JPH05142400A - Soft x-ray microscope - Google Patents

Soft x-ray microscope

Info

Publication number
JPH05142400A
JPH05142400A JP30341591A JP30341591A JPH05142400A JP H05142400 A JPH05142400 A JP H05142400A JP 30341591 A JP30341591 A JP 30341591A JP 30341591 A JP30341591 A JP 30341591A JP H05142400 A JPH05142400 A JP H05142400A
Authority
JP
Japan
Prior art keywords
light
soft
wavelength
rays
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP30341591A
Other languages
Japanese (ja)
Inventor
Ikutoshi Fukushima
郁俊 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP30341591A priority Critical patent/JPH05142400A/en
Publication of JPH05142400A publication Critical patent/JPH05142400A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To provide a soft X-ray microscope which can easily select accurate wavelength, and is simple in device and structure. CONSTITUTION:There are disposed a condensing member 3 which converts soft X-rays transmitted from a radiation source 1 into convergent rays, and a dispersion member 5 which disperses the convergent rays into rays by wavelength in a space interspaced with the focus 4 of the convergent rays. The dispersion member 5 is rotated around an axis W normal to a plane of XY which passes through the center of the dispersion member while being formed by the optical axis 2 of the convergent rays and the dispersion direction of the flux of rays, and the flux of rays with a desired wavelength is thereby irradiated onto a specimen 6, so that transmitted ray flux is detected by a detector 8.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、軟X線顕微鏡に関す
る。
FIELD OF THE INVENTION The present invention relates to a soft X-ray microscope.

【0002】[0002]

【従来の技術】従来より軟X線顕微鏡の集光光学系とし
ては、ゾーン・プレートやミラーが用いられている。前
者は、光の回折効果を利用したもので、図5に示すよう
に、光源から出た光はゾーン・プレートで回折されて、
同軸上の異なる位置に波長毎に集光されるようになって
いる。図5に示したゾーン・プレートは、透明部と遮蔽
部とが同心円状に交互に設けられたフレネルゾーン・プ
レートである。後者の一例としては、図6に示したトロ
イダルミラーがあるが、これは全ての波長の光が同一焦
点に集光されるようになっている。
2. Description of the Related Art Conventionally, a zone plate or a mirror has been used as a focusing optical system of a soft X-ray microscope. The former uses the diffraction effect of light, and as shown in FIG. 5, the light emitted from the light source is diffracted by the zone plate,
The wavelengths are condensed at different positions on the same axis. The zone plate shown in FIG. 5 is a Fresnel zone plate in which transparent portions and shielding portions are concentrically provided alternately. As an example of the latter, there is the toroidal mirror shown in FIG. 6, which is designed so that lights of all wavelengths are focused on the same focal point.

【0003】[0003]

【発明が解決しようとする課題】ところで、生物標本を
観察する場合、生物を構成している元素毎に標本を観測
することが必要である。そのため、観測すべき元素固有
の吸収率に対応する波長の軟X線が正確に而も簡単に選
択可能な、つまり波長選択性に優れた集光光学系が要望
されている。
By the way, when observing a biological specimen, it is necessary to observe the specimen for each element constituting the organism. Therefore, there is a demand for a condensing optical system in which soft X-rays having a wavelength corresponding to the absorptance peculiar to the element to be observed can be accurately and simply selected, that is, excellent in wavelength selectivity.

【0004】上記従来例において、集光光学系にゾーン
・プレートを用いた場合は、光束は同一光軸上に集光さ
れるので、これに上述の如く波長選択性を持たせようと
すれば、例えば焦点位置にピンホールを置く等の手段が
考えられる。しかし、実際には0次光(透過光)や高次
光がピンホールに同時に入射するので、十分な波長選択
性は得られない。又この場合、波長毎に焦点位置が異な
るため、選択すべき波長の焦点位置とピンホールの位置
とを合わせるための機構が必要となる。これは顕微鏡装
置全体の構成の複雑化を招くため好ましくない。他方、
ミラーを用いた場合は、全ての波長の光が同一焦点に集
光されるため、ピンホールの位置を焦点位置に調節する
ための機構を設ける必要はなく顕微鏡装置の構成は簡単
となるが、上記ゾーン・プレートの如き波長選択性は全
く無く、従って元素の同定はできない。
In the above-mentioned conventional example, when a zone plate is used for the condensing optical system, the light beam is condensed on the same optical axis. Therefore, it is necessary to give it wavelength selectivity as described above. For example, means such as placing a pinhole at the focal position can be considered. However, in reality, zero-order light (transmitted light) and higher-order light are incident on the pinhole at the same time, so that sufficient wavelength selectivity cannot be obtained. Further, in this case, since the focal position is different for each wavelength, a mechanism for aligning the focal position of the wavelength to be selected with the pinhole position is required. This is not preferable because it complicates the configuration of the entire microscope apparatus. On the other hand,
When a mirror is used, light of all wavelengths is condensed at the same focal point, so there is no need to provide a mechanism for adjusting the position of the pinhole to the focal position, and the configuration of the microscope device is simple, but There is no wavelength selectivity as in the zone plate, and therefore the element cannot be identified.

【0005】本発明は、従来の技術の有するこのような
問題点に鑑みてなされたものであり、その目的とすると
ころは、正確な波長選択が容易にでき得、而も装置構造
が簡単な軟X線顕微鏡を提供することである。
The present invention has been made in view of the above problems of the prior art. The object of the present invention is that accurate wavelength selection can be easily performed and the device structure is simple. It is to provide a soft X-ray microscope.

【0006】[0006]

【課題を解決するための手段】本発明による軟X線顕微
鏡は、軟X線光源と、該光源から発せられた軟X線を収
束光に変換する集光部材と、該集光部材と前記収束光の
焦点との間に配置されていて前記収束光を各波長毎の光
に分散させるための分散部材と、検出器とを有し、前記
分散部材が、該分散部材の中心を通り且つ前記収束光の
光軸と該分散部材の光束分散方向との成す平面に垂直な
軸を回転軸として回転することを特徴としている。
A soft X-ray microscope according to the present invention comprises a soft X-ray light source, a light condensing member for converting soft X-rays emitted from the light source into convergent light, the light condensing member and the light condensing member. It has a dispersion member arranged between the focal point of the convergent light and for dispersing the convergent light into light of each wavelength, and a detector, and the dispersive member passes through the center of the dispersive member and It is characterized in that it rotates about an axis perpendicular to a plane formed by the optical axis of the converged light and the light beam dispersion direction of the dispersion member.

【0007】[0007]

【作用】集光部材とその焦点との間に分散部材を配置す
ることにより、分散部材に入射する収束光の波長により
回折角が異なり、回折面内で回折光の集光位置を波長毎
に分散させることができる。これにより容易な波長選択
が可能となる。更に、分散部材を選択すべき波長,次数
及び分散部材の回折条件に対応させて、入射角,回折角
が夫々調節されるように回転すれば、光源及び試料の位
置を固定したままで、異なる波長の回折光を選択するこ
とができる。
By arranging the dispersion member between the condensing member and its focal point, the diffraction angle varies depending on the wavelength of the converged light incident on the dispersion member, and the condensing position of the diffracted light on the diffractive surface varies depending on the wavelength. It can be dispersed. This allows easy wavelength selection. Further, if the dispersion member is rotated so that the incident angle and the diffraction angle are adjusted in accordance with the wavelength, the order, and the diffraction condition of the dispersion member to be selected, the positions of the light source and the sample are fixed and different. The diffracted light of the wavelength can be selected.

【0008】[0008]

【実施例】以下、実施例を図面に基づいて説明する。実施例1 図1は、本発明を走査型光学顕微鏡に適用した場合の光
学系を示している。図において、1は軟X線光源、2は
光軸、3は集光のためのトロイダルミラー、4はトロイ
ダルミラー3の焦点、5はトロイダルミラー3とその焦
点4との間に配置されていて入射光を回折して各波長の
光束毎に集光位置を分散させるためのゾーン・プレー
ト、6は測定すべき試料、7は試料6を走査させるため
の走査ステージ、8は試料6の透過光を検出するための
検出器、9は検出器である。図中、説明のために、光軸
2がトロイダルミラー3に交わる点を原点oとして、光
軸2がxy平面上にあるようにx軸とy軸を、又この平
面と直行するようにz軸を夫々設定し図示してある。
尚、ゾーン・プレート5はその中心で溝密度をもつよう
にするため、プレートの中心と格子の中心がずれた軸ず
らし型のものとし、これを該プレートの中心が光軸2と
一致するように、且つ該プレートに入射した光が図中x
y平面上に回折されるように配置する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments will be described below with reference to the drawings. Example 1 FIG. 1 shows an optical system when the present invention is applied to a scanning optical microscope. In the figure, 1 is a soft X-ray light source, 2 is an optical axis, 3 is a toroidal mirror for collecting light, 4 is a focal point of the toroidal mirror 3, and 5 is disposed between the toroidal mirror 3 and its focal point 4. A zone plate for diffracting incident light to disperse the condensing position for each light flux of each wavelength, 6 is a sample to be measured, 7 is a scanning stage for scanning the sample 6, and 8 is transmitted light of the sample 6. Is a detector and 9 is a detector. In the figure, for the sake of explanation, a point where the optical axis 2 intersects with the toroidal mirror 3 is set as an origin o, and the x axis and the y axis are arranged so that the optical axis 2 is on the xy plane, and z is arranged so as to be orthogonal to this plane. The axes are set and illustrated.
The zone plate 5 is of an axially offset type in which the center of the plate and the center of the lattice are offset so that the center of the plate has a groove density so that the center of the plate coincides with the optical axis 2. And the light incident on the plate is x
It is arranged so as to be diffracted on the y plane.

【0009】本実施例は上述の如く構成されているの
で、光源1から出た発散光は、トロイダルミラー3で集
光・反射され、収束光となってゾーン・プレート5に入
射する。そして、ゾーン・プレート5において異なった
回折角度で各波長毎にxy平面上に回折され、各波長の
光は該平面上の異なる位置に夫々集光する。従って、試
料6をxy平面上に集光する所望の波長の光の進行方向
に置き、試料6からの透過光を検出器8で検出すれば、
固有の吸収率に対応した波長の光で元素を選択的に観察
することが可能となる。
Since the present embodiment is configured as described above, the divergent light emitted from the light source 1 is condensed and reflected by the toroidal mirror 3 and enters the zone plate 5 as converged light. Then, in the zone plate 5, each wavelength is diffracted at different diffraction angles on the xy plane, and the light of each wavelength is condensed at different positions on the plane. Therefore, if the sample 6 is placed in the traveling direction of light of a desired wavelength to be condensed on the xy plane and the transmitted light from the sample 6 is detected by the detector 8,
It becomes possible to selectively observe the element with light having a wavelength corresponding to the inherent absorptance.

【0010】次に、図2を用いて、本発明の波長選択作
用について更に詳述する。図2は、ゾーン・プレート5
における光学系を示している。図中、説明のために、ゾ
ーン・プレート5の中心を原点o′として、原点o′を
通り前記z軸と平行にw軸、前記xy平面に平行でゾー
ン・プレート5の出射面の法線方向にu軸をとり、v軸
はこれらが右手系となるように夫々設定し図示してあ
る。このゾーン・プレート5に入射する波長λの光束
は、この光束の光軸2とu軸とのなす角度即ち入射角を
θi 、回折光の光軸2′とu軸とのなす角度即ち回折角
をθo とすると、次式(1)に示す回折条件を満たして
回折され、回折光の焦点10に集光する。 sinθi +sinθo =Nmλ ───式(1) 但し、Nはゾーン・プレート5の中心の溝密度、mは回
折次数である。
Next, the wavelength selection function of the present invention will be described in more detail with reference to FIG. Figure 2 shows the zone plate 5
The optical system in FIG. For the sake of explanation, in the drawing, the center of the zone plate 5 is defined as an origin o ', the origin is an o', the w axis is parallel to the z axis, and the normal line of the exit surface of the zone plate 5 is parallel to the xy plane. The u-axis is taken in the direction, and the v-axis is set so that they are right-handed. A light beam having a wavelength λ entering the zone plate 5 has an angle θi between the optical axis 2 and the u axis of the light beam, and an angle between the optical axis 2'of the diffracted light and the u axis, that is, a diffraction angle. Is defined as θo, the light is diffracted by satisfying the diffraction condition represented by the following expression (1), and focused on the focus 10 of the diffracted light. sin θi + sin θo = Nmλ (1) where N is the groove density at the center of the zone plate 5, and m is the diffraction order.

【0011】式(1)から明らかなように、波長λによ
って回折角θo が異なるので、回折面内で各波長毎に回
折光の焦点が分散され、これにより波長選択性をもたせ
ることができる。又、ゾーン・プレート5を次式(2)
に示す条件を満足するように、w軸を回転軸として、図
1及び図2において矢印Aで示した方向に回転させるこ
とにより、光源1を固定したまま、選択すべき回折光の
光軸2′の方向即ち選択すべき回折光の集光位置を、常
に焦点10と一致させることができる。 θi −θo =2K ───式(2) 但し、Kは定数。
As is clear from the equation (1), since the diffraction angle θo is different depending on the wavelength λ, the diffracted light focus is dispersed for each wavelength in the diffractive surface, and thus wavelength selectivity can be provided. In addition, the zone plate 5 is defined by the following equation (2)
The optical axis 2 of the diffracted light to be selected is fixed while the light source 1 is fixed by rotating the w-axis in the direction indicated by arrow A in FIGS. 1 and 2 so as to satisfy the condition shown in FIG. The direction of ', that is, the focus position of the diffracted light to be selected can always be matched with the focal point 10. θi −θo = 2K --- Equation (2) where K is a constant.

【0012】上記式(1),(2)より、次式(3−
1),(3−2)に示す関係が導かれる。 θi =K+arcsin{Nmλ/(2cosK)} ───式(3−1) θo =arcsin{Nmλ/(2cosK)}−K ───式(3−2) 従って、上記式に示す関係が成りたつようにゾーン・プ
レート5をw軸を回転軸として回転し、入射角θi ,回
折角θo を夫々調節すれば、光軸2の入射方向を固定し
たまま、一定方向に所望の波長λ及び次数mの光を回折
・集光させることができる。この回折方向に試料6を設
置して回折光を照射し、更に走査ステージ7で試料6を
回折光軸2′に垂直な平面内で走査してこのときの透過
光を検出器8で検出すれば、試料6の平面的観察が可能
となる。従って、試料6の吸収スペクトル等を二次元的
に容易に得ることができ、EXAFS等の分析を高空間
分解能で行うことができる。又、試料6に軟X線を照射
することで発せられる光電子を検出器9で検出すること
で物質の元素同定等ができる。
From the above equations (1) and (2), the following equation (3-
The relationships shown in 1) and (3-2) are derived. θi = K + arcsin {Nmλ / (2cosK)} ──Equation (3-1) θo = arcsin {Nmλ / (2cosK)} − K ──Equation (3-2) Therefore, the relation shown in the above equation holds. By rotating the zone plate 5 about the w axis as a rotation axis and adjusting the incident angle θi and the diffraction angle θo respectively, the desired wavelength λ and the order m can be fixed in a certain direction with the incident direction of the optical axis 2 fixed. The light can be diffracted and condensed. The sample 6 is installed in this diffraction direction to irradiate the diffracted light, and the scanning stage 7 scans the sample 6 in a plane perpendicular to the diffracted light axis 2 ', and the transmitted light at this time is detected by the detector 8. In this case, the sample 6 can be observed in a plane. Therefore, the absorption spectrum and the like of the sample 6 can be easily obtained two-dimensionally, and analysis such as EXAFS can be performed with high spatial resolution. Further, by detecting photoelectrons emitted by irradiating the sample 6 with soft X-rays by the detector 9, element identification of the substance can be performed.

【0013】上述の如く本実施例によれば、所望の波長
の光を容易に選択して得ることができ、而も集光光学系
において選択すべき光の波長が異なっていても、光源と
顕微鏡の相対位置を変えることなく、ゾーン・プレート
5を回転してその回転角度を調節することにより正確に
選択できるので、顕微鏡装置が簡単に構成できる。
As described above, according to this embodiment, it is possible to easily select and obtain light having a desired wavelength, and even if the wavelength of light to be selected in the condensing optical system is different, Since the zone plate 5 can be rotated and the rotation angle can be adjusted without changing the relative position of the microscope, the microscope device can be simply constructed.

【0014】実施例2 図3は、本発明を結像型軟X線顕微鏡に適用した場合の
光学系を示している。本実施例は前記実施例1に示した
光学系をコンデンサとして用いて軟X線を試料6に照射
し、試料6を透過した軟X線をウォルターミラー11で
マルチ・チャネル・プレート12上に集光し、該プレー
ト12で軟X線を検出してその像をCCDカメラ13で
観察するようになっている。
Embodiment 2 FIG. 3 shows an optical system when the present invention is applied to an imaging type soft X-ray microscope. In this embodiment, the optical system shown in the first embodiment is used as a condenser to irradiate the sample 6 with soft X-rays, and the soft X-rays transmitted through the sample 6 are collected by the Walter mirror 11 on the multi-channel plate 12. Light is emitted, the soft X-ray is detected by the plate 12, and the image is observed by the CCD camera 13.

【0015】本実施例も前記実施例1と同様に、コンデ
ンサレンズ光学系において選択すべき光の波長が異なっ
ていても、ゾーン・プレート5を回転してその回転角度
を調節することにより所望の波長の光を正確に選択して
得ることができ、光源と顕微鏡の相対位置を変えずに試
料6の観察が可能である。更に、本実施例の結像型軟X
線顕微鏡は、走査型顕微鏡の如く試料6を走査しないの
で、走査の際に生じやすい検出誤差による画素の劣化等
もなく、従って走査型顕微鏡と比較して明瞭な観察像を
得ることができる。
In the present embodiment, as in the case of the first embodiment, even if the wavelength of the light to be selected in the condenser lens optical system is different, the desired value can be obtained by rotating the zone plate 5 and adjusting the rotation angle. The light of the wavelength can be accurately selected and obtained, and the sample 6 can be observed without changing the relative position of the light source and the microscope. Furthermore, the imaging soft X of this embodiment
Since the line microscope does not scan the sample 6 unlike a scanning microscope, there is no deterioration of pixels due to a detection error that tends to occur during scanning, and therefore a clear observation image can be obtained as compared with a scanning microscope.

【0016】上述した実施例の光学系の設計値として、
ゾーン・プレート5の回折条件をN=1000(本/m
m),K=179.6(度)と設定して各波長の光を各
々入射し、その1次光が焦点10上に集光するときのゾ
ーン・プレート5の回転角度の計算結果を、表1に示
す。尚、表1中で「波長(nm)」の項目に示した値
は、2.33(nm)が水の吸収端、3.55(nm)
がカルシウムの吸収端、4.37(nm)がタンパク質
の吸収端である。
As design values of the optical system of the above embodiment,
The diffraction condition of the zone plate 5 is N = 1000 (pieces / m
m), K = 179.6 (degrees) is set, light of each wavelength is made incident, and the calculation result of the rotation angle of the zone plate 5 when the primary light is focused on the focal point 10 is It shows in Table 1. In addition, in the value shown in the item of "wavelength (nm)" in Table 1, 2.33 (nm) is the absorption edge of water, and 3.55 (nm).
Is the absorption edge of calcium, and 4.37 (nm) is the absorption edge of protein.

【0017】[0017]

【表1】 [Table 1]

【0018】表1から明らかなように、本発明による顕
微鏡を用いれば、特に生物観察に必要な波長の光を選択
的に得ることで、所望の元素のみを観察することが可能
となる。
As is clear from Table 1, by using the microscope according to the present invention, it is possible to observe only a desired element by selectively obtaining light having a wavelength necessary for biological observation.

【0019】ゾーン・プレート5の回折方向は、図4に
示すように、回折光の焦点10がwu平面内に位置する
ように、z軸と平行な方向に設定しても勿論構わず、顕
微鏡装置の構造上の条件や制限により適宜な方向に選定
すればよい。この場合、ゾーン・プレート5はv軸を回
転軸として、図中矢印Bで示した方向に回転することで
集光光学系における波長選択が可能となる。
The diffraction direction of the zone plate 5 may be set parallel to the z-axis so that the focal point 10 of the diffracted light is located in the wu plane, as shown in FIG. It may be selected in an appropriate direction depending on the structural conditions and restrictions of the device. In this case, the zone plate 5 rotates about the v-axis in the direction shown by the arrow B in the figure, thereby enabling wavelength selection in the focusing optical system.

【0020】尚、実際には、回折光の焦点位置は波長に
よって回折方向に僅かにずれるが、このズレに対応させ
て試料の位置を移動させる簡単な位置調節機構を設ける
ことでズレの補正が可能である。又、集光光学系におい
て、集光のためのミラーの形状を補正して若しくはミラ
ーの数を増やして収差を補正し、又はゾーンプレートの
溝形状を変えて収差を補正し、或いは回折光の焦点位置
にピンホールを設置することにより、試料に収束する光
のスポットサイズを小さくすれば、観察像の分解能を高
めることができる。
Actually, the focal position of the diffracted light slightly shifts in the diffraction direction depending on the wavelength, but the displacement can be corrected by providing a simple position adjusting mechanism for moving the position of the sample corresponding to this displacement. It is possible. Further, in the focusing optical system, the shape of the mirror for focusing is corrected or the number of mirrors is increased to correct the aberration, or the groove shape of the zone plate is changed to correct the aberration, or the diffracted light By setting a pinhole at the focal position to reduce the spot size of the light focused on the sample, the resolution of the observed image can be increased.

【0021】[0021]

【発明の効果】以上本発明の軟X線顕微鏡は、分散部材
を回転させるという簡単な操作で波長選択ができるの
で、異なる波長の観察毎に光源や検出器等の位置を調節
する必要はなく、所望の波長を常に安定した精度で選択
でき得、観察精度の向上に極めてて効果的である。又、
可動部位は分散部材の回転軸ただ一つであるから操作性
に優れ、更に構造的にも簡単でメンテナンス性にも優れ
ている。
As described above, in the soft X-ray microscope of the present invention, since the wavelength can be selected by a simple operation of rotating the dispersion member, it is not necessary to adjust the positions of the light source and the detector for each observation of different wavelengths. The desired wavelength can always be selected with stable accuracy, which is extremely effective in improving the observation accuracy. or,
Since the movable part is only the rotating shaft of the dispersion member, it has excellent operability, and is structurally simple and easy to maintain.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による軟X線顕微鏡の一実施例の構成を
示す図である。
FIG. 1 is a diagram showing a configuration of an embodiment of a soft X-ray microscope according to the present invention.

【図2】本発明による軟X線顕微鏡の一実施例でゾーン
・プレートにおける光学系を示す図である。
FIG. 2 is a diagram showing an optical system in a zone plate in an embodiment of a soft X-ray microscope according to the present invention.

【図3】本発明による軟X線顕微鏡の他の実施例の構成
を示す図である。
FIG. 3 is a diagram showing the configuration of another embodiment of the soft X-ray microscope according to the present invention.

【図4】本発明による軟X線顕微鏡の他の実施例でゾー
ン・プレートにおける光学系を示す図である。
FIG. 4 is a diagram showing an optical system in a zone plate in another embodiment of the soft X-ray microscope according to the present invention.

【図5】ゾーン・プレートの集光光学系を示す図であ
る。
FIG. 5 is a diagram showing a condensing optical system of a zone plate.

【図6】トロイダルミラーの集光光学系を示す図であ
る。
FIG. 6 is a diagram showing a condensing optical system of a toroidal mirror.

【符号の説明】[Explanation of symbols]

1 軟X線光源 3 トロイダルミラー 5 ゾーン・プレート 6 試料 8 検出器 11 ウォルターミラー 12 マルチ・チャネル・プレート 13 CCDカメラ 1 Soft X-ray Light Source 3 Toroidal Mirror 5 Zone Plate 6 Sample 8 Detector 11 Walter Mirror 12 Multi-Channel Plate 13 CCD Camera

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 軟X線光源と、該光源から発せられた軟
X線を収束光に変換する集光部材と、該集光部材と前記
収束光の焦点との間に配置されていて前記収束光を各波
長毎の光に分散させるための分散部材と、検出器とを有
し、 前記分散部材が、該分散部材の中心を通り且つ前記収束
光の光軸と該分散部材の光束分散方向との成す平面に垂
直な軸を回転軸として回転する、ことを特徴とする軟X
線顕微鏡。
1. A soft X-ray light source, a light-collecting member for converting soft X-rays emitted from the light source into convergent light, and a light-collecting member arranged between the light-collecting member and the focal point of the convergent light. A dispersion member for dispersing the converged light into lights of respective wavelengths and a detector, wherein the dispersion member passes through the center of the dispersion member and the optical axis of the converged light and the light beam dispersion of the dispersion member. The soft X is characterized by rotating about an axis perpendicular to the plane formed by the direction and the axis of rotation.
Line microscope.
JP30341591A 1991-11-19 1991-11-19 Soft x-ray microscope Withdrawn JPH05142400A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30341591A JPH05142400A (en) 1991-11-19 1991-11-19 Soft x-ray microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30341591A JPH05142400A (en) 1991-11-19 1991-11-19 Soft x-ray microscope

Publications (1)

Publication Number Publication Date
JPH05142400A true JPH05142400A (en) 1993-06-08

Family

ID=17920748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30341591A Withdrawn JPH05142400A (en) 1991-11-19 1991-11-19 Soft x-ray microscope

Country Status (1)

Country Link
JP (1) JPH05142400A (en)

Similar Documents

Publication Publication Date Title
JP3385164B2 (en) How to operate the spectrometer
US5283684A (en) Method of constructing confocal microscope components
US6665372B2 (en) X-ray diffractometer
JPH0580497A (en) Surface state inspecting device
US5199057A (en) Image formation-type soft X-ray microscopic apparatus
US20080049304A1 (en) Spectroscope with vignetting reduction
JP2004184314A (en) X-ray fluorescence analytical device
JPH0666241B2 (en) Position detection method
US4690559A (en) Optical system for spectral analysis devices
Bingham Grating spectrometers and spectrographs re-examined
US4289401A (en) Optical system for spectral devices
JPH05142400A (en) Soft x-ray microscope
JPH08145795A (en) Double/single color meter
JPH07128146A (en) Spectrometer
US20040196460A1 (en) Scatterometric measuring arrangement and measuring method
EP1193482B1 (en) Spectroscope
US20050226372A1 (en) X-ray image magnifying device
JP3141106B2 (en) Convergent light incidence type spectrometer using spherical diffraction grating
WO1985002254A1 (en) Monochromator
JPH05126769A (en) Method and apparatus for analyzing surface
JP2000039359A (en) Conical diffraction oblique incident spectroscope and diffraction grating there for
Niemann High numerical-aperture X-ray condensers for transmission X-ray microscopes
KR100204113B1 (en) A package array mode plane imaging type ultraviolet pectrometer and allignment device thereof
JPH01176932A (en) Fine foreign matter inspection device
RU2082193C1 (en) Photoelectronic device for adjustment of optical system

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990204