JPH05142069A - Distortion detector - Google Patents

Distortion detector

Info

Publication number
JPH05142069A
JPH05142069A JP31045991A JP31045991A JPH05142069A JP H05142069 A JPH05142069 A JP H05142069A JP 31045991 A JP31045991 A JP 31045991A JP 31045991 A JP31045991 A JP 31045991A JP H05142069 A JPH05142069 A JP H05142069A
Authority
JP
Japan
Prior art keywords
magnetic
passive shaft
generated
driven shaft
detecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31045991A
Other languages
Japanese (ja)
Inventor
Hiromasa Ozawa
弘正 小澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP31045991A priority Critical patent/JPH05142069A/en
Publication of JPH05142069A publication Critical patent/JPH05142069A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

PURPOSE:To prevent the influences of the external magnetic field to a detecting coil through a driven shaft by using a non-magnetic, non-conductive material for the driven shaft. CONSTITUTION:When the torque is impressed to a driven shaft 1 from outside, a tensile force is generated at one of magnetic layers 3, 4 made of a material of high magnetic permeability, and a compression force is generated at the other layer, resulting in a distortion of the shaft. As the distortion is generated, the magnetic permeability is changed. The magnetic permeability is changed in opposite directions between when the tensile force is generated and when the compression force is generated. Detecting coils 10, 11 detect the change of the magnetic permeability as the change of the magnetic impedance, and the outputs of the detecting coils 10, 11 are input to a detecting circuit 14. The detecting circuit 14 generates a detecting voltage V corresponding to the amount of the distortion of the driven shaft 1. Since the driven shaft l is formed of a non-magnetic, non conductive material, the external magnetic field never influences the detecting coils 10, 11 through the driven shaft 1. Accordingly, the output is not fluctuated by the external magnetic field.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、歪検出装置に関し、
回転軸などの受動軸に外力が印加された際の歪を検出す
るための歪検出装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a strain detecting device,
The present invention relates to a strain detection device for detecting strain when an external force is applied to a passive shaft such as a rotating shaft.

【0002】[0002]

【従来の技術】例えば、図2は従来の磁歪式トルクセン
サの構成図である。図において、1は回転軸からなる受
動軸、2は受動軸1の中心軸、31,32は受動軸1を
回転自在に指示する軸受けである。受動軸1の外周面上
には軸方向に間隔をあけて高透磁性材からなる第1及び
第2の磁性層3,4が固着されている。第1の磁性層3
は中心軸2に対して+45度方向に、第2の磁性層4は
中心軸2に対して−45度方向にそれぞれ細長く複数条
形成されている。
2. Description of the Related Art For example, FIG. 2 is a block diagram of a conventional magnetostrictive torque sensor. In the figure, 1 is a passive shaft formed of a rotary shaft, 2 is a central shaft of the passive shaft 1, and 31 and 32 are bearings that rotatably instruct the passive shaft 1. First and second magnetic layers 3 and 4 made of a highly magnetically permeable material are fixed on the outer peripheral surface of the passive shaft 1 at intervals in the axial direction. First magnetic layer 3
Are elongated in the +45 degree direction with respect to the central axis 2, and the second magnetic layer 4 is formed with a plurality of elongated strips in the −45 degree direction with respect to the central axis 2.

【0003】また、各磁性層3,4の外周には間隙を隔
てて円筒状のコイルボビン5が受動軸1と同軸状に配設
される。コイルボビン5の外周には第1及び第2の磁性
層3,4に対応して第1及び第2の検出コイル10,1
1が巻装され、各検出コイル10,11は、検出回路1
4に接続されている。33aは第1の検出コイル10の
周囲に巻回あるいは、嵌合された第1の磁気収束層、3
3bは第2の検出コイル11の周囲に巻回あるいは、嵌
合された第2の磁気収束層である。
A cylindrical coil bobbin 5 is arranged coaxially with the passive shaft 1 on the outer circumference of each of the magnetic layers 3 and 4 with a gap therebetween. The outer circumference of the coil bobbin 5 corresponds to the first and second magnetic layers 3 and 4, and the first and second detection coils 10 and 1 are provided.
1 is wound, and each of the detection coils 10 and 11 includes a detection circuit 1
4 is connected. Reference numeral 33a denotes a first magnetic flux concentrating layer which is wound around or fitted around the first detection coil 10.
Reference numeral 3b is a second magnetic flux concentrating layer wound around or fitted around the second detection coil 11.

【0004】この磁気収束層33a,33bは非晶質合
金あるいは珪素鋼板などの透磁率が高い軟磁性材からな
る。35a,35bは磁気収束層33a,33bの外周
に設けられた非磁性高電導率の金属シールド層である。
この金属シールド層35a,35bは磁束の浸透深さが
小さくなる表皮効果を利用し、磁気回路の磁気抵抗、磁
束の漏れが小さくなるよう非磁性高電導率材料が用いら
れている。
The magnetic flux concentrating layers 33a and 33b are made of an amorphous alloy or a soft magnetic material having a high magnetic permeability such as a silicon steel plate. Reference numerals 35a and 35b are non-magnetic, high-conductivity metal shield layers provided on the outer periphery of the magnetic flux concentrating layers 33a and 33b.
The metal shield layers 35a and 35b utilize a skin effect in which the penetration depth of the magnetic flux is reduced, and a nonmagnetic high conductivity material is used so that the magnetic resistance of the magnetic circuit and the leakage of the magnetic flux are reduced.

【0005】上記構成において、受動軸1に外部からの
トルクTが印加されると各磁性層3,4の一方に引張力
が発生すると他方には圧縮力が発生し、歪が生じる。こ
の歪が生じると透磁率が変化し、引張力による場合と圧
縮力による場合では透磁率が逆方向に変化する。検出コ
イル10,11は透磁率の変化を磁気的インピーダンス
の変化として検出し、検出回路14は各検出コイル1
0,11の出力を入力され、受動軸1の歪量に応じた検
出電圧Vを出力するようになっている。
In the above structure, when a torque T is applied to the passive shaft 1 from the outside, a tensile force is generated in one of the magnetic layers 3 and 4, a compressive force is generated in the other, and strain is generated. When this strain occurs, the magnetic permeability changes, and the magnetic permeability changes in the opposite direction depending on the tensile force and the compressive force. The detection coils 10 and 11 detect a change in magnetic permeability as a change in magnetic impedance, and the detection circuit 14 detects each change in the detection coil 1.
The outputs 0 and 11 are input, and the detection voltage V according to the distortion amount of the passive shaft 1 is output.

【0006】[0006]

【発明が解決しようとする課題】従来の歪検出装置は、
以上のように構成されているので、受動軸1が磁性、導
電材料であると、外部磁界、例えば、地磁気、歪検出装
置近くに配設された電動機、クラッチ等の磁気が受動軸
1を通じて検出コイル10,11に導かれ影響を受ける
とともに、受動軸1に電気が流れた場合発生する磁界の
影響を検出コイル10,11が受け、歪検出装置の出力
が加えられたトルクと異なる値を示すという問題があっ
た。
DISCLOSURE OF INVENTION Problems to be Solved by the Invention
With the above configuration, when the passive shaft 1 is a magnetic or conductive material, an external magnetic field, for example, geomagnetism, magnetism of an electric motor, a clutch or the like arranged near the strain detecting device, is detected through the passive shaft 1. The detection coils 10 and 11 are affected by the magnetic field generated when electricity flows through the passive shaft 1 while being guided and influenced by the coils 10 and 11, and the output of the strain detection device shows a value different from the applied torque. There was a problem.

【0007】この発明は、上記のような問題点を解消す
るためになされたものであり、受動軸を通じて外部の磁
界が検出コイルまで導かれないようにするとともに、受
動軸を流れる電流により発生する磁界の影響を受けない
ようにした歪検出装置を得ることを目的とする。
The present invention has been made to solve the above-mentioned problems, and prevents an external magnetic field from being guided to the detection coil through the passive shaft, and is generated by the current flowing through the passive shaft. An object of the present invention is to obtain a strain detection device that is not affected by a magnetic field.

【0008】[0008]

【課題を解決するための手段】この発明に係る歪検出装
置は、外力を受ける受動軸と、この受動軸の外周面上に
固着された高透磁率で所定の磁気定数を持つ軟磁性材料
からなる磁性層と、この磁性層の外周に間隙を隔てて配
設され、前記受動軸に印加された外力によって引き起こ
される前記磁性層の透磁率変化を検出する検出コイルよ
りなる歪検出装置において、前記受動軸に非磁性、非導
電材料を使用したものである。
DISCLOSURE OF THE INVENTION A strain detecting apparatus according to the present invention comprises a passive shaft that receives an external force and a soft magnetic material having a high magnetic permeability and a predetermined magnetic constant fixed to the outer peripheral surface of the passive shaft. A strain detecting device comprising a magnetic layer and a detecting coil which is disposed with a gap on the outer periphery of the magnetic layer and detects a change in magnetic permeability of the magnetic layer caused by an external force applied to the passive shaft, It uses a non-magnetic and non-conductive material for the passive shaft.

【0009】[0009]

【作用】この発明における歪検出装置は、受動軸が非磁
性、非導電材料で構成されているので、検出コイルに外
部磁界が影響することがなく、外部磁界による出力変動
が生じることがない。
In the strain detecting device according to the present invention, since the passive shaft is made of a non-magnetic and non-conductive material, the detection coil is not affected by the external magnetic field and the output fluctuation due to the external magnetic field does not occur.

【0010】[0010]

【実施例】以下、この発明の実施例を図について説明す
る。図1において、1は非磁性、非導電材料からなる受
動軸、2は受動軸1の中心軸、31,32は受動軸1を
回転自在に指示する軸受けである。受動軸1の外周面上
には軸方向に間隔をあけて高透磁性材からなる第1及び
第2の磁性層3,4が固着される。第1の磁性層3は中
心軸2に対して+45度方向に、第2の磁性層4は中心
軸2に対して−45度方向にそれぞれ細長く複数条形成
されている。
Embodiments of the present invention will be described below with reference to the drawings. In FIG. 1, 1 is a passive shaft made of a non-magnetic and non-conductive material, 2 is a central shaft of the passive shaft 1, and 31 and 32 are bearings that rotatably support the passive shaft 1. First and second magnetic layers 3 and 4 made of a highly magnetically permeable material are fixed on the outer peripheral surface of the passive shaft 1 at intervals in the axial direction. The first magnetic layer 3 is formed in a plurality of elongated lines in the +45 degree direction with respect to the central axis 2, and the second magnetic layer 4 is elongated in a −45 degree direction with respect to the central axis 2.

【0011】また、各磁性層3,4の外周には円筒状の
コイルボビン5が受動軸1と同軸状に配設される。コイ
ルボビン5の外周には第1及び第2の磁性層3,4に対
応して第1及び第2の検出コイル10,11が巻装さ
れ、各検出コイルは、検出回路14に接続されている。
33aは第1の検出コイル10の周囲に巻回あるいは、
嵌合された第1の磁気収束層、33bは第2の検出コイ
ル11の周囲に巻回あるいは、嵌合された第2の磁気収
束層である。磁気収束層33a,33bは非晶質合金あ
るいは珪素鋼板などの透磁率が高い軟磁性材からなる。
A cylindrical coil bobbin 5 is arranged coaxially with the passive shaft 1 on the outer circumference of each magnetic layer 3, 4. First and second detection coils 10 and 11 are wound around the outer circumference of the coil bobbin 5 corresponding to the first and second magnetic layers 3 and 4, and each detection coil is connected to a detection circuit 14. .
33a is wound around the first detection coil 10 or
The fitted first magnetic flux concentrating layer, 33b is the second magnetic flux concentrating layer wound around or fitted around the second detection coil 11. The magnetic flux concentrating layers 33a and 33b are made of an amorphous alloy or a soft magnetic material having a high magnetic permeability such as a silicon steel plate.

【0012】35a,35bは磁気収束層33a,33
bの外周に設けられた非磁性高電導率の金属シールド層
である。金属シールド層35a,35bは磁束の浸透深
さが小さくなる表皮効果を利用し、磁気回路の磁気抵
抗、磁束の漏れが小さくなるよう非磁性高電導率材料が
用いられている。37a,37bは受動軸1の両端部に
各々結合した軸材である。
35a and 35b are magnetic flux concentrating layers 33a and 33.
It is a non-magnetic high-conductivity metal shield layer provided on the outer periphery of b. The metal shield layers 35a and 35b utilize a skin effect in which the penetration depth of the magnetic flux is reduced, and a non-magnetic high conductivity material is used so that the magnetic resistance of the magnetic circuit and the leakage of the magnetic flux are reduced. Reference numerals 37a and 37b are shaft members respectively coupled to both ends of the passive shaft 1.

【0013】上記構成において、受動軸1に外部からの
トルクが印加されると各磁性層3,4の一方に引張力が
発生すると他方には圧縮力が発生し歪が生じる。この歪
が生じると透磁率が変化し、引張力による場合と圧縮力
による場合では透磁率が逆方向に変化する。検出コイル
10,11は透磁率の変化を磁気的インピーダンスの変
化として検出し、検出回路14は各検出コイル10,1
1の出力を入力され、受動軸1の歪量に応じた検出電圧
Vを出力するようになっていることは前述した従来例の
場合と同様である。
In the above structure, when a torque is applied to the passive shaft 1 from the outside, a tensile force is generated in one of the magnetic layers 3 and 4, and a compressive force is generated in the other magnetic layer to cause strain. When this strain occurs, the magnetic permeability changes, and the magnetic permeability changes in the opposite direction depending on the tensile force and the compressive force. The detection coils 10 and 11 detect a change in magnetic permeability as a change in magnetic impedance, and the detection circuit 14 detects each of the detection coils 10 and 1.
The output of No. 1 is input, and the detection voltage V according to the amount of distortion of the passive shaft 1 is output, as in the case of the above-described conventional example.

【0014】実施例の構成は受動軸1全体を非磁性、非
導電材料にて構成してあるが、磁性層3,4の固着部の
み上記材料にて構成し、受動軸1を軸材37a,37b
と結合すれば、磁性層3,4の固着部以外の軸材37
a,37bの材料特性は問題はない構造とすることがで
きる。
In the construction of the embodiment, the entire passive shaft 1 is made of a non-magnetic and non-conductive material, but only the fixed portions of the magnetic layers 3 and 4 are made of the above material, and the passive shaft 1 is made of the shaft material 37a. , 37b
Shaft member 37 other than the fixed portions of the magnetic layers 3 and 4
The material characteristics of a and 37b can be made into a structure with no problem.

【0015】[0015]

【発明の効果】以上のようにこの発明によれば、歪検出
装置は受動軸が非磁性、非導電材料で構成されているの
で、外部磁界が検出コイルへ与える影響が少なく、歪検
出装置の出力が磁気による影響を受けにくくすることが
できるという効果がある。
As described above, according to the present invention, since the passive axis of the strain sensing device is made of a non-magnetic and non-conductive material, the influence of the external magnetic field on the sensing coil is small and the strain sensing device There is an effect that the output can be made less susceptible to the influence of magnetism.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例による歪検出装置の断面図
である。
FIG. 1 is a sectional view of a strain detecting device according to an embodiment of the present invention.

【図2】従来の歪検出装置の断面図である。FIG. 2 is a sectional view of a conventional strain detection device.

【符号の説明】[Explanation of symbols]

1 受動軸 3,4 磁性層 5 ボビン 10,11 検出コイル 31,32 軸受け 33,33a,33b 磁気収束層 35,35a,35b シールド DESCRIPTION OF SYMBOLS 1 Passive shaft 3,4 Magnetic layer 5 Bobbin 10,11 Detection coil 31,32 Bearing 33,33a, 33b Magnetic focusing layer 35,35a, 35b Shield

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 外力を受ける受動軸と、この受動軸の外
周面上に固着された高透磁率で所定の磁気定数を持つ軟
磁性材料からなる磁性層と、この磁性層の外周に間隙を
隔てて配設され、前記受動軸に印加された外力によって
引き起こされる前記磁性層の透磁率変化を検出する検出
コイルよりなる歪検出装置において、前記受動軸に非磁
性、非導電材料を使用したことを特徴とする歪検出装
置。
1. A passive shaft which receives an external force, a magnetic layer fixed on the outer peripheral surface of the passive shaft and made of a soft magnetic material having a high magnetic permeability and a predetermined magnetic constant, and a gap formed on the outer periphery of the magnetic layer. In a strain detecting device comprising a detection coil arranged at a distance and detecting a change in magnetic permeability of the magnetic layer caused by an external force applied to the passive shaft, a non-magnetic, non-conductive material is used for the passive shaft. Distortion detection device characterized by.
JP31045991A 1991-11-26 1991-11-26 Distortion detector Pending JPH05142069A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31045991A JPH05142069A (en) 1991-11-26 1991-11-26 Distortion detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31045991A JPH05142069A (en) 1991-11-26 1991-11-26 Distortion detector

Publications (1)

Publication Number Publication Date
JPH05142069A true JPH05142069A (en) 1993-06-08

Family

ID=18005510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31045991A Pending JPH05142069A (en) 1991-11-26 1991-11-26 Distortion detector

Country Status (1)

Country Link
JP (1) JPH05142069A (en)

Similar Documents

Publication Publication Date Title
KR920006499B1 (en) Torque sensor
JP4357841B2 (en) Magnetoelastic torque sensor
JP2914526B2 (en) Circular magnetic non-contact torque detector and method for measuring torque using the same
EP0525551B1 (en) Circularly magnetized non-contact torque sensor,method, and transducer ring
JP2536566Y2 (en) Rotation sensor
US5757183A (en) Device to shield a magnetic field in a given plane
US5165286A (en) Strain detector
JPS62249026A (en) Torque measuring instrument
JP3549539B2 (en) Magneto-elastic non-contact torque transducer
JPH08136558A (en) Rotational speed detector
JPS6228413B2 (en)
EP0146382B1 (en) Torque sensor of noncontact type
US5062307A (en) Strain detector
JPH05142069A (en) Distortion detector
JP2005321272A (en) Magnetostrictive torque sensor
JPS5946526A (en) Electromagnetic stress sensor
JPH01318901A (en) Magnetic induction type sensor
JP2566640B2 (en) Torque measuring device
JP2560781B2 (en) Strain detector
JPH0552679A (en) Strain detector
JP2000266619A (en) Torque sensor and device for detecting torque of steering shaft
JPH03269330A (en) Torque sensor
JPH03277962A (en) Magnetic flaw detecting apparatus
JPH02154130A (en) Strain detector
JPH0454322A (en) Magnetic particle type electormagnetic connection device