cm程度であっ
た。
Next, 1 mol of compound F was dissolved in THF and reacted with 1 mol of adipic dichloride at room temperature. The reaction product was reprecipitated with methanol to obtain F ″, which is one of the main chain type polymer materials of the present invention material, in which the high χ (3) material of the present invention material is incorporated in polyester. Membrane χ
(3) The value was 500 Å thick, and was three-photon resonance χ (3) to 2 × 10 -10 esu at the fundamental wave of 1.6 µm. A slab waveguide can be easily produced by spin coating of this material, and the waveguide loss was measured to be about 1 dB / cm using an excitation light source and an LD laser having a wavelength of 1.3 μm.

【0044】更に化合物F1モルをTHF中に溶かし室
温でメタクリル酸クロライド1モルを反応させた。生成
するメタクリル化合物とメタクリル酸メチルをモル比
1:2で混合し、重合開始材と共にガラス容器中に封入
し、60℃で24時間反応させたところ共重合し、ポリ
マーが得られた。重合物をメタノールで再沈精製し、本
発明材料の側鎖型高分子材料F″′を得た。この材料の
χ(3) 値を求めたところ、基本波1.6μmにおいて3
光子共鳴χ(3) 〜10-11 esu の値を得た。この材料も
スピンコートにより容易に10μm程度の膜形成が可能
で、スラブ導波路を作製することができ、導波路損失を
測定したところ、1dB/cm程度であった。
Further, 1 mol of the compound F was dissolved in THF and reacted with 1 mol of methacrylic acid chloride at room temperature. The resulting methacrylic compound and methyl methacrylate were mixed at a molar ratio of 1: 2, enclosed with a polymerization initiator in a glass container, and allowed to react at 60 ° C. for 24 hours for copolymerization to obtain a polymer. The polymer was reprecipitated and purified with methanol to obtain a side chain type polymer material F ″ ″ of the present invention. The χ (3) value of this material was determined to be 3 at a fundamental wave of 1.6 μm.
The values of photon resonance χ (3) -10 -11 esu were obtained. This material was also capable of easily forming a film with a thickness of about 10 μm by spin coating, and was able to produce a slab waveguide. The waveguide loss was measured to be about 1 dB / cm.

【0045】実施例7 他の実施例における本発明の高χ(3) 材料G〜Nを表1
及び表2にまとめて記した。G〜Nの合成法を以下に記
す。
Example 7 The high χ (3) materials GN of the present invention in another example are shown in Table 1.
And summarized in Table 2. The synthesis method of GN is described below.

【0046】[0046]

【表1】 [Table 1]

【0047】[0047]

【表2】 [Table 2]

【0048】◎Gの合成法 4−ジエチルアミノ−4′−ニトロカルコン1モルをT
HF中に溶かし、亜鉛2モルを分散させ、加熱還流し
た。析出する沈殿物を精製し、本発明の化合物Gを得
た。
A method of synthesizing G: 1 mol of 4-diethylamino-4'-nitrochalcone was added to T
It was dissolved in HF, 2 mol of zinc was dispersed, and the mixture was heated under reflux. The deposited precipitate was purified to obtain the compound G of the present invention.

【0049】◎Hの合成法 4−ジエチルアミノベンズアルデヒド1モルと4,4′
−ジアセチルスチルベン0.5モルをTHF中に溶か
し、NaOH水溶液を少量添加し、1昼夜加熱還流し
た。析出する沈殿物を精製し、本発明の化合物Hを得
た。
Method of synthesizing H 4-diethylaminobenzaldehyde 1 mol and 4,4 '
-0.5 mol of diacetylstilbene was dissolved in THF, a small amount of aqueous NaOH solution was added, and the mixture was heated under reflux for 24 hours. The deposited precipitate was purified to obtain the compound H of the present invention.

【0050】◎Iの合成法 4′−ジエチルアミノ−4−アセチルカルコン1モルと
テレフタルアルデヒド0.5モルをTHF中に溶かし、
NaOH水溶液を少量添加し、1昼夜加熱還流した。析
出する沈殿物を精製し、本発明の化合物Iを得た。
◎ Synthesis Method of I Dissolve 1 mol of 4'-diethylamino-4-acetylchalcone and 0.5 mol of terephthalaldehyde in THF,
A small amount of NaOH aqueous solution was added, and the mixture was heated under reflux for 24 hours. The deposited precipitate was purified to obtain the compound I of the present invention.

【0051】◎Jの合成法 4−ジエチルアミノシンナムアルデヒド1モルと4−ニ
トロ−1−アセチルベンゼン1モルをTHF中に溶か
し、NaOH水溶液を少量添加し、1昼夜加熱還流し
た。析出する沈殿物を精製し、THF中に溶かし、亜鉛
2モルを分散させ、加熱還流した。析出する沈殿物を精
製し、本発明の化合物Jを得た。
⊚ Synthesis Method J 4-diethylaminocinnamaldehyde (1 mol) and 4-nitro-1-acetylbenzene (1 mol) were dissolved in THF, a small amount of an aqueous NaOH solution was added, and the mixture was heated under reflux for one day. The deposited precipitate was purified, dissolved in THF, 2 mol of zinc was dispersed, and the mixture was heated under reflux. The deposited precipitate was purified to obtain the compound J of the present invention.

【0052】◎Kの合成法 4′−ジエチルアミノ−4−アセチルカルコン1モルと
4−ニトロベンズアルデヒド1モルをTHF中に溶か
し、NaOH水溶液を少量添加し、1昼夜加熱還流し
た。析出する沈殿物を精製し、THF中に溶かし、亜鉛
2モルを分散させ、加熱還流した。析出する沈殿物を精
製し、本発明の化合物Kを得た。
Method of synthesizing K: 1 mol of 4'-diethylamino-4-acetylchalcone and 1 mol of 4-nitrobenzaldehyde were dissolved in THF, a small amount of an aqueous NaOH solution was added, and the mixture was heated under reflux for one day. The deposited precipitate was purified, dissolved in THF, 2 mol of zinc was dispersed, and the mixture was heated under reflux. The deposited precipitate was purified to obtain the compound K of the present invention.

【0053】◎Lの合成法 4−ジエチルアミノシンナムアルデヒド1モルとp−ジ
アセチルベンゼン1モルをTHF中に溶かし、NaOH
水溶液を少量添加し、1昼夜加熱還流した。析出する沈
殿物を精製し、THF中に溶かし、テレフタルアルデヒ
ド0.9モルを溶かし、NaOH水溶液を少量添加し、
1昼夜加熱還流した。析出する沈殿物を精製し、本発明
の化合物Lを得た。
⊚ Synthesis method of L 4-diethylaminocinnamaldehyde (1 mol) and p-diacetylbenzene (1 mol) were dissolved in THF, and NaOH was added.
A small amount of the aqueous solution was added, and the mixture was heated under reflux for one day. The precipitate that precipitates is purified, dissolved in THF, 0.9 mol of terephthalaldehyde is dissolved, and a small amount of NaOH aqueous solution is added,
The mixture was heated and refluxed for one day and night. The deposited precipitate was purified to obtain the compound L of the present invention.

【0054】◎Mの合成法 4−ジエチルアミノベンズアルデヒド1モルとアセトン
1モルをTHF中に溶かし、NaOH水溶液を少量添加
し、1昼夜加熱還流した。析出する沈殿物を精製し、T
HF中に溶かし、テレフタルアルデヒド0.9モルを溶
かし、NaOH水溶液を少量添加し、1昼夜加熱還流し
た。析出する沈殿物を精製し、本発明の化合物Mを得
た。
Method of synthesizing M 1 mol of 4-diethylaminobenzaldehyde and 1 mol of acetone were dissolved in THF, a small amount of aqueous NaOH solution was added, and the mixture was heated under reflux for one day. The precipitate that precipitates is purified, and T
It was dissolved in HF, 0.9 mol of terephthalaldehyde was dissolved, a small amount of aqueous NaOH solution was added, and the mixture was heated under reflux for one day. The deposited precipitate was purified to obtain the compound M of the present invention.

【0055】◎Nの合成法 4−アセチルエテニル−1−ジエチルアミノベンゼン1
モルとテレフタルアルデヒド1モルをTHF中に溶か
し、NaOH水溶液を少量添加し、1昼夜加熱還流し
た。析出する沈殿物を精製し、THF中に溶かし、p−
ジアセチルベンゼン0.9モルを溶かし、NaOH水溶
液を少量添加し、1昼夜加熱還流した。析出する沈殿物
を精製し、本発明の化合物Nを得た。
◎ Synthetic Method of N 4-Acetylethenyl-1-diethylaminobenzene 1
Mol and 1 mol of terephthalaldehyde were dissolved in THF, a small amount of aqueous NaOH solution was added, and the mixture was heated under reflux for one day. The deposited precipitate is purified, dissolved in THF, and p-
0.9 mol of diacetylbenzene was dissolved, a small amount of NaOH aqueous solution was added, and the mixture was heated under reflux for one day. The deposited precipitate was purified to obtain the compound N of the present invention.

【0056】またこれらG〜Nの高χ(3) 材料を基本骨
格にした本発明の高分子材料については両末端にOH基
を有する原料を上記のG〜Nの合成例にならい合成し、
実施例1〜6に示した主鎖型高分子(D′,E′,
F′,D″,E″,F″)あるいは側鎖型高分子
(D″′,E″′,F″′)の合成法と同様にして合成
することができる。
Regarding the polymer materials of the present invention in which the high χ (3) materials of G to N are used as basic skeletons, raw materials having OH groups at both ends are synthesized according to the above-mentioned synthesis examples of G to N,
The main chain type polymers (D ', E', shown in Examples 1 to 6)
F ′, D ″, E ″, F ″) or side chain type polymers (D ″ ″, E ″ ″, F ″ ″) can be synthesized in the same manner.

【0057】[0057]

【発明の効果】以上説明したように、本発明の非線形材
料は、高速・高効率の三次非線形光学特性を有し、成形
性・光透過性に優れているため、将来の光コンピューテ
ィング・光交換技術を担う光非線形素子の中心素材とし
て大いに利用できる。光ゲート光スイッチ素子用材料と
して見ると、低χ(3) 材料の場合は、長尺化が必要であ
り、導波損失が極端に低くなければ使えない。一方、χ
(3) の大きい材料は、短い光路長で済むため、導波損失
への要求は自ずから緩やかである。本材料の導波損失は
例えば約1dB/cmなので、1cmの光路長であれば、χ
(3) の約80%を有効に利用できる。仮に、3μm2
断面積をもつ長さ約1cmの導波路が作製されれば、半導
体レーザで十分駆動する光ゲート光スイッチ素子を実現
できる。素子動作速度については、既に分子回転効果を
示すCS2 溶液で数ピコ秒スイッチング動作が確認され
ており、分子回転のない本材料系ではピコ秒以下の動作
が可能である。更に、光ゲート光スイッチ素子ばかりで
なく、光双安定素子や光リミッタ素子のような他の重要
な光非線形素子にも応用できる。
As described above, the non-linear material of the present invention has high-speed and high-efficiency third-order non-linear optical characteristics, and is excellent in moldability and light transmission, so that it can be used in future optical computing and optical It can be widely used as a central material for optical nonlinear elements that play a role in switching technology. In terms of materials for optical gate optical switching devices, low χ (3) materials require lengthening and cannot be used unless the waveguide loss is extremely low. On the other hand, χ
Since the material of (3) has a large optical path length, the requirement for waveguide loss is naturally low. Since the waveguide loss of this material is, for example, about 1 dB / cm, if the optical path length is 1 cm, χ
About 80% of (3) can be effectively used. If a waveguide having a cross-sectional area of 3 μm 2 and a length of about 1 cm is produced, an optical gate optical switch device that can be sufficiently driven by a semiconductor laser can be realized. Regarding the device operating speed, it has already been confirmed that a CS 2 solution exhibiting a molecular rotation effect can perform a switching operation of several picoseconds, and the material system without molecular rotation can operate in picoseconds or less. Further, it can be applied not only to the optical gate optical switching device but also to other important optical nonlinear devices such as an optical bistable device and an optical limiter device.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 戒能 俊邦 東京都千代田区内幸町1丁目1番6号 日 本電信電話株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Toshikuni Kaino 1-1-6 Uchisaiwaicho, Chiyoda-ku, Tokyo Nihon Telegraph and Telephone Corporation

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 分子両末端がアルキルアミノ基で置換さ
れ、且つ、π共役結合子として−CH=CH−CO−を
2個以上有することを特徴とする3次の非線形光学材
料。
1. A third-order nonlinear optical material characterized in that both ends of the molecule are substituted with an alkylamino group and that it has two or more —CH═CH—CO— as a π-conjugated bond.
【請求項2】 請求項1に記載の材料が、高分子材料の
主鎖中に組込まれていることを特徴とする3次の非線形
光学材料。
2. A third-order nonlinear optical material characterized in that the material according to claim 1 is incorporated in a main chain of a polymeric material.
JP3332764A 1991-11-22 1991-11-22 Nonlinear optical material Pending JPH05142603A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3332764A JPH05142603A (en) 1991-11-22 1991-11-22 Nonlinear optical material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3332764A JPH05142603A (en) 1991-11-22 1991-11-22 Nonlinear optical material

Publications (1)

Publication Number Publication Date
JPH05142603A true JPH05142603A (en) 1993-06-11

Family

ID=18258582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3332764A Pending JPH05142603A (en) 1991-11-22 1991-11-22 Nonlinear optical material

Country Status (1)

Country Link
JP (1) JPH05142603A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115108959A (en) * 2022-06-02 2022-09-27 武汉大学 Photobleachable visible light initiator containing benzylidene ketone structure and preparation method and application thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115108959A (en) * 2022-06-02 2022-09-27 武汉大学 Photobleachable visible light initiator containing benzylidene ketone structure and preparation method and application thereof
CN115108959B (en) * 2022-06-02 2023-05-16 武汉大学 Photobleachable visible light initiator containing benzylidene ketone structure, and preparation method and application thereof

Similar Documents

Publication Publication Date Title
US4775215A (en) Nonlinear optical devices
US4999139A (en) Organic nonlinear optical material and nonlinear optical device
US5318729A (en) Third-order nonlinear optical main chain polymer material and method for preparing the same
US4978476A (en) Side chain polymers exhibiting nonlinear optical response
JPS61207416A (en) Polyacetylenic composition
JPH05142603A (en) Nonlinear optical material
EP0513247A1 (en) Side chain copolymers exhibiting nonlinear optical response
US5532320A (en) Second order nonlinear optical interpenetrating polymer networks
US5100985A (en) 1,4-bis(4-arylbutadienyl) benzenes exhibiting nonlinear optical response
US5212250A (en) Poly(maleic anhydride) copolymers with side chains exhibiting nonlinear optical response
US5171803A (en) Copolymer with side chains exhibiting nonlinear optical response
US5155195A (en) Sidechain copolymers exhibiting nonlinear optical response
WO1991012280A1 (en) Acrylic copolymers exhibiting nonlinear optical response
JP3271463B2 (en) Nonlinear optical material and device
JP3003812B2 (en) Optical nonlinear main chain type polymer material and method for producing the same
JPH0580277A (en) Optical nonlinear main chain type high-polymer material
US5872255A (en) Conjugated organic compounds and preparation process
JPS62238538A (en) Thin film type non-linear optical material
JP3014825B2 (en) Optical nonlinear low molecular weight compounds and polymer materials containing them
JP2503136B2 (en) Non-linear optical element
JP2789957B2 (en) Nonlinear optical element
JPH10316871A (en) Composition, optical and electronic device using the same
JPH07104326A (en) Nonlinear optical material and nonlinear optical device using the same
JPH03179330A (en) Organic nonlinear optical material
JP3375459B2 (en) Organic material for nonlinear optical element and optical element using the same