JPH0514226B2 - - Google Patents

Info

Publication number
JPH0514226B2
JPH0514226B2 JP57224987A JP22498782A JPH0514226B2 JP H0514226 B2 JPH0514226 B2 JP H0514226B2 JP 57224987 A JP57224987 A JP 57224987A JP 22498782 A JP22498782 A JP 22498782A JP H0514226 B2 JPH0514226 B2 JP H0514226B2
Authority
JP
Japan
Prior art keywords
exhaust gas
electrical resistance
gas
present
combustor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57224987A
Other languages
Japanese (ja)
Other versions
JPS59196454A (en
Inventor
Tadashi Tonomura
Satoshi Sekido
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP22498782A priority Critical patent/JPS59196454A/en
Publication of JPS59196454A publication Critical patent/JPS59196454A/en
Publication of JPH0514226B2 publication Critical patent/JPH0514226B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ガスあるいは石油ストーブ、自動車
エンジン等の、炭化水素を主成分とする燃料を大
気と混合して燃やす燃焼器の燃焼状態を検出する
方法に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention detects the combustion state of a combustor such as a gas or oil stove, or a car engine, which burns a fuel mainly composed of hydrocarbons mixed with the atmosphere. Regarding how to.

(従来例の構成とその問題点) 一般に、SnO2、ZnO、TiO2、Fe2O3、CoO等
の金属酸化物半導体の電気抵抗値が、雰囲気中の
ガス組成により変化することは広く知られてお
り、この現象を利用した内燃機関、バーナ等の燃
焼状態の検出に用いる試みがなされている。すな
わち排気ガス中の特定成分、多くは酸素、あるい
はNOx等の酸化性ガス濃度の増減を検知し空燃
比(以下A/Fと記す)を制御することで、省燃
料化、を図ろうとするものでるる。
(Conventional structure and its problems) It is widely known that the electrical resistance value of metal oxide semiconductors such as SnO 2 , ZnO, TiO 2 , Fe 2 O 3 , CoO, etc. changes depending on the gas composition in the atmosphere. Attempts have been made to use this phenomenon to detect the combustion state of internal combustion engines, burners, etc. In other words, it attempts to save fuel by detecting increases and decreases in the concentration of specific components in exhaust gas, mostly oxygen or oxidizing gases such as NOx, and controlling the air-fuel ratio (hereinafter referred to as A/F). Out.

しかしながら、必ずしも排気ガス成分組成が、
燃焼状態に対応する形で得られることはなく、自
動車エンジンを例にとれば、同一A/F値であつ
ても、エンジン回転数、点火時期、負荷等が変化
すると排気ガス組成も大きく変化することから、
現在はA/Fを細かく制御することはむずかし
く、省燃料化をはかるには、A/Fが14.7より大
きくなるところでのA/Fの制御が必要とされる
にもかかわらず、排気ガス組成が極端に変化する
理想空燃比(A/F14.7)のみによる燃焼状態
の制御しかできない欠点があつた。
However, the exhaust gas component composition does not necessarily have to be
It is not obtained in a form that corresponds to the combustion state; for example, in an automobile engine, even if the A/F value is the same, the exhaust gas composition will change greatly if the engine speed, ignition timing, load, etc. change. Therefore,
Currently, it is difficult to precisely control the A/F, and in order to save fuel, it is necessary to control the A/F at the point where the A/F becomes larger than 14.7. The drawback was that the combustion state could only be controlled using the ideal air-fuel ratio (A/F 14.7), which varies extremely.

(発明の目的) 本発明は、従来のこのような欠点をなくし、
A/Fを理想空燃比だけでなく、A/F値を幅広
い範囲で制御するための燃焼状態の検知方法を提
供することを目的とする。
(Object of the invention) The present invention eliminates these conventional drawbacks,
It is an object of the present invention to provide a combustion state detection method for controlling A/F not only at an ideal air-fuel ratio but also at a wide range of A/F values.

(発明の構成) 本発明は、排気ガス中での金属酸化物半導体の
電気抵抗と、その時の排気ガス温度とをそれぞれ
検出し、それらを独立変数として扱うことより、
電気抵抗の温度補償を行うことなしに、燃焼状態
の検知を行なおうとするものである。
(Structure of the Invention) The present invention detects the electrical resistance of a metal oxide semiconductor in exhaust gas and the exhaust gas temperature at that time, and treats them as independent variables.
This is an attempt to detect the combustion state without performing temperature compensation for electrical resistance.

すなわち、排気ガスは、高温で燃焼器から排出
されるのであるが、この排気ガスのガス成分中に
は、高温下(例えば、300〜600℃)ではお互いに
化学反応を起こす成分、NO、NO2、CO、O2
H2O等が含まれており、これらガス成分の濃度
は、お互いの濃度と排気ガス温度により規定され
ている。例えば、NO、NO2、O2の間には 2NO+O2K1 → ← 2NO2、 COとNOの間には 2CO+NOK2 → ← CNO+CO2、 NOとNO2とH2Oの間には 3NO2+H2OK3 → ← 2HNO3+NO のように互いに複雑にからみ合つており、K1
K2、K3は、各反応の平衡定数であり、主に温度
により決定されるため、排気ガス温度は、排気ガ
ス中の成分組成を決定している重要な因子である
ことがわかる。また、一方、代表的な燃焼器とし
て自動車エンジンを例にとれば、排気ガス温度
は、一般に、負荷が大きい程、エンジン回転数が
大きい程高くなり、同一負荷、回転数では、A/
Fにあまり依存しない(A/F=14〜19の間で±
20℃程度の変動)ことが知られている。
In other words, exhaust gas is discharged from the combustor at a high temperature, and the gas components of this exhaust gas include components that chemically react with each other at high temperatures (for example, 300 to 600 degrees Celsius), such as NO and NO. 2 , CO, O2 ,
Contains H 2 O, etc., and the concentrations of these gas components are determined by their respective concentrations and exhaust gas temperature. For example, between NO, NO 2 and O 2 : 2NO+O 2 K 1 → ← 2NO 2 ; between CO and NO: 2CO+NOK 2 → ← CNO+CO 2 ; between NO, NO 2 and H 2 O: 3NO 2 +H 2 OK 3 → ← 2HNO 3 They are intricately intertwined with each other as shown in +NO, and K 1 ,
Since K 2 and K 3 are equilibrium constants of each reaction and are mainly determined by temperature, it can be seen that the exhaust gas temperature is an important factor determining the component composition in the exhaust gas. On the other hand, if we take an automobile engine as a typical combustor, the exhaust gas temperature generally increases as the load increases and the engine speed increases;
Does not depend much on F (± between A/F=14 and 19)
It is known that there is a fluctuation of about 20℃).

本発明は、以上のような、燃焼器の本来の特性
に着目して創意されたもので、空燃比以外の燃焼
状態を規定する因子、例えば回転数とか負荷等に
よる排気ガス状態の変動分を、排気ガス温度を同
時に検出することにより有効に取り除くことがで
き、これを金属酸化物半導体の電気抵抗の変化の
検出と組み合せることで理想空燃比以外でもA/
Fを制御することができ、省燃料化をはかる際の
有効な方法となるばかりでなく、電気抵抗の温度
補償を行うことなく行えるので、生産費の低減が
できるものである。
The present invention was devised by focusing on the inherent characteristics of the combustor as described above, and is designed to compensate for fluctuations in the exhaust gas state due to factors that define the combustion state other than the air-fuel ratio, such as rotation speed and load. , can be effectively removed by simultaneously detecting the exhaust gas temperature, and by combining this with detecting changes in the electrical resistance of the metal oxide semiconductor, A/F can be removed even at non-ideal air-fuel ratios.
F can be controlled, which is not only an effective method for saving fuel, but also reduces production costs because it can be done without temperature compensation for electrical resistance.

(実施例の説明) 第1図は、本発明の効果をみるために用いた金
属酸化物半導体をガス感応体としたガス検知器の
外観を示す図、第2図は、第1図に示したガス検
知器10の部分拡大図で、11はガス検知部、1
2はガス感応体であり、金属錫を蒸発源とするス
パツタリング法で形成した厚さ5000Åの酸化錫
(SnO2)金属酸化物半導体の膜である。13は導
電性の白金ペーストを印刷焼き付けることで得た
ガス感応体12の電気抵抗の変化を外部信号とし
て取り出すための電極である。14は直径9mm
φ、厚さ0.5mmのアルミナ基板、15は排気ガス
温度を検知するためのCA線(クロメル−アルメ
ル線)より成る熱電対である。
(Explanation of Examples) Fig. 1 is a diagram showing the appearance of a gas detector using a metal oxide semiconductor as a gas sensitive material, which was used to examine the effects of the present invention. 11 is a partially enlarged view of the gas detector 10, 11 is a gas detection part, 1
Reference numeral 2 denotes a gas sensitive body, which is a film of a tin oxide (SnO 2 ) metal oxide semiconductor with a thickness of 5000 Å formed by a sputtering method using metal tin as an evaporation source. Reference numeral 13 denotes an electrode for extracting a change in electrical resistance of the gas sensitive body 12 obtained by printing and baking a conductive platinum paste as an external signal. 14 is 9mm in diameter
φ is an alumina substrate with a thickness of 0.5 mm, and 15 is a thermocouple made of a CA wire (chromel-alumel wire) for detecting the exhaust gas temperature.

次に、本発明を自動車エンジンに適用した場合
について説明する。第3図において、30は自動
車エンジンの排気管20に取り付けた前述のガス
検知器10からの電気抵抗と温度の信号を受け
て、燃料噴射量制御装置40に信号を送り出すた
めのデータ処理装置である。
Next, a case where the present invention is applied to an automobile engine will be described. In FIG. 3, 30 is a data processing device for receiving electrical resistance and temperature signals from the aforementioned gas detector 10 attached to the exhaust pipe 20 of the automobile engine and sending signals to the fuel injection amount control device 40. be.

用いた自動車エンジンの仕様は、以下の通りで
ある。
The specifications of the automobile engine used are as follows.

種類:水冷単筒4サイクルガソリンエンジン ボア×ストローク:74.0×75.0mm 排気量:322.6c.c. 圧縮比:8.71 最高軸出力:12.1/5500PS/rpm 最高軸トルク:2.1/2000Kg・m/rpm 最大平均有効圧:8.0/2000Kg/cm2/rpm エンジンを通常の自動車の運転状態をほぼ満足
する回転数1500rpm〜3000rpm、点火角20°〜40°、
負荷1/4負荷〜全負荷の範囲で、空燃比を13〜
16.5の範囲で運転したときの、ガス検知器の電気
抵抗と、排気ガス温度の関係を示したのが第4図
である。この図から明らかなように、回転数、負
荷、点火角に依らず、本発明に従い、ガス検知器
の電気抵抗と排気ガス温度をそれぞれ同時に検出
し、それらを独立変数として扱うことにより、
A/Fが一義的に精度良く決定され、燃焼状態を
有効に検知することができる。
Type: Water-cooled single cylinder 4-stroke gasoline engine Bore x stroke: 74.0 x 75.0mm Displacement: 322.6cc Compression ratio: 8.71 Maximum shaft output: 12.1/5500PS/rpm Maximum shaft torque: 2.1/2000Kg・m/rpm Maximum average effective pressure :8.0/2000Kg/cm 2 /rpm The engine speed is 1500rpm to 3000rpm, which satisfies normal car driving conditions, and the ignition angle is 20° to 40°.
Air-fuel ratio from 13 to 13 in the range of 1/4 load to full load
Figure 4 shows the relationship between the electrical resistance of the gas detector and the exhaust gas temperature when operating in the range of 16.5. As is clear from this figure, by simultaneously detecting the electrical resistance of the gas detector and the exhaust gas temperature and treating them as independent variables according to the present invention, regardless of the rotation speed, load, and ignition angle,
The A/F is uniquely determined with high precision, and the combustion state can be effectively detected.

実際的には、予め実測して得られた第4図の、
ガス検知器の電気抵抗及び排気ガス温度とA/F
との関係を第3図のデータ処理装置30内の記憶
装置に記憶させておき、電気抵抗及び排気ガス温
度の2つの検知信号から直ちにA/F値を読み取
るものである。第4図のものでは、A/F値を
0.5刻みの直線群としているが、0.2刻みで測定し
た直線群を用いれば、さらに高い精度でA/F値
を決定することができる。
Practically speaking, as shown in Figure 4, which was obtained through actual measurements in advance,
Electrical resistance of gas detector, exhaust gas temperature and A/F
This relationship is stored in a storage device in the data processing device 30 shown in FIG. 3, and the A/F value is immediately read from the two detection signals of electrical resistance and exhaust gas temperature. In the one in Figure 4, the A/F value is
Although the straight line group is measured in 0.5 increments, the A/F value can be determined with even higher precision by using a straight line group measured in 0.2 increments.

比較のために、上記のようにエンジンの運転状
態を回転数1500rpm〜3000rpm、点火角20°〜40°、
負荷1/4〜全負荷に変化させたとき得られたガス
検知器の電気抵抗とA/Fの関係を示すと第5図
のようになり(斜線部は測定範囲を示す)、例え
ば、A/Fが15のとき、抵抗値はおよそ7×
102Ωから5×103Ωの範囲にばらつき、逆に電気
抵抗を1×103Ωとすると、A/Fはおよそ13.7以
上で広くばらつくことになる。従つて、ガス検知
器の電気抵抗のみではA/F値は一義的に決まり
難いことがわかる。
For comparison, the operating conditions of the engine were as shown above: rotational speed 1500rpm to 3000rpm, ignition angle 20° to 40°,
The relationship between the electrical resistance of the gas detector and A/F obtained when changing the load from 1/4 to full load is shown in Figure 5 (the shaded area indicates the measurement range). When /F is 15, the resistance value is approximately 7×
It varies in the range from 10 2 Ω to 5×10 3 Ω, and conversely, if the electrical resistance is 1×10 3 Ω, the A/F varies widely in the range of approximately 13.7 or more. Therefore, it can be seen that it is difficult to uniquely determine the A/F value only by the electrical resistance of the gas detector.

このことから、いかに本発明の検知方法が優れ
ているかが理解されよう。
From this, it will be understood how superior the detection method of the present invention is.

なお、本発明の実施例では、燃焼器として自動
車エンジンを例にとつて示したが、その他の燃焼
器、例えばガスストーブ、石油ストーブ等におい
ても本発明の効果が有効に作用するものであり、
また、金属酸化物半導体として、酸化錫を一例と
して挙げたが、酸化錫以外の金属酸化物半導体、
例えばTiO2、ZnO、Fe2O3、CoOを用いても本発
明の効果を有効に得られるのは言うまでもないこ
とである。
In the embodiments of the present invention, an automobile engine is used as an example of a combustor, but the effects of the present invention can be effectively applied to other combustors, such as gas stoves, oil stoves, etc.
In addition, although tin oxide is mentioned as an example of the metal oxide semiconductor, metal oxide semiconductors other than tin oxide,
It goes without saying that the effects of the present invention can be effectively obtained using TiO 2 , ZnO, Fe 2 O 3 , and CoO, for example.

(発明の効果) 以上説明したように本発明は、燃焼器の排気ガ
ス中での金属酸化物半導体の電気抵抗と、燃焼器
の排気ガス温度から燃焼器の空燃比を検出するよ
うにしたので、A/F以外の燃焼状態を規定する
因子を有効に取り除くことができる。したがつて
本発明の燃焼状態検知方法によれば、A/F値を
理想空燃比だけでなく、幅広い範囲で制御するこ
とが可能となる。さらにまた、検知器の温度補償
を必要としないため、温度補償用の電気的な演算
回路を必要としないので、構造が簡単となり、従
つて検知装置の生産費も低減されることになる。
(Effects of the Invention) As explained above, the present invention detects the air-fuel ratio of the combustor from the electrical resistance of the metal oxide semiconductor in the exhaust gas of the combustor and the temperature of the exhaust gas of the combustor. , factors that define combustion conditions other than A/F can be effectively removed. Therefore, according to the combustion state detection method of the present invention, it is possible to control the A/F value not only at the ideal air-fuel ratio but also over a wide range. Furthermore, since there is no need for temperature compensation of the detector, there is no need for an electrical arithmetic circuit for temperature compensation, which simplifies the structure and reduces the production cost of the detection device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に用いられるガス検知器の外観
図、第2図Aは第1図に示したガス検知器の部分
拡大平面図、第2図Bは同じく部分拡大断面図、
第3図は本発明を自動車エンジンに適用した場合
の説明図、第4図は本発明の効果を説明するため
の、排気ガス温度と、ガス検知器の電気抵抗と、
空燃比の関係を示す図、第5図はガス検知器の電
気抵抗と空燃比の関係を示す図である。 10……ガス検知器、11……ガス検知部、1
2……ガス感応体、13……電極、14……アル
ミナ基板、20……排気管、30……データ処理
装置、40……燃料噴射量制御装置。
FIG. 1 is an external view of the gas detector used in the present invention, FIG. 2A is a partially enlarged plan view of the gas detector shown in FIG. 1, and FIG. 2B is a partially enlarged sectional view of the gas detector shown in FIG.
FIG. 3 is an explanatory diagram when the present invention is applied to an automobile engine, and FIG. 4 is a diagram showing the exhaust gas temperature and the electrical resistance of the gas detector, for explaining the effects of the present invention.
A diagram showing the relationship between the air-fuel ratio and FIG. 5 is a diagram showing the relationship between the electrical resistance of the gas detector and the air-fuel ratio. 10...Gas detector, 11...Gas detection section, 1
2... Gas sensitive body, 13... Electrode, 14... Alumina substrate, 20... Exhaust pipe, 30... Data processing device, 40... Fuel injection amount control device.

Claims (1)

【特許請求の範囲】[Claims] 1 燃焼器の排気ガス中での金属酸化物半導体の
電気抵抗と、燃焼器の排気ガス温度とから、前記
電気抵抗の温度補償を行うことなく、それぞれ独
立変数として燃焼器の空燃比を検出することを特
徴とする燃焼状態検知方法。
1 Detecting the air-fuel ratio of the combustor from the electrical resistance of the metal oxide semiconductor in the combustor exhaust gas and the combustor exhaust gas temperature as independent variables without performing temperature compensation for the electrical resistance. A combustion state detection method characterized by the following.
JP22498782A 1982-12-23 1982-12-23 Combustion state detecting method Granted JPS59196454A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22498782A JPS59196454A (en) 1982-12-23 1982-12-23 Combustion state detecting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22498782A JPS59196454A (en) 1982-12-23 1982-12-23 Combustion state detecting method

Publications (2)

Publication Number Publication Date
JPS59196454A JPS59196454A (en) 1984-11-07
JPH0514226B2 true JPH0514226B2 (en) 1993-02-24

Family

ID=16822319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22498782A Granted JPS59196454A (en) 1982-12-23 1982-12-23 Combustion state detecting method

Country Status (1)

Country Link
JP (1) JPS59196454A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3719912B2 (en) * 2000-06-07 2005-11-24 三菱電機株式会社 Temperature sensor for exhaust gas sensor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55122143A (en) * 1979-03-15 1980-09-19 Nippon Soken Inc Gas detector
JPS5739341A (en) * 1980-08-22 1982-03-04 Toyota Motor Corp Oxygen sensor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55122143A (en) * 1979-03-15 1980-09-19 Nippon Soken Inc Gas detector
JPS5739341A (en) * 1980-08-22 1982-03-04 Toyota Motor Corp Oxygen sensor

Also Published As

Publication number Publication date
JPS59196454A (en) 1984-11-07

Similar Documents

Publication Publication Date Title
US4351182A (en) Oxygen sensor for monitoring exhaust gases
EP0310063B1 (en) Sensor for measurement of air/fuel ratio
JP3171854B2 (en) Gas sensor
US4233033A (en) Method and apparatus for measuring the O2 content of a gas
US4225559A (en) Ceramic element sensor
Soejima et al. Multi-layered zirconia oxygen sensor for lean burn engine application
US4786476A (en) Gas sensor element using porously fired mass of titania
JPH02102447A (en) Air fuel ratio controller for engine
JPH0514226B2 (en)
US6153071A (en) Exhaust oxygen sensing
EP3411698B1 (en) Resistive based nox sensing method and apparatus
JPH01119755A (en) Oxygen sensor in internal combustion engine
JPS61105455A (en) Detection of oxygen partial pressure
Izu et al. The effect of hafnia doping on the resistance of ceria for use in resistive oxygen sensors
Howarth et al. A simple titania thick film exhaust gas oxygen sensor
JPH0862168A (en) Nitrogen oxide detecting device
JP6398866B2 (en) Oxygen sensor control method
JPH0417377B2 (en)
JP2501169Y2 (en) Oxygen sensor
Subbarao Oxygen Sensors for Automotive Applications
JPH052096B2 (en)
Beaudoin et al. CoO Sensors for Measurement and Control of Exhaust from Lean-Burn Engines
JPH0542372Y2 (en)
JPH053900B2 (en)
JPH0115022B2 (en)