JPH0580277A - Optical nonlinear main chain type high-polymer material - Google Patents

Optical nonlinear main chain type high-polymer material

Info

Publication number
JPH0580277A
JPH0580277A JP24350491A JP24350491A JPH0580277A JP H0580277 A JPH0580277 A JP H0580277A JP 24350491 A JP24350491 A JP 24350491A JP 24350491 A JP24350491 A JP 24350491A JP H0580277 A JPH0580277 A JP H0580277A
Authority
JP
Japan
Prior art keywords
optical
main chain
nonlinear
substance
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24350491A
Other languages
Japanese (ja)
Inventor
Akira Tomaru
暁 都丸
Takashi Kurihara
栗原  隆
Toshikuni Kaino
俊邦 戒能
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP24350491A priority Critical patent/JPH0580277A/en
Publication of JPH0580277A publication Critical patent/JPH0580277A/en
Pending legal-status Critical Current

Links

Landscapes

  • Eyeglasses (AREA)
  • Polyamides (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

PURPOSE:To obtain the org. nonlinear material having excellent light transmissivity and moldability by forming this material of an optical nonlinear main chain type high polymer having a structure in which the specific structure is incorporated into the main chain of a polymer. CONSTITUTION:The structure in which the structure expressed by formula I is incorporated into the main chain of the polymer selected from polyalkylene, polyamic acid, polyimide, polyamide, and polycarbonate is adopted. In the formula I, R1 and R2 are the same or different and respectively denote an alkyl group or hydrogen atom; Xn=Yn denote the pi conjugation coupler selected from -N=N-, -CH=CH- and -N=CH-; (n) denotes integer 3 to 7; a phenylene ring is substd. with a chlorine atom or is non-substd. This high-polymer material has a cubic nonlinear optical characteristic of high efficiency and has the excellent transmissive and waveguide structure moldability and is, therefore, utilizable as the central blank material of the optical nonlinear element which bears future optical computing and optical exchange technology.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光コンピューティング
の基本素子となる光ゲート素子や光双安定素子などへの
適用が可能な光非線形主鎖型高分子材料に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical non-linear main chain type polymer material which can be applied to an optical gate element, an optical bistable element and the like which are basic elements of optical computing.

【0002】[0002]

【従来の技術】物質に光が入射したとき、光電場:Eに
よって誘起される物質の電気分極:Pは、一般式(1)
の形で表わすことができる。
2. Description of the Related Art When light is incident on a substance, the electric polarization P of the substance induced by a photoelectric field E is expressed by the general formula (1).
Can be expressed in the form of.

【0003】[0003]

【数1】 P=χ(1) E+χ(2) EE+χ(3) EEE+… (1) このとき、χ(i) (i≧2)をi次の非線形感受率とよ
ぶ。第2項による第2高調波発生(SHG)や、第3項
による第3高調波発生(THG)は、波長変換効果とし
てよく知られている。第3項はまた、光強度に応じた光
学定数の変化、たとえば非線形屈折率効果や非線形吸収
効果を与えるものとして重要である。なかでも、非線形
屈折率効果は物質の屈折率nが入射光強度に比例して変
化するものであり、式(2)で記述される。
## EQU1 ## P = χ (1) E + χ (2) EE + χ (3) EEE + (1) At this time, χ (i) (i ≧ 2) is called the i-th order nonlinear susceptibility. The second harmonic generation (SHG) according to the second term and the third harmonic generation (THG) according to the third term are well known as the wavelength conversion effect. The third term is also important as giving a change in the optical constant depending on the light intensity, such as a nonlinear refractive index effect or a nonlinear absorption effect. Among them, the nonlinear refractive index effect is that the refractive index n of a substance changes in proportion to the incident light intensity, and is described by the equation (2).

【0004】[0004]

【数2】 n=n0 +n2 I (2) n0 は弱光強度での屈折率、Iは入射光強度である。n
2 が非線形屈折率であり、n2 と3次の非線形感受率:
χ(3) の間には式(3)の関係が成り立つ(Cは光速で
ある)。n2 とχ(3) は、ともに光非線形効果の大きさ
を表わす指標として用いられる。
N = n 0 + n 2 I (2) n 0 is the refractive index at weak light intensity, and I is the incident light intensity. n
2 is the nonlinear refractive index, and n 2 and the third-order nonlinear susceptibility:
The relation of equation (3) holds between χ (3) (C is the speed of light). Both n 2 and χ (3) are used as indices indicating the magnitude of the optical nonlinear effect.

【0005】[0005]

【数3】 n2 =(16π2 /Cn0 2)χ(3) (3) この効果を示す材料と、光共振器や偏光子や反射鏡など
他の光学素子とを組み合せると光双安定素子,光ゲート
素子,位相共役波発生器などの光非線形素子の実現が可
能となる。これらの光非線形素子は、将来の光コンピュ
ーティング・光交換技術のキーデバイスとして、大きな
期待がよせられている(光非線形素子全般については、
文献 コンファレンス レクチャー オブ アイトリプ
ルイーインターナショナル コンファレンス コミュニ
ケーションズ(Conf.Rec.IEEE Int.
Conf.Commun.)1990年版,1152
(1990)に詳しい)。
N 2 = (16π 2 / Cn 0 2 ) χ (3) (3) Combining a material exhibiting this effect with other optical elements such as an optical resonator, a polarizer or a reflecting mirror results in an optical duplex. Optical nonlinear elements such as stable elements, optical gate elements, and phase conjugate wave generators can be realized. These optical non-linear elements have great expectations as key devices for future optical computing and optical switching technologies (for optical non-linear elements in general,
Literature Conference Lecture of Eye Triple E International Conference Communications (Conf. Rec. IEEE Int.
Conf. Commun. ) 1990 version, 1152
(Detailed in (1990)).

【0006】光非線形素子の性能、すなわち、使用波長
域,動作に必要な入力光強度,応答速度などは、その構
成材料の特性によってほとんど決定される。
The performance of the optical nonlinear element, that is, the wavelength range used, the intensity of input light required for operation, the response speed, etc., are mostly determined by the characteristics of the constituent materials.

【0007】したがって、使用可能な波長範囲が広く、
3次光非線形効率が高く、ピコ秒以下の高速応答が可能
な材料の開発が熱望されていた。
Therefore, the usable wavelength range is wide,
The development of a material having high third-order optical nonlinear efficiency and capable of high-speed response of picosecond or less has been earnestly desired.

【0008】3次の非線形光学効果を示す材料のうちで
も、高速応答可能なπ電子共役をもつ有機材料が、最近
特に注目されている。具体的には、ポリジアセチレン,
ポリアセチレン,ポリアリレンビニレンなどのπ共役高
分子を挙げることができる。π電子共役をもつ有機材料
の非線形光学効果は、半導体や誘電体のように格子相互
作用によらず、純粋に電子分極に由来するものであるた
め、光信号の強度変化に追随可能な応答速度が10-14
secと極めて高速である。
Among the materials exhibiting the third-order nonlinear optical effect, an organic material having a π-electron conjugation capable of high-speed response has recently attracted particular attention. Specifically, polydiacetylene,
Examples thereof include π-conjugated polymers such as polyacetylene and polyarylene vinylene. The nonlinear optical effect of organic materials with π-electron conjugation is purely due to electronic polarization, not to the lattice interaction like semiconductors and dielectrics, so the response speed that can follow the intensity change of the optical signal. Is 10 -14
It is extremely fast at sec.

【0009】しかしながら、χ(3) の大きなπ共役高分
子の多くは不溶不融で加工性に乏しい。たとえ膜化する
ことができても、その剛直性・結晶性のため、光透過性
が低く、所望の導波構造への成形性に欠け、そのままで
素子化に供することは非常に困難が伴った。実際に、有
機材料中最大級のχ(3) を有する上記PTSを素子材料
とする非線形光学素子は、未だに実現されていない。同
じ理由から、ポリアセチレン,ポリアリレンビニレンに
よる素子もいまだ開発されていない。
However, most of π-conjugated polymers having a large χ (3) are insoluble and infusible and poor in workability. Even if it can be formed into a film, it has low optical transparency due to its rigidity and crystallinity, lacks formability into a desired waveguide structure, and it is extremely difficult to use it as an element as it is. It was In fact, a non-linear optical element using PTS as the element material, which has the largest χ (3) among organic materials, has not yet been realized. For the same reason, devices based on polyacetylene and polyarylene vinylene have not been developed yet.

【0010】一方、π共役高分子以外で大きな非線形光
学効果を有する有機材料としては、ドナー・アクセプタ
ー型π共役分子がある。これは、比較的短いπ共役系の
一方の端にドナー、他方にアクセプターを置換し、ドナ
ー・アクセプター間に生じる分子内電荷移動効果を利用
して非線形光学効果の増幅をねらったものである。具体
的には、DEANS(ジエチルアミノニトロスチルベ
ン)やDEANST(ジエチルアミノニトロスチレン)
が知られている(DEANSについては、文献ケミカル
フィジックス レターズ(Chemcal Phys
icsLetters)第165巻,171(199
0)、DEANSTについては、米国特許第49975
95号(1991)に詳しい)。両者とも、ドナーはジ
エチルアミノ基、アクセプターはニトロ基で、π共役系
は、DEANSがスチルベン、DEANSTがスチレン
である。χ(3) は、たかだか、10-12 〜10-11 es
uレベルである。とくに、DEANSTのニトロベンゼ
ン溶液は、CS2 を凌ぐ非線形光学媒体として光ゲート
素子実験が試みられている。さらに、π共役系がアゾベ
ンゼンのドナー・アクセプター型π共役分子をPMMA
(ポリメタアクリル酸メチル)へ共有結合して側鎖型高
分子とし、光非線形効果および光透過性を付与した例が
ある(光非線形側鎖型高分子の最初の例は、文献 アプ
ライド フィジックス レターズ(Applied P
hysics Letters)第51巻,1(198
7)に記載されている)。しかしながら、π共役高分子
に比べると、χ(3) が1桁以上小さいという本質的な問
題点が残されている。
On the other hand, as an organic material having a large nonlinear optical effect other than the π-conjugated polymer, there is a donor-acceptor type π-conjugated molecule. This aims at amplification of a nonlinear optical effect by substituting a donor at one end of a relatively short π-conjugated system and an acceptor at the other, and utilizing an intramolecular charge transfer effect generated between a donor and an acceptor. Specifically, DEANS (diethylaminonitrostilbene) and DEANST (diethylaminonitrostyrene)
Is known (for DEANS, refer to the reference Chemical Physics Letters (Chemcal Phys).
icsLetters) Volume 165, 171 (199)
0), for DEANST, US Pat.
95 (1991)). In both cases, the donor is a diethylamino group, the acceptor is a nitro group, and the π-conjugated system is stilbene for DEANS and styrene for DEANST. χ (3) is at most 10 -12 to 10 -11 es
u level. In particular, the nitrobenzene solution of DEANST has been tried as an optical gate device experiment as a nonlinear optical medium superior to CS 2 . In addition, the π-conjugated system is a donor-acceptor type π-conjugated molecule of azobenzene
There is an example in which a side chain type polymer is covalently bonded to (polymethylmethacrylate) to give a photon nonlinear effect and optical transparency (the first example of the photon nonlinear side chain type polymer is described in the literature Applied Physics Letters). (Applied P
hysics Letters) 51, 1 (198)
7)). However, there remains an essential problem that χ (3) is smaller than that of π-conjugated polymer by one digit or more.

【0011】以上述べたように、有機材料によって高速
光非線形素子を実現させるためには、π共役高分子並の
χ(3) を有し、かつ、成形性および光透過性を兼ね備え
た新材料の開発が必須であった。半導体レーザ動作を達
成するため、χ(3) は少なくとも10-10 esu以上、
式(3)によるn2 換算で10-12 (W/cm2-1
保持したいという要求があった。
As described above, in order to realize a high-speed optical nonlinear device with an organic material, a new material having χ (3) as high as that of a π-conjugated polymer and having both moldability and light transmittance. Development was essential. In order to achieve semiconductor laser operation, χ (3) is at least 10 -10 esu or more,
There was a demand to hold 10 −12 (W / cm 2 ) −1 in terms of n 2 calculated by the formula (3).

【0012】[0012]

【発明が解決しようとする課題】上述したように、χ
(3) が10-10 esu以上の有機材料のほとんどはπ共
役高分子であり、剛直で結晶化度が高く加工性に乏しい
ため、光透過性が低く、所望の導波構造への成形性が極
端に低い。一方、ドナー・アクセプター型π共役分子を
側鎖とする光非線形側鎖型高分子材料においても、光非
線形性を担うドナー・アクセプター型π共役分子自体の
χ(3) が10-10 esuに達しない上に、これら分子を
高濃度に導入することが困難であった。光非線形側鎖型
高分子の製造法は、χ(3) 物質を有するビニルモノマー
のラジカル共重合法と高分子反応法がある。ラジカル重
合では、χ(3) の向上に必須のニトロ基やアゾ結合など
がラジカル禁止剤として働くため、χ(3) 物質の含有量
が増えるほどラジカル禁止反応も起こりやすくなった。
そのため、重合度が高くならず、得られたポリマの成膜
性は低かった。したがって、χ(3) 物質の濃度が高く、
かつ真に成膜性のある材料を得ることは難しかった。た
とえば、分子内にニトロ基とアゾ結合を含む3環以上の
χ(3) 物質の導入率は、10〜30mol%が限界であ
った。一方、高分子反応を利用しても、導入率は、20
mol%前後が限界であった。さらに、これらの方法で
製造した光非線形側鎖型高分子材料のχ(3)はたかだか
10-11 esuのレベルであった。
As described above, χ
Most of the organic materials with (3) of 10 -10 esu or more are π-conjugated polymers, and they are rigid and have high crystallinity and poor workability, so they have low light transmittance and formability into a desired waveguide structure. Is extremely low. On the other hand, also in the optical non-linear side chain type polymer material having a donor-acceptor type π-conjugated molecule as a side chain, the χ (3) of the donor-acceptor type π-conjugated molecule itself responsible for the optical nonlinearity reaches 10 -10 esu. In addition, it was difficult to introduce these molecules at a high concentration. The method for producing the optical nonlinear side chain type polymer includes a radical copolymerization method of a vinyl monomer having a χ (3) substance and a polymer reaction method. In radical polymerization, nitro groups and azo bonds, which are essential for improvement of χ (3) , act as radical inhibitors, so the radical inhibition reaction is more likely to occur as the content of χ (3) substance increases.
Therefore, the degree of polymerization did not increase and the film-forming property of the obtained polymer was low. Therefore, the concentration of χ (3) substance is high,
Moreover, it was difficult to obtain a material having a true film-forming property. For example, the introduction rate of a χ (3) substance having three or more rings containing a nitro group and an azo bond in the molecule was limited to 10 to 30 mol%. On the other hand, the introduction rate is 20 even if the polymer reaction is used.
The limit was around mol%. Further, χ (3) of the optical nonlinear side chain type polymer material produced by these methods was at a level of 10 -11 esu at most.

【0013】上述のように、光非線形側鎖型高分子材料
は、PMMAなどの成形性・光透過性に富む高分子をベ
ースとするため素子適用のポテンシャルは高いが、肝心
のχ(3) がπ共役高分子より約1桁小さいという決定的
な問題があった。
As described above, the optical non-linear side chain type polymer material has a high potential for device application because it is based on a polymer having high moldability and light transmissivity such as PMMA, but the important χ (3) There is a definite problem that is smaller than the π-conjugated polymer by about one digit.

【0014】χ(3) が10-10 esu以上の物質は平面
性が高く、これら物質の高分子主鎖への導入率を高くす
ると一般的には溶媒への溶解度が落ちるため、スピンコ
ート等簡単な成膜法が利用できなくなる場合が多い。
Substances having a χ (3) of 10 -10 esu or more have high planarity, and if the introduction rate of these substances into the polymer main chain is increased, the solubility in a solvent generally decreases, so spin coating, etc. In many cases, a simple film forming method cannot be used.

【0015】したがって、本発明の目的は、以上の問題
点を解決すべく、π共役高分子に匹敵またはこれを凌駕
するχ(3) を有する物質を高い導入率で高分子化し、光
透過性・成形性にすぐれた有機光非線形材料を提供する
ことにある。
Therefore, in order to solve the above-mentioned problems, the object of the present invention is to polymerize a substance having χ (3) , which is comparable to or exceeds the π-conjugated polymer, at a high introduction rate, and has a high light transmittance. -To provide an organic optical nonlinear material having excellent moldability.

【0016】[0016]

【課題を解決するための手段】本発明は、従来から報告
例のあるような側鎖型の光非線形高分子材料とは異な
り、ポリマ主鎖中に、χ(3) が10-10 esu以上の高
χ(3) 物質が組み込まれたことを特徴とする光非線形主
鎖型高分子材料に関するものである。
The present invention is different from the side-chain type optical nonlinear polymer material which has been reported in the past, and in the polymer main chain, χ (3) has 10 -10 esu or more. The present invention relates to an optical nonlinear main chain type polymer material characterized by incorporating the high χ (3) substance of.

【0017】本発明の光非線形主鎖型高分子材料は下記
一般式(I)(化1)(式中R1 およびR2 は、同一ま
たは相異なって、それぞれアルキル基あるいは水素原子
を示し;Xn=Ynは−N=N−、−CH=CH−およ
び−N=CH−から選ばれたπ共役結合子を示し;nは
3以上7以下の整数を示し;フェニレン環は塩素原子で
置換されているかまたは無置換である)で表わされる構
造がポリアルキレン、ポリアミック酸、ポリイミド、ポ
リアミドおよびポリカーボネートから選ばれたポリマー
の主鎖中に組み込まれた構造を有することを特徴とす
る。
The optical non-linear main chain type polymer material of the present invention has the following general formula (I) (Chemical formula 1) (wherein R 1 and R 2 are the same or different and each represents an alkyl group or a hydrogen atom; Xn = Yn represents a π-conjugated bond selected from -N = N-, -CH = CH- and -N = CH-; n represents an integer of 3 or more and 7 or less; the phenylene ring is substituted with a chlorine atom. A structure represented by the formula (1) or (not substituted) has a structure incorporated in the main chain of a polymer selected from polyalkylene, polyamic acid, polyimide, polyamide and polycarbonate.

【0018】また、本発明の光非線形主鎖型高分子材料
は下記一般式(II)下記一般式(II)(化2)(式
中R1 ′およびR2 ′は、同一または相異なって、それ
ぞれアルキル基あるいは水素原子を示し;Xn′=Y
n′は−N=N−、−CH=CH−および−N=CH−
から選ばれたπ共役結合子を示し;Rはアルキル基を示
し;n′は1以上4以下の整数を示す)で表わされる構
造がポリアルキレン、ポリアミック酸、ポリイミド、ポ
リアミドおよびポリカーボネートから選ばれたポリマー
の主鎖中に組み込まれた構造を有することを特徴とす
る。
The optical nonlinear main chain type polymer material of the present invention has the following general formula (II), the following general formula (II) (Chemical formula 2) (wherein R 1 ′ and R 2 ′ are the same or different) , Each represents an alkyl group or a hydrogen atom; Xn ′ = Y
n'is -N = N-, -CH = CH- and -N = CH-
R represents an alkyl group; n'represents an integer of 1 or more and 4 or less) selected from polyalkylene, polyamic acid, polyimide, polyamide and polycarbonate. It is characterized by having a structure incorporated in the main chain of the polymer.

【0019】本発明で用いられる高χ(3) 物質は、分子
両末端が電子供与性基(ドナー)で置換された好ましく
は中心対象構造のπ共役化合物であり、そのχ(3) は、
優に10-10 esuを超える。また、主鎖型高分子材料
とすることにより、その導入率を50mol%としても
高分子材料としての光透過性・成形性を失うことはな
い。
The high χ (3) substance used in the present invention is a π-conjugated compound preferably having a central symmetric structure in which both ends of the molecule are substituted with electron donating groups (donors), and χ (3) thereof is
Well over 10 -10 esu. Further, by using the main chain type polymer material, the light transmittance and moldability as the polymer material will not be lost even when the introduction rate is 50 mol%.

【0020】本発明で用いられるχ(3) 発現物質の一つ
である多環系アゾ色素の基本構造に類似する構造の化合
物が液晶に混合する高二色比色素として知られている
(アゾ系の高二色比色素は米国特許第4128497号
(1978年)に詳しい)。ただし、それらの公知化合
物はそのままの構造では、ドナー末端に水酸基またはア
ミノ基を持たないため主鎖型高分子材料の原料とはなら
ない。本発明で使用する高χ(3) 物質は、従来のドナー
・アクセプタ置換の分子内電荷移動化合物よりもむしろ
π共役高分子に近いメカニズムでχ(3) を発現すること
が特徴である。
A compound having a structure similar to the basic structure of the polycyclic azo dye, which is one of the χ (3) expressing substances used in the present invention, is known as a high dichroic dye mixed with liquid crystal (azo dye). The high dichroic ratio dye is described in detail in US Pat. No. 4,128,497 (1978)). However, since these known compounds do not have a hydroxyl group or an amino group at the donor end in the structure as they are, they cannot be used as a raw material for the main chain polymer material. The high χ (3) substance used in the present invention is characterized by expressing χ (3) by a mechanism closer to that of a π-conjugated polymer rather than the conventional donor-acceptor-substituted intramolecular charge transfer compound.

【0021】本発明の高χ(3) 物質は、主に、次の2つ
の方法で合成することができる。第1の合成法は、分子
両端に同一の官能基を有するπ共役系に2倍等量のドナ
ー置換π共役環を置換反応または付加反応によって結合
させ、−CH=CH−,−CH=N−,−N=N−の結
合子によりπ共役系を拡大する方法である。第2の合成
法は、分子片端にドナー、もう一方の端にニトロ基を有
するドナー・アクセプタ化合物を原料とし、ニトロ基同
士を還元的にカップリングさせ−N=N−結合を形成さ
せる方法である。さらに、χ(3)物質のπ共役環が塩素
基で置換されると、溶解性が増して高分子化反応が容易
となる。さらに、メトキシ基、塩素基には、光散乱の原
因となるような色素同士の会合を抑止し、膜の均一性を
保つ効果があるので、得られた光非線形主鎖型高分子材
料の成膜性や光透過性の向上にも効果がある。
The high χ (3) substance of the present invention can be synthesized mainly by the following two methods. In the first synthesis method, a double equivalent amount of a donor-substituted π-conjugated ring is bound to a π-conjugated system having the same functional group at both ends of the molecule by a substitution reaction or an addition reaction, and —CH═CH—, —CH═N. It is a method of expanding a π-conjugated system by using a connector of −, −N = N−. The second synthetic method is a method in which a donor / acceptor compound having a donor at one end of the molecule and a nitro group at the other end is used as a raw material, and the nitro groups are reductively coupled to each other to form a -N = N- bond. is there. Further, when the π-conjugated ring of the χ (3) substance is replaced with a chlorine group, the solubility is increased and the polymerization reaction is facilitated. Furthermore, since the methoxy group and the chlorine group have the effect of suppressing the association of dyes that cause light scattering and maintaining the uniformity of the film, the composition of the obtained optical nonlinear main chain type polymer material is It is also effective in improving the film properties and light transmittance.

【0022】本発明の光非線形主鎖型高分子材料の主鎖
に組み込まれた高χ(3) 物質部分の具体例としては、
2,5−ジクロロテレフタリデン−ビス[p−(N,N
−ジブチル)アミノアニリン]構造、4,4′−ビス
[(p−(N−エチル)アミノフェニル)アゾ]−アゾ
ベンゼン構造、4,4′−ビス[(p−(N−エチル)
アミノフェニル)アゾ]−スチルベン構造,4,4′−
ビス[(p−(N−エチル)アミノフェニル)アゾ]−
2,2′−ジメトキシビフェニル構造およびテレフタリ
デン−ビス[(p−(N,N−ジメチル)アミノフェニ
ル)アゾアニリン構造等がある。
Specific examples of the high χ (3) substance portion incorporated in the main chain of the optical nonlinear main chain type polymer material of the present invention include:
2,5-dichloroterephthalidene-bis [p- (N, N
-Dibutyl) aminoaniline] structure, 4,4'-bis [(p- (N-ethyl) aminophenyl) azo] -azobenzene structure, 4,4'-bis [(p- (N-ethyl))
Aminophenyl) azo] -stilbene structure, 4,4'-
Bis [(p- (N-ethyl) aminophenyl) azo]-
2,2'-dimethoxybiphenyl structure and terephthalidene-bis [(p- (N, N-dimethyl) aminophenyl) azoaniline structure.

【0023】[0023]

【作用】本発明の光非線形主鎖型高分子材料の製造に使
用される中心対称置換の高χ(3) 物質は、あらかじめ、
その分子両末端のドナーに水酸基またはアミノ基を有す
るように製造されているため、容易にポリアルキレン構
造,ポリアミック酸構造,ポリイミド構造,ポリアミド
構造の主鎖型高分子材料とすることができる。すなわ
ち、高χ(3) 物質の分子両末端のドナーに水酸基を含有
する場合は、この水酸基をホスゲンガスと反応させるこ
とによりポリカーボネートが得られ、アミノ基を含有す
る場合は、このアミノ基を無水ピロメリット酸等のテト
ラカルボン酸二無水物と反応させることによりポリアミ
ック酸が得られる。このポリアミック酸を加熱閉環させ
るとポリイミドが得られる。またこのアミノ基を二塩基
酸もしくはその塩と反応させることによりポリアミドが
得られる。ポリアルキレン誘導体についてはすでに形成
された高χ(3) 物質を使用してポリアルキレン主鎖中に
組み込んでもよいが、後記の実施例1および2に示すよ
うに適当なアルキレンジアミンとテトラカルボン酸を使
用してポリマー主鎖形成と高χ(3) 物質の形成を一段階
で行うのが好都合である。本発明の光非線形主鎖型高分
子材料は、ポリアミック酸以外は化学的に安定なものが
多い。また、本発明の非線形高分子材料は、高χ(3)
質を溶解性が比較的高い分子鎖で結合してあるため、薄
膜化に際してはそのままでもスピンコート可能な材料が
多く、スピンコート法によって容易に光透過性に優れた
導波薄膜を作製することができる。さらに、出発物質の
選択、および、ジオールまたはジアミンの添加による共
重合化により、光透過性や導波構造成形性を任意に制御
することができる。
[Function] The high χ (3) substance with centrosymmetric substitution used for the production of the optical nonlinear main chain type polymer material of the present invention is
Since the donors at both ends of the molecule are manufactured to have a hydroxyl group or an amino group, the main chain polymer material having a polyalkylene structure, a polyamic acid structure, a polyimide structure, or a polyamide structure can be easily obtained. That is, when a hydroxyl group is contained in the donors at both ends of the molecule of the high χ (3) substance, a polycarbonate is obtained by reacting the hydroxyl group with phosgene gas. A polyamic acid is obtained by reacting with a tetracarboxylic dianhydride such as meritic acid. A polyimide is obtained by subjecting this polyamic acid to ring closure by heating. Further, a polyamide can be obtained by reacting this amino group with a dibasic acid or a salt thereof. The polyalkylene derivative may be incorporated into the polyalkylene backbone using the previously formed high χ (3) material, but as shown in Examples 1 and 2 below, a suitable alkylenediamine and tetracarboxylic acid are added. Conveniently, it is used to carry out polymer backbone formation and formation of high χ (3) material in one step. Many of the optical nonlinear main chain type polymer materials of the present invention are chemically stable except polyamic acid. Further, since the non-linear polymer material of the present invention has a high χ (3) substance bound by a molecular chain having a relatively high solubility, many materials that can be spin-coated as they are when they are made into a thin film are formed by the spin-coating method. Thus, a waveguide thin film having excellent light transmittance can be easily manufactured. Furthermore, by selecting the starting material and copolymerizing by adding a diol or a diamine, it is possible to arbitrarily control the light transmissivity and the moldability of the waveguide structure.

【0024】[0024]

【実施例】以下に、実施例を示し、本発明をさらに詳し
く説明する。
EXAMPLES The present invention will be described in more detail below with reference to examples.

【0025】まず、本発明に用いる高χ(3) 物質A,
A′,B,B′,C,C′,D,D′,E,E′につい
て合成例を記す。
First, the high χ (3) substance A used in the present invention,
Synthetic examples will be described for A ', B, B', C, C ', D, D', E and E '.

【0026】合成例1 高χ(3) 物質Aの合成法 4−(N−ブチル−N−ブタノール)アミノアニリン1
モルとジクロロテレフタルアルデヒド0.5モルをテト
ラヒドロフラン中に溶かし、p−トルエンスルホン酸を
触媒量滴下した後、一昼夜加熱還流した。沈殿する生成
物を再結晶により精製し、本発明に用いる2,5−ジク
ロロテレフタリデン−ビス[p−(N−ブチル−N−ブ
タノール)アミノアニリン][高χ(3) 物質A]を得
た。
Synthesis Example 1 Synthesis of high χ (3) substance A 4- (N-butyl-N-butanol) aminoaniline 1
Mol and 0.5 mol of dichloroterephthalaldehyde were dissolved in tetrahydrofuran, and a catalytic amount of p-toluenesulfonic acid was dropped, and the mixture was heated under reflux for 24 hours. The precipitated product was purified by recrystallization to obtain 2,5-dichloroterephthalidene-bis [p- (N-butyl-N-butanol) aminoaniline] [high χ (3) substance A] used in the present invention. Obtained.

【0027】合成例2 高χ(3) 物質A′の合成法 4−(N−ブチル−N−アミノブチル)アミノアニリン
1モルとジクロロテレフタルアルデヒド0.5モルをテ
トラヒドロフラン中に溶かし、p−トルエンスルホン酸
を触媒量滴下した後、一昼夜加熱還流した。沈殿する生
成物を再結晶により精製し、本発明に用いる2,5−ジ
クロロテレフタリデン−ビス[p−(N−4−アミノブ
チル−N−ブチル)アミノアニリン][高χ(3) 物質
A′]を得た。
Synthesis Example 2 Synthesis Method of High χ (3) Substance A ′ 4- (N-butyl-N-aminobutyl) aminoaniline (1 mol) and dichloroterephthalaldehyde (0.5 mol) were dissolved in tetrahydrofuran to prepare p-toluene. After adding a catalytic amount of sulfonic acid, the mixture was heated under reflux for 24 hours. The precipitated product was purified by recrystallization and used in the present invention 2,5-dichloroterephthalidene-bis [p- (N-4-aminobutyl-N-butyl) aminoaniline] [high χ (3) substance. A ′] was obtained.

【0028】合成例3 高χ(3) 物質Bの合成法 4,4′−ジアミノアゾベンゼン1モルを酢酸に溶解し
た。これに5℃以下で、亜硝酸ナトリウムの硫酸溶液を
滴下した。5℃以下の水−エタノール(1:1)混合液
を加え、さらに、酢酸ナトリウム飽和水溶液を加え、p
H=4とした。これに、0℃で、N−エタノールアミノ
アニリン2モルのエタノール溶液を注いだ。反応液温度
を徐々に室温に戻しながら、一夜反応させた。エタノー
ルを減圧留去し、析出した生成物を、カラムクロマトグ
ラフィー(担体:ドライシリカゲル、溶媒:クロロホル
ム)により、単離精製し、4,4′−ビス[p−(N−
2−ヒドロキシエチル)アミノフェニル)アゾ]−アゾ
ベンゼン[高χ(3) 物質B]を得た。
Synthesis Example 3 Synthesis Method of High χ (3) Substance B 1 mol of 4,4'-diaminoazobenzene was dissolved in acetic acid. To this, a sulfuric acid solution of sodium nitrite was added dropwise at 5 ° C or lower. A water-ethanol (1: 1) mixed solution at 5 ° C or lower was added, and a saturated aqueous solution of sodium acetate was further added.
H = 4. At 0 ° C., an ethanol solution of 2 mol of N-ethanolaminoaniline was poured into this. While gradually returning the reaction solution temperature to room temperature, the reaction was carried out overnight. The ethanol was distilled off under reduced pressure, and the precipitated product was isolated and purified by column chromatography (carrier: dry silica gel, solvent: chloroform), and 4,4'-bis [p- (N-
2-Hydroxyethyl) aminophenyl) azo] -azobenzene [high χ (3) substance B] was obtained.

【0029】合成例4 高χ(3) 物質B′の合成法 4,4′−ジアミノアゾベンゼン0.5モルを酢酸に溶
解した。これに5℃以下で、亜硝酸ナトリウムの硫酸溶
液を滴下した。5℃以下の水−エタノール(1:1)混
合液を加え、さらに、酢酸ナトリウム飽和水溶液を加
え、pH=4とした。これに、0℃で、N−エタノール
アミノアニリン1モルのエタノール溶液を注いだ。反応
液温度を徐々に室温に戻しながら、一夜反応させた。エ
タノールを減圧留去し、析出した生成物を、カラムクロ
マトグラフィーにより、単離精製し、4,4′−ビス
[p−(N−2−アミノエチル)アミノフェニル)ア
ゾ]−アゾベンゼン[高χ(3) 物質B′]を得た。
Synthesis Example 4 Synthesis Method of High χ (3) Substance B ′ 0.5 mol of 4,4′-diaminoazobenzene was dissolved in acetic acid. To this, a sulfuric acid solution of sodium nitrite was added dropwise at 5 ° C or lower. A water-ethanol (1: 1) mixed solution at 5 ° C or lower was added, and a saturated sodium acetate aqueous solution was further added to adjust the pH to 4. An ethanol solution of 1 mol of N-ethanolaminoaniline was poured into this at 0 ° C. While gradually returning the reaction solution temperature to room temperature, the reaction was carried out overnight. The ethanol was distilled off under reduced pressure, and the precipitated product was isolated and purified by column chromatography to obtain 4,4′-bis [p- (N-2-aminoethyl) aminophenyl) azo] -azobenzene [high χ (3) Material B ′] was obtained.

【0030】合成例5 高χ(3) 物質Cの合成法 4,4′−ジアミノスチルベン0.5モルを酢酸に溶解
した。これに5℃以下で、亜硝酸ナトリウムの硫酸溶液
を滴下した。5℃以下の水−エタノール(1:1)混合
液を加え、さらに、酢酸ナトリウム飽和水溶液を加え、
pH=4とした。これに、0℃で、N−エタノールアミ
ノアニリン1モルのエタノール溶液を注いだ。反応液温
度を徐々に室温に戻しながら、一夜反応させた。エタノ
ールを減圧留去し、析出した生成物を、カラムクロマト
グラフィーにより、単離精製し、4,4′−ビス[p−
(N−2−ヒドロキシエチル)アミノフェニル)アゾ]
−スチルベン[高χ(3) 物質C]を得た。
Synthesis Example 5 Synthesis Method of High χ (3) Substance C 0.5 mol of 4,4'-diaminostilbene was dissolved in acetic acid. To this, a sulfuric acid solution of sodium nitrite was added dropwise at 5 ° C or lower. A water-ethanol (1: 1) mixed solution at 5 ° C or lower was added, and a saturated sodium acetate aqueous solution was further added,
The pH was set to 4. An ethanol solution of 1 mol of N-ethanolaminoaniline was poured into this at 0 ° C. While gradually returning the reaction solution temperature to room temperature, the reaction was carried out overnight. Ethanol was distilled off under reduced pressure, and the precipitated product was isolated and purified by column chromatography to obtain 4,4'-bis [p-
(N-2-hydroxyethyl) aminophenyl) azo]
-Stilbene [high χ (3) substance C] was obtained.

【0031】合成例6 高χ(3) 物質C′の合成法 4,4′−ジアミノスチルベン0.5モルを酢酸に溶解
した。これに5℃以下で、亜硝酸ナトリウムの硫酸溶液
を滴下した。5℃以下の水−エタノール(1:1)混合
液を加え、さらに、酢酸ナトリウム飽和水溶液を加え、
pH=4とした。これに、0℃で、N−エタノールアミ
ノアニリン1モルのエタノール溶液を注いだ。反応液温
度を徐々に室温に戻しながら、一夜反応させた。エタノ
ールを減圧留去し、析出した生成物を、カラムクロマト
グラフィーにより、単離精製し、4,4′−ビス[p−
(N−アミノエチル)アミノフェニル)アゾ]−スチル
ベン[高χ(3) 物質C′]を得た。
Synthesis Example 6 Synthesis Method of High χ (3) Substance C ′ 0.5 mol of 4,4′-diaminostilbene was dissolved in acetic acid. To this, a sulfuric acid solution of sodium nitrite was added dropwise at 5 ° C or lower. A water-ethanol (1: 1) mixed solution at 5 ° C or lower was added, and a saturated sodium acetate aqueous solution was further added,
The pH was set to 4. An ethanol solution of 1 mol of N-ethanolaminoaniline was poured into this at 0 ° C. The reaction was carried out overnight while gradually returning the temperature of the reaction solution to room temperature. Ethanol was distilled off under reduced pressure, and the precipitated product was isolated and purified by column chromatography to obtain 4,4'-bis [p-
(N-aminoethyl) aminophenyl) azo] -stilbene [high χ (3) substance C '] was obtained.

【0032】合成例7 高χ(3) 物質Dの合成法 4,4′−ジアミノ−3、3′−ジメトキシビフェニル
0.1モルを酢酸に溶解した。これに5℃以下で、亜硝
酸ナトリウムの硫酸溶液を滴下した。5℃以下の水−エ
タノール(1:1)混合液を加え、さらに、酢酸ナトリ
ウム飽和水溶液を加え、pH=4とした。これに、0℃
で、N−エタノールアミノアニリン0.2モルのエタノ
ール溶液を注いだ。反応液温度を徐々に室温に戻しなが
ら、一夜反応させた。エタノールを減圧留去し、析出し
た生成物を、カラムクロマトグラフィーにより、単離精
製し、4,4′−ビス[p−(N−2−ヒドロキシエチ
ル)アミノフェニル)アゾ]−2、2′−ジメトキシビ
フェニル[高χ(3) 物質D]を得た。
Synthesis Example 7 Synthesis Method of High-χ (3) Substance D 0.1 mol of 4,4'-diamino-3,3'-dimethoxybiphenyl was dissolved in acetic acid. To this, a sulfuric acid solution of sodium nitrite was added dropwise at 5 ° C or lower. A water-ethanol (1: 1) mixed solution at 5 ° C or lower was added, and a saturated sodium acetate aqueous solution was further added to adjust the pH to 4. To this, 0 ℃
Then, an ethanol solution of 0.2 mol of N-ethanolaminoaniline was poured. While gradually returning the reaction solution temperature to room temperature, the reaction was carried out overnight. Ethanol was distilled off under reduced pressure, and the precipitated product was isolated and purified by column chromatography to obtain 4,4'-bis [p- (N-2-hydroxyethyl) aminophenyl) azo] -2,2 '. -Dimethoxybiphenyl [high χ (3) substance D] was obtained.

【0033】合成例8 高χ(3) 物質D′の合成法 4,4′−ジアミノ−3、3′−ジメトキシビフェニル
0.1モルを酢酸に溶解した。これに5℃以下で、亜硝
酸ナトリウムの硫酸溶液を滴下した。5℃以下の水−エ
タノール(1:1)混合液を加え、さらに、酢酸ナトリ
ウム飽和水溶液を加え、pH=4とした。これに、0℃
で、N−エタノールアミノアニリン0.2モルのエタノ
ール溶液を注いだ。反応液温度を徐々に室温に戻しなが
ら、一夜反応させた。エタノールを減圧留去し、析出し
た生成物を、カラムクロマトグラフィーにより、単離精
製し、4,4′−ビス[p−(N−2−アミノエチル)
アミノフェニル)アゾ]−2、2′−ジメトキシビフェ
ニル[高χ(3) 物質D′]を得た。
Synthesis Example 8 Synthesis Method of High χ (3) Substance D'4,4'-Diamino-3,3'-dimethoxybiphenyl 0.1 mol was dissolved in acetic acid. To this, a sulfuric acid solution of sodium nitrite was added dropwise at 5 ° C or lower. A water-ethanol (1: 1) mixed solution at 5 ° C or lower was added, and a saturated sodium acetate aqueous solution was further added to adjust the pH to 4. To this, 0 ℃
Then, an ethanol solution of 0.2 mol of N-ethanolaminoaniline was poured. While gradually returning the reaction solution temperature to room temperature, the reaction was carried out overnight. Ethanol was distilled off under reduced pressure, and the precipitated product was isolated and purified by column chromatography to obtain 4,4'-bis [p- (N-2-aminoethyl).
Aminophenyl) azo] -2,2'-dimethoxybiphenyl [high χ (3) substance D '] was obtained.

【0034】合成例9 高χ(3) 物質Eの合成法 ジクロロ−テレフタルアルデヒドと2倍等量以上の4−
[p−(N−ブチル−N−ブタノール)アミノフェニル
アゾ]−1−アミノベンゼンをテトラヒドロフランに溶
かし、触媒量のベンゼンスルホン酸を加えて、かくはん
下、5時間、加熱還流した。生成物をカラム分離し、テ
レフタリデン−ビス[(p−(N−4−ヒドロキシブチ
ル−N−ブチル)アミノフェニル)アゾアニリン][高
χ(3) 物質E]を得た。
Synthesis Example 9 Synthesis Method of High χ (3) Substance E Dichloro-terephthalaldehyde and 4-fold equivalent of 4-
[P- (N-Butyl-N-butanol) aminophenylazo] -1-aminobenzene was dissolved in tetrahydrofuran, a catalytic amount of benzenesulfonic acid was added, and the mixture was heated under reflux for 5 hours with stirring. The product was separated by column to obtain terephthalidene-bis [(p- (N-4-hydroxybutyl-N-butyl) aminophenyl) azoaniline] [high χ (3) substance E].

【0035】合成例10 高χ(3) 物質E′の合成法 ジクロロテレフタルアルデヒドと2倍等量以上の4−
[(p−(N−ブチル−N−ブチルアミノ)アミノフェ
ニル)アゾ]−1−アミノベンゼンをテトラヒドロフラ
ンに溶かし、触媒量のベンゼンスルホン酸を加えて、か
くはん下、5時間、加熱還流した。生成物をカラム分離
し、テレフタリデン−ビス[(p−(N−4−アミノブ
チル−N−ブチル)アミノフェニル)アゾアニリン]
[高χ(3) 物質E′]を得た。
Synthesis Example 10 Synthesis Method of High χ (3) Substance E ′ Dichloroterephthalaldehyde and 4-fold equivalent of 4-
[(P- (N-Butyl-N-butylamino) aminophenyl) azo] -1-aminobenzene was dissolved in tetrahydrofuran, a catalytic amount of benzenesulfonic acid was added, and the mixture was heated under reflux with stirring for 5 hours. The product was column separated and terephthalidene-bis [(p- (N-4-aminobutyl-N-butyl) aminophenyl) azoaniline]
[High χ (3) substance E ′] was obtained.

【0036】なお、実施例に示す本発明材料のポリアル
キル誘導体については他の本発明材料、ポリカーボネー
ト、ポリアミック酸、ポリイミド、ポリカーボネート誘
導体の合成法(高χ(3) 物質をあらかじめ合成し、二官
能性材料と重縮合させポリマー化する合成法)と異な
り、出発物質の重縮合の結果、形の上で高χ(3) 物質が
すでに組み込まれたポリマー主鎖が形成される。
Regarding the polyalkyl derivative of the material of the present invention shown in the examples, the method of synthesizing other materials of the present invention, polycarbonate, polyamic acid, polyimide, and polycarbonate derivative (high χ (3) substance was previously synthesized, and difunctional In contrast to the synthetic method of polycondensation with organic materials to polymerize), the polycondensation of the starting materials results in the formation of a polymer backbone that already incorporates a high χ (3) material in shape.

【0037】上記合成例で得られた高χ(3) 物質A,
A′,B,B′,C,C′,D,D′,E,E′の構造
式は下記の通りである。
The high χ (3) substance A obtained in the above synthesis example,
The structural formulas of A ', B, B', C, C ', D, D', E and E'are as follows.

【0038】高χ(3) 物質A:High χ (3) substance A:

【0039】[0039]

【化3】 [Chemical 3]

【0040】高χ(3) 物質A′:High χ (3) substance A ':

【0041】[0041]

【化4】 [Chemical 4]

【0042】高χ(3) 物質B:High χ (3) substance B:

【0043】[0043]

【化5】 [Chemical 5]

【0044】高χ(3) 物質B′:High χ (3) substance B ':

【0045】[0045]

【化6】 [Chemical 6]

【0046】高χ(3) 物質C:High χ (3) substance C:

【0047】[0047]

【化7】 [Chemical 7]

【0048】高χ(3) 物質C′:High χ (3) substance C ':

【0049】[0049]

【化8】 [Chemical 8]

【0050】高χ(3) 物質D:High χ (3) substance D:

【0051】[0051]

【化9】 [Chemical 9]

【0052】高χ(3) 物質D′:High χ (3) substance D ':

【0053】[0053]

【化10】 [Chemical 10]

【0054】高χ(3) 物質E:High χ (3) substance E:

【0055】[0055]

【化11】 [Chemical 11]

【0056】高χ(3) 物質E′:High χ (3) substance E ′:

【0057】[0057]

【化12】 [Chemical formula 12]

【0058】次に、実施例1および2に本発明における
ポリアルキレン誘導体をあげ説明する。さらに、実施例
3〜22に上記の対称置換の高χ(3)物質A,A′,
B,B′,C,C′,D,D′,E,E′のいずれかを
主鎖中に組み込んだポリアミック酸誘導体、ポリイミド
誘導体、ポリアミド誘導体もしくはポリカーボネート誘
導体から成る本発明の光非線形主鎖型高分子材料を示
す。なお、実施例1および2については組み込む対称置
換の高χ(3) 物質はA′となっている。
Next, Examples 1 and 2 will be described with reference to the polyalkylene derivative of the present invention. Furthermore, in Examples 3 to 22, the high χ (3) substances A, A ′, which have the above-mentioned symmetric substitution,
The optical nonlinear main chain of the present invention comprising a polyamic acid derivative, a polyimide derivative, a polyamide derivative or a polycarbonate derivative in which any one of B, B ', C, C', D, D ', E and E'is incorporated in the main chain. Shows a polymeric material. In Examples 1 and 2, the symmetric substitution high χ (3) substance incorporated is A '.

【0059】(実施例1)N,N′−C、4−アミノフ
ェニル−N,N′−ジメチル−1、4−ブチレンジアミ
ン1モルとジクロロテレフタルアルデヒド1モルをテト
ラヒドロフラン中で反応させた。触媒としてはp−トル
エンスルホン酸を用いた。反応液を多量のヘキサンに注
ぎ、目的の光非線形主鎖型高分子材料であるポリアルキ
レン誘導体を得た。これを再度、再沈精製した後、アニ
ソール溶液とし、石英基板に塗布し、赤紫色の厚さ20
0Åのポリマーフィルムを得た。このフィルムのχ(3)
は、THG(第三高調波発生)−メーカー・フリンジ
法、すなわちχ(3) 既知の溶融石英のTHGを同時測定
し溶融石英とサンプルとのTHG比からχ(3) を決定す
る方法、により求めた。χ(3) 値としては基本波長1.
6μmの時に5x10-11 程度であった。
(Example 1) 1 mol of N, N'-C, 4-aminophenyl-N, N'-dimethyl-1,4-butylenediamine and 1 mol of dichloroterephthalaldehyde were reacted in tetrahydrofuran. P-Toluenesulfonic acid was used as a catalyst. The reaction solution was poured into a large amount of hexane to obtain a polyalkylene derivative, which is a target optical nonlinear main chain type polymer material. This was again reprecipitated and purified to give an anisole solution, which was applied to a quartz substrate to give a reddish purple thickness of 20.
A 0Å polymer film was obtained. Χ (3) of this film
Is the THG (third harmonic generation) -maker fringe method, that is, χ (3) is a method for simultaneously measuring THG of known fused silica and determining χ (3) from the THG ratio of the fused silica and the sample. I asked. chi (3) The value fundamental wavelength 1.
It was about 5 × 10 −11 at 6 μm.

【0060】上記ポリマーの場合、有機溶媒が低くスピ
ンコートでは膜厚が数千オングストロームまでしか作製
できなかった。そこで上記の反応途中に反応溶液をGP
C(ゲルパーミエーションクロマトグラフィー)を用い
て、分子量2000程度2〜3量体程度の中間体生成物
を分離した。この中間体生成物は有機溶媒テトラヒドロ
フランに可溶で10重量%まで溶かすことができた。こ
の溶液を用いてスピンコートによりガラス基板上に薄膜
を作製した。その後、基板ごと膜を100℃に加熱し、
1μmの膜を得た。この膜はTHF溶媒に不溶であっ
た。プリズム結合によりこの膜の吸収端波長よりも長波
長のレーザ光1.3μmを透過させ、損失測定を行った
ところ、導波損失1dB/cm以下を得た。
In the case of the above-mentioned polymer, the organic solvent was low, and the film thickness could be produced only up to several thousand angstroms by spin coating. Therefore, during the above reaction, the reaction solution was GP
Using C (gel permeation chromatography), an intermediate product having a molecular weight of about 2000 and about 2-3 trimers was separated. This intermediate product was soluble in the organic solvent tetrahydrofuran and could be dissolved up to 10% by weight. Using this solution, a thin film was formed on a glass substrate by spin coating. Then, heat the film together with the substrate to 100 ° C.,
A 1 μm film was obtained. The membrane was insoluble in THF solvent. A laser beam having a wavelength longer than the absorption edge wavelength of 1.3 μm was transmitted through the prism coupling and the loss was measured. As a result, a waveguide loss of 1 dB / cm or less was obtained.

【0061】(実施例2)N,N′−(4′−アミノフ
ェニル)−1、4−ブチレンジアミン1モルとジクロロ
テレフタルアルデヒド1モルをテトラヒドロフラン中で
反応させた。触媒としてはp−トルエンスルホン酸を用
いた。反応液を多量のヘキサンに注ぎ、目的の光非線形
主鎖型高分子材料であるポリアルキル誘導体を得た。こ
れを再度、再枕精製した後、アニソール溶液とし、石英
基板に塗布し、赤紫色の厚さ200Åのポリマーフィル
ムを得た。このフィルムのχ(3) は、THGメーカー・
フリンジ法により求めた。χ(3)値としては基本波長
1.6μmの時に10-10 esu程度であった。このポ
リマーの場合も実施例1と同様に有機溶媒への溶解性が
低くスピンコートでは膜厚が数千オングストロームまで
しか作製できなかった。そこで実施例1と同様にして中
間生成物を用いてスピンコートによりガラス基板上に薄
膜を作製した。その後、基板ごと膜を100℃に加熱
し、1μmの膜を得た。この膜はTHF溶媒に不溶であ
った。プリズム結合によりこの膜の吸収端波長よりも長
波長のレーザ光1.3μmを透過させ、損失測定を行っ
たところ、導波損失1dB/cm以下を得た。
Example 2 1 mol of N, N '-(4'-aminophenyl) -1,4-butylenediamine and 1 mol of dichloroterephthalaldehyde were reacted in tetrahydrofuran. P-Toluenesulfonic acid was used as a catalyst. The reaction solution was poured into a large amount of hexane to obtain a polyalkyl derivative which was a target optical nonlinear main chain type polymer material. This was again pillow-refined to obtain an anisole solution, which was applied to a quartz substrate to obtain a red-purple polymer film having a thickness of 200Å. Χ (3) of this film is a THG manufacturer
It was determined by the fringe method. The χ (3) value was about 10 -10 esu when the fundamental wavelength was 1.6 μm. Also in the case of this polymer, the solubility in an organic solvent was low as in Example 1, and spin coating could produce a film thickness of only up to several thousand angstroms. Therefore, in the same manner as in Example 1, a thin film was formed on the glass substrate by spin coating using the intermediate product. Thereafter, the film together with the substrate was heated to 100 ° C. to obtain a 1 μm film. The membrane was insoluble in THF solvent. When a loss measurement was performed by transmitting 1.3 μm of laser light having a wavelength longer than the absorption edge wavelength of this film by prism coupling, a waveguide loss of 1 dB / cm or less was obtained.

【0062】(実施例3)2,5−ジクロロ−テレフタ
リデンービス−[4−(p−(N−ブチル−N−ブタノ
ール)アミノフェニル)アニリン][高χ(3) 物質A]
1モルをピリジン中に溶かし、触媒として小量のトリエ
チルアミンを混合し、反応容器内を窒素置換した後、こ
の溶液中にホスゲンガスを流した。一昼夜反応させた
後、反応溶液を多量のヘキサンに注ぎ、目的の光非線形
主鎖型高分子材料であるとポリカーボネート誘導体を得
た。これを再度、再沈精製した後、酢酸ブチル溶液と
し、石英基板に塗布し、赤紫色の厚さ200Åのフィル
ムを得た。このフィルムのχ(3)をTHG(第三高調波
発生)−メーカ・フリンジ法により求め、〜10-10
suの値を得た。また、吸収端波長よりも長波長側での
導波損失は、1dB/cm以下であった。
(Example 3) 2,5-dichloro-terephthalidene-bis- [4- (p- (N-butyl-N-butanol) aminophenyl) aniline] [high χ (3) substance A]
1 mol was dissolved in pyridine, a small amount of triethylamine was mixed as a catalyst, the atmosphere in the reaction vessel was replaced with nitrogen, and then phosgene gas was flown into this solution. After reacting for a whole day and night, the reaction solution was poured into a large amount of hexane to obtain a polycarbonate derivative as an intended optical nonlinear main chain type polymer material. This was reprecipitated and purified again to give a butyl acetate solution, which was applied to a quartz substrate to obtain a reddish purple film having a thickness of 200 Å. Χ (3) of this film was found by THG (third harmonic generation) -Manufacturer-Fringe method, and -10 -10 e
The value of su was obtained. The waveguide loss on the longer wavelength side than the absorption edge wavelength was 1 dB / cm or less.

【0063】(実施例4)2,5−ジクロロ−テレフタ
リデンルービス−[4−(p−(N−ブチル−N−ブチ
ルアミノ)アミノフェニル)アニリン][高χ(3) 物質
A′]1モルと無水ピロメリット酸1モルを無水ジメチ
ルアセトアミド中で室温下3時間反応させた。反応溶液
を石英基板にスピンコートした。このスピンコート膜を
90℃の乾燥器に入れ、溶媒を十分に蒸発させ、赤紫色
のポリアミック酸膜を得た。膜厚は反応溶液濃度により
200Åから2μまで制御可能であった。
(Example 4) 2,5-dichloro-terephthalidene rubis- [4- (p- (N-butyl-N-butylamino) aminophenyl) aniline] [high χ (3) substance A ' ] 1 mol and pyromellitic dianhydride 1 mol were made to react in anhydrous dimethylacetamide at room temperature for 3 hours. The reaction solution was spin-coated on a quartz substrate. The spin-coated film was put in a drier at 90 ° C. and the solvent was sufficiently evaporated to obtain a reddish purple polyamic acid film. The film thickness was controllable from 200Å to 2μ depending on the reaction solution concentration.

【0064】このフィルムのχ(3) は、THGメーカ・
フリンジ法により求めた。χ(3) 値としては基本波長
1.6μmの時に5x10-11 esu程度であった。厚
さ1μmの膜にプリズム結合により吸収端波長よりも長
波長のレーザ光1.3μmを通過させ、損失測定を行っ
たところ、導波損失1dB/cm以下を得た。
Χ (3) of this film is for THG manufacturers
It was determined by the fringe method. The χ (3) value was about 5 × 10 -11 esu when the fundamental wavelength was 1.6 μm. When 1.3 μm of laser light having a wavelength longer than the absorption edge wavelength was passed through the film having a thickness of 1 μm by prism coupling and the loss was measured, a waveguide loss of 1 dB / cm or less was obtained.

【0065】(実施例5)実施例3と同様の方法で調整
したポリアミック酸膜を180℃で30分続いて260
℃で30分加熱脱水することにより、対応するポリイミ
ド薄膜を得た。このフィルムのχ(3) は、THGメーカ
・フリンジ法により求めた。χ(3) 値としては基本波長
1.6μmの時に5x10-11 esu程度であった。厚
さ1μmの膜にプリズム結合により吸収端波長よりも長
波長のレーザ光1.3μmを透過させ、損失測定を行っ
たところ、導波損失1dB/cm以下を得た。
Example 5 A polyamic acid film prepared in the same manner as in Example 3 was heated at 180 ° C. for 30 minutes and then 260 times.
A corresponding polyimide thin film was obtained by heating and dehydration at 30 ° C. for 30 minutes. Χ (3) of this film was determined by the THG maker fringe method. The χ (3) value was about 5 × 10 -11 esu when the fundamental wavelength was 1.6 μm. When 1.3 μm of laser light having a wavelength longer than the absorption edge wavelength was transmitted through a film having a thickness of 1 μm by prism coupling and the loss was measured, a waveguide loss of 1 dB / cm or less was obtained.

【0066】(実施例6)2,5−ジクロロ−テレフタ
リデンービス−[4−(p−(N−ブチル−N−ブチル
アミノ)アミノフェニル)アニリン][高χ(3) 物質
A′]1モルとアジピン酸クロライド1モルをTHF中
で反応させ、反応溶液を多量のヘキサンに注ぎ、目的の
光非線形主鎖型高分子材料であるポリアミド誘導体を得
た。これを再度、再沈精製した後、酢酸ブチル溶液と
し、石英基板に塗布し、赤紫色の厚さ200Åのフィル
ムを得た。このフィルムのχ(3) をTHG(第三高調波
発生)−メーカ・フリンジ法により求め、〜10-10
suの値を得た。また、吸収端波長よりも長波長側での
導波損失は、1dB/cm以下であった。
Example 6 2,5-Dichloro-terephthalidene-bis- [4- (p- (N-butyl-N-butylamino) aminophenyl) aniline] [high χ (3) substance A ' ] 1 mol and 1 mol of adipic acid chloride were reacted in THF, and the reaction solution was poured into a large amount of hexane to obtain a target polyamide derivative which is an optical nonlinear main chain type polymer material. This was reprecipitated and purified again to give a butyl acetate solution, which was applied to a quartz substrate to obtain a reddish purple film having a thickness of 200 Å. Χ (3) of this film was found by THG (third harmonic generation) -Manufacturer-Fringe method, and -10 -10 e
The value of su was obtained. The waveguide loss on the longer wavelength side than the absorption edge wavelength was 1 dB / cm or less.

【0067】(実施例7〜22)主鎖中に組み込む高χ
(3) 物質AまたはA′をB,B′C,C′,D,D′,
EまたはE′にそれぞれ変更した以外は実施例3〜6と
同様にして主鎖型ポリマーを得、これを薄膜化し、得ら
れたフィルムのχ(3) を同様にTHGメーカ・フリンジ
法により求めた。得られた結果を表1に示す。
(Examples 7 to 22) High χ incorporated into the main chain
(3) The substance A or A'is replaced by B, B'C, C ', D, D',
A main chain type polymer was obtained in the same manner as in Examples 3 to 6 except that E or E ′ was changed, and this was made into a thin film, and χ (3) of the obtained film was similarly obtained by the THG maker fringe method. It was The results obtained are shown in Table 1.

【0068】[0068]

【発明の効果】以上説明したように、本発明の光非線形
主鎖型高分子材料は、高効率の3次非線形光学特性を有
し、光透過性・導波構造成形性に優れるため、将来の光
コンピューティング・光交換技術を担う光非線形素子の
中心素材として大いに利用できる。たとえば、米国特許
第4,997,595号記載の非線形光学装置に用いら
れた有機非線形光学材料DEANSTと比較してみる
と、その優秀さが確認できる。まず、DEANSTが溶
液状態で使用するのに対して、本発明の材料は、単独ス
ピンコート膜を使用できる。さらに30wt%DEAN
ST−ニトロベンゼン溶液の分子回転効果を含めたχ
(3) が3.6×10-12 esuであったのに対して、本
発明の材料のχ(3) は、DEANSTの約30倍に相当
する10-10 esu以上である。
INDUSTRIAL APPLICABILITY As described above, the optical non-linear main chain type polymer material of the present invention has highly efficient third-order non-linear optical characteristics, and is excellent in light transmission and waveguiding structure moldability, and therefore will be used in the future. It can be widely used as a central material for optical nonlinear devices that are responsible for the optical computing and optical switching technologies of For example, when compared with the organic nonlinear optical material DEANST used in the nonlinear optical device described in US Pat. No. 4,997,595, its excellentness can be confirmed. First, while DEANST is used in a solution state, the material of the present invention can use a single spin coat film. Further 30 wt% DEAN
Χ including the molecular rotation effect of ST-nitrobenzene solution
Whereas (3) was 3.6 × 10 -12 esu, χ (3) of the material of the present invention is 10 -10 esu or more, which is about 30 times that of DEANST.

【0069】光ゲート光スイッチ素子用材料として見る
と、DEANSTのような低χ(3)材料の場合は、長尺
化が必要であり、導波損失が極端に低くなければ使えな
い。一方、χ(3) の大きい材料は、短い光路長で済むた
め、導波損失への要求は自ら緩やかである。
As a material for an optical gate optical switch element, a low χ (3) material such as DEANST needs to be elongated and cannot be used unless the waveguide loss is extremely low. On the other hand, a material with a large χ (3) requires only a short optical path length, so that the requirement for waveguide loss is moderate.

【0070】本材料の導波損失は約1〜2dB/cmな
ので、1cmの光路長であれば、χ(3) の約50%を有
効に利用できる。仮に、3μm2 の断面積をもつ長さ約
1cmの導波路が作製されれば、半導体レーザで十分駆
動する光ゲート光スイッチ素子が実現する。
Since the waveguide loss of this material is about 1 to 2 dB / cm, about 50% of χ (3) can be effectively used if the optical path length is 1 cm. If a waveguide having a cross-sectional area of 3 μm 2 and a length of about 1 cm is manufactured, an optical gate optical switch device that is sufficiently driven by a semiconductor laser can be realized.

【0071】素子動作速度については、すでに速度分子
回転効果を含むDEANST溶液でピコ秒スイッチング
動作が確認されており、分子回転のない本材料系ではピ
コ秒以下の動作が可能である。さらに、光ゲート光スイ
ッチ素子ばかりでなく、光双安定素子や光リミッタ素子
のような他の重要な光非線形素子にも応用できる。
Regarding the device operation speed, picosecond switching operation has already been confirmed in the DEANST solution containing the speed molecular rotation effect, and operation of picosecond or less is possible in this material system without molecular rotation. Furthermore, it can be applied not only to the optical gate optical switching device but also to other important optical nonlinear devices such as an optical bistable device and an optical limiter device.

【0072】[0072]

【表1】 [Table 1]

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 下記一般式(I) 【化1】 (式中R1 およびR2 は、同一または相異なって、それ
ぞれアルキル基あるいは水素原子を示し;Xn=Ynは
−N=N−、−CH=CH−および−N=CH−から選
ばれたπ共役結合子を示し;nは3以上7以下の整数を
示し;フェニレン環は塩素原子で置換されているかまた
は無置換である)で表わされる構造がポリアルキレン、
ポリアミック酸、ポリイミド、ポリアミドおよびポリカ
ーボネートから選ばれたポリマーの主鎖中に組み込まれ
た構造を有することを特徴とする光非線形主鎖型高分子
材料。
1. The following general formula (I): (In the formula, R 1 and R 2 are the same or different and each represents an alkyl group or a hydrogen atom; Xn = Yn is selected from -N = N-, -CH = CH- and -N = CH-. represents a π-conjugated bond; n represents an integer of 3 or more and 7 or less; the phenylene ring is substituted with a chlorine atom or unsubstituted) is a polyalkylene,
An optical nonlinear main chain type polymer material characterized by having a structure incorporated in the main chain of a polymer selected from polyamic acid, polyimide, polyamide and polycarbonate.
【請求項2】 下記一般式(II) 【化2】 式中R1 ′およびR2 ′は、同一または相異なって、そ
れぞれアルキル基あるいは水素原子を示し;Xn′=Y
n′は−N=N−、−CH=CH−および−N=CH−
から選ばれたπ共役結合子を示し;Rはアルキル基を示
し;n′は1以上4以下の整数を示す)で表わされる構
造がポリアルキレン、ポリアミック酸、ポリイミド、ポ
リアミドおよびポリカーボネートから選ばれたポリマー
の主鎖中に組み込まれた構造を有することを特徴とする
光非線形主鎖型高分子材料。
2. The following general formula (II): In the formula, R 1 ′ and R 2 ′ are the same or different and each represents an alkyl group or a hydrogen atom; Xn ′ = Y
n'is -N = N-, -CH = CH- and -N = CH-
R represents an alkyl group; n'represents an integer of 1 or more and 4 or less) selected from polyalkylene, polyamic acid, polyimide, polyamide and polycarbonate. An optical non-linear main chain type polymer material having a structure incorporated in a main chain of a polymer.
JP24350491A 1991-09-24 1991-09-24 Optical nonlinear main chain type high-polymer material Pending JPH0580277A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24350491A JPH0580277A (en) 1991-09-24 1991-09-24 Optical nonlinear main chain type high-polymer material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24350491A JPH0580277A (en) 1991-09-24 1991-09-24 Optical nonlinear main chain type high-polymer material

Publications (1)

Publication Number Publication Date
JPH0580277A true JPH0580277A (en) 1993-04-02

Family

ID=17104886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24350491A Pending JPH0580277A (en) 1991-09-24 1991-09-24 Optical nonlinear main chain type high-polymer material

Country Status (1)

Country Link
JP (1) JPH0580277A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5399664A (en) * 1993-11-10 1995-03-21 Arch Development Corporation Second order nonlinear optical polyimide polymer with high temperature stability
WO2003053370A3 (en) * 2001-12-21 2003-11-27 Henkel Kgaa Novel developer components
EP1535899A1 (en) * 2003-11-28 2005-06-01 L'oreal Dyeing composition comprising at least one tertiary particular p-phenylenediamine, colouring method using same
JP2016153466A (en) * 2015-02-20 2016-08-25 住友化学株式会社 Compound and composition comprising the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5399664A (en) * 1993-11-10 1995-03-21 Arch Development Corporation Second order nonlinear optical polyimide polymer with high temperature stability
WO2003053370A3 (en) * 2001-12-21 2003-11-27 Henkel Kgaa Novel developer components
EP1535899A1 (en) * 2003-11-28 2005-06-01 L'oreal Dyeing composition comprising at least one tertiary particular p-phenylenediamine, colouring method using same
FR2862963A1 (en) * 2003-11-28 2005-06-03 Oreal PARTICULAR TERTIARY PHENYLENEDIAMINE, TINCTORIAL COMPOSITION COMPRISING SAME, AND COLORING PROCESS USING THE COMPOSITION
JP2016153466A (en) * 2015-02-20 2016-08-25 住友化学株式会社 Compound and composition comprising the same
KR20170127436A (en) * 2015-02-20 2017-11-21 스미또모 가가꾸 가부시끼가이샤 Compound and composition containing same

Similar Documents

Publication Publication Date Title
Wang et al. Self‐assembled second order nonlinear optical multilayer azo polymer
US5186865A (en) Electro-optical materials and light modulator devices containing same
JPS63121827A (en) Non-linear optical device
JPS6284139A (en) Organic non-linear optical substrate
US5318729A (en) Third-order nonlinear optical main chain polymer material and method for preparing the same
Wang et al. Epoxy-based polymers functionalized with bisazo chromophores: Synthesis, characterization and photoresponsive behavior
JP2980522B2 (en) Crosslinkable polymer materials usable in non-linear optics and methods of making the same
Chan et al. Studies of Functionalized Poly (phenylenevinylene) s
JPH0580277A (en) Optical nonlinear main chain type high-polymer material
Chang et al. N-phenylmaleimide polymers for second-order nonlinear optics
Robello et al. Linear Polymers for Nonlinear Optics. 4. Synthesis and Nonlinear Optical Properties of Side-Chain Poly (methacrylates) with Vinylcyanosulfonyl Groups
JPH03121114A (en) Optically active nonlinear organic substance and device containing element comprising the substance
US5872882A (en) Non-linear optical polycarbonates
US7670512B2 (en) Second order nonlinear optical polyimides having benzobisthiazole-based pendant groups, and preparation of the same
Wang et al. Thermally stable oxadiazole-containing polyacetylenes: Relationship between molecular structure and nonlinear optical properties
Lee et al. Stability control of the electrooptic effect with new maleimide copolymers containing photoreactive tricyanopyrrolidene‐based chromophores
JPH05142600A (en) Low-refractive-index optical nonlinear polymer material
JP3003812B2 (en) Optical nonlinear main chain type polymer material and method for producing the same
US5284922A (en) Organic optical nonlinear material and optical nonlinear device
JP3014825B2 (en) Optical nonlinear low molecular weight compounds and polymer materials containing them
Zhou et al. Synthesis of nonlinear optical polyimides containing azodiamine derivative chromophores and their electrooptic and thermal properties
JP2813925B2 (en) Organic optical nonlinear materials and nonlinear devices
JP2503136B2 (en) Non-linear optical element
JP2789957B2 (en) Nonlinear optical element
KR100217537B1 (en) Secondary nonlinear optical polyimide having benzoxazole luminescence group