JPH05141883A - Fluidized layer heat exchanger - Google Patents

Fluidized layer heat exchanger

Info

Publication number
JPH05141883A
JPH05141883A JP30757591A JP30757591A JPH05141883A JP H05141883 A JPH05141883 A JP H05141883A JP 30757591 A JP30757591 A JP 30757591A JP 30757591 A JP30757591 A JP 30757591A JP H05141883 A JPH05141883 A JP H05141883A
Authority
JP
Japan
Prior art keywords
heat exchanger
solid particles
passing
stream
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30757591A
Other languages
Japanese (ja)
Inventor
Hiroshi Kobayashi
博 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP30757591A priority Critical patent/JPH05141883A/en
Publication of JPH05141883A publication Critical patent/JPH05141883A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To prevent the solidification of a fluidized layer due to moisture and to make a heat transfer ratio of a heat exchanger uniform. CONSTITUTION:Heating means 7 having a shape for passing a stream from below, in which a speed of the passing stream becomes uniform irrespective of a place for passing the stream and for heating the passing stream is provided under a net filter 3. The heater 7 is, for example, a honeycomblike ceramic heater. Moisture between solid particles is evaporated by the air heated by the heater 7 to prevent solidification of a fluidized layer 4, and hence its heat transfer ratio is improved. Since the speed of the stream is the same at any place, the ratio is made uniform, and its heat exchanging ratio is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、流動層熱交換器に関
する。
FIELD OF THE INVENTION This invention relates to a fluidized bed heat exchanger.

【0002】[0002]

【従来の技術】従来、流動層熱交換器としては、図3に
示すようなものがある。この流動層熱交換器は、ケーシ
ング1内に固定した熱交換器2の下方にネットフィルタ
3を固定し、そのネットフィルタ3の上に固体粒子の層
4を設け、送風機5により上記ネットフィルタ3の下方
から上方へ空気を送りこんで、上記固体粒子の層4を流
動化させ、流動化した固体粒子6を熱交換器2の伝熱面
に衝突させて、その衝突エネルギで熱交換器2の温度境
界層を破壊して、熱交換器2の熱伝導率の向上を図って
いる。また、この熱交換器2を気流と低温媒体との熱交
換に用いる場合には、伝熱面表面温度が気体の露点温度
より低い時に、気流中の水分が伝熱面表面(パイプ2a
やフィン2bの表面)に凝縮して水滴として付着し、熱
伝導率が低下するが、上記流動化した固体粒子6により
上記水滴を伝熱面表面から吹き飛ばすため、熱伝導率の
低下が防止できる。
2. Description of the Related Art Conventionally, there is a fluidized bed heat exchanger as shown in FIG. In this fluidized bed heat exchanger, a net filter 3 is fixed below a heat exchanger 2 fixed in a casing 1, a layer 4 of solid particles is provided on the net filter 3, and the net filter 3 is blown by a blower 5. Of air from above to fluidize the bed 4 of solid particles, and the fluidized solid particles 6 collide with the heat transfer surface of the heat exchanger 2, and the collision energy of the heat exchanger 2 The thermal boundary layer is destroyed to improve the thermal conductivity of the heat exchanger 2. When the heat exchanger 2 is used for heat exchange between the airflow and the low-temperature medium, when the surface temperature of the heat transfer surface is lower than the dew point temperature of the gas, the water content in the airflow is the surface of the heat transfer surface (the pipe 2a).
And the surface of the fin 2b) to be condensed and attached as water droplets to lower the thermal conductivity, but the fluidized solid particles 6 blow off the water droplets from the surface of the heat transfer surface, so that the thermal conductivity can be prevented from lowering. ..

【0003】[0003]

【発明が解決しようとする課題】ところで、上記従来の
流動層熱交換器では、気流中の水分や上記吹き飛ばされ
て落下した水分が固体粒子に付着して、固体粒子同士が
密着し、固体粒子の層4が一体の固まりになり、通風抵
抗を増大させ、ひいては固体粒子が流動せず、熱伝導率
の向上が図れないという問題があった。また、ネットフ
ィルタ3を通過する空気の流速がその通過する場所で異
なる(図3の例では送風機5から遠い所ほど流速が速
く、近い所ほど流速が低い)ため、熱伝導率が均一にな
らず熱交換率が悪くなるという問題があった。そこで、
この発明の目的は、固体粒子に水分が付着して固体粒子
同士が密着するのを防止することにより熱伝導率を改善
すると共に、ネットフィルタ3を通過する空気の流速を
通過する場所にかかわらず均一にするようにした流動層
熱交換器を提供することにある。
By the way, in the conventional fluidized bed heat exchanger, the water in the air stream or the water blown off and dropped adheres to the solid particles, and the solid particles adhere to each other to form solid particles. There is a problem that the layer 4 of No. 1 becomes an integral mass, increases ventilation resistance, and eventually solid particles do not flow, and thermal conductivity cannot be improved. In addition, since the flow velocity of the air passing through the net filter 3 is different at the place where it passes (in the example of FIG. 3, the flow velocity is faster at a position farther from the blower 5 and lower at a position closer to the blower 5), so that the thermal conductivity is uniform There was a problem that the heat exchange rate deteriorated. Therefore,
The object of the present invention is to improve the thermal conductivity by preventing solid particles from adhering moisture to each other so as to prevent the solid particles from adhering to each other, and at the same time, regardless of where the flow velocity of the air passing through the net filter 3 is passed. It is to provide a fluidized bed heat exchanger that is made uniform.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するた
め、この発明は、下方から上方に向かう気流の通路に熱
交換器を設けると共に、上記熱交換器の下方に、固体粒
子の層を載せた有孔板状部材を設け、上記気流により上
記固体粒子の層を流動化して上記固体粒子を上記熱交換
器の伝熱面に衝突させて上記熱交換器の温度境界層を破
壊するようにした流動層熱交換器において、上記有孔板
状部材の下方に、上記気流を通過させると共に通過する
気流の速度が通過する場所にかかわらず均一になる形状
を有し、かつ、通過する気流を加熱する加熱手段を設け
たことを特徴としている。また、上記加熱手段はハニカ
ム状のセラミックヒータとすることができる。
In order to achieve the above-mentioned object, the present invention provides a heat exchanger in the passage of the air flow from the lower side to the upper side, and places a layer of solid particles under the heat exchanger. A perforated plate-like member is provided, and the layer of solid particles is fluidized by the air flow so that the solid particles collide with the heat transfer surface of the heat exchanger to destroy the temperature boundary layer of the heat exchanger. In the fluidized bed heat exchanger described above, below the perforated plate-like member, the airflow is made to have a uniform shape regardless of where the airflow passes and where the airflow passes, and It is characterized in that a heating means for heating is provided. The heating means may be a honeycomb ceramic heater.

【0005】[0005]

【作用】上記構成において、下方から上方に向かう気流
は加熱手段を通過し、その加熱手段によって、その通過
する場所にかかわらず流速が均一化され、かつ、加熱さ
れたのち、固体粒子の層に送られ、固体粒子間の水分が
その加熱された気流で暖められて蒸発し、固体粒子間の
水分による結合がなくなり、固体粒子は乾燥した単体と
なって容易に流動化する。そして、この流動化した固体
粒子が熱交換器の伝熱面に衝突して温度境界層を破壊す
る。このように、固体粒子同士が水分により密着して固
まるのを防止でき、しかも気流の速度を場所にかかわら
ず均一になるので、熱伝導率の向上、均一化が図られ、
熱交換率が向上する。上記加熱手段をハニカム状のセラ
ミックヒータとすることにより一体製造が可能となり、
例えば、ニクロム線等で構成する場合に比べて、設計製
造が容易となる。
In the above structure, the air current flowing from the lower part to the upper part passes through the heating means, and the heating means makes the flow velocity uniform regardless of the place where it passes and is heated to form a layer of solid particles. The water between the solid particles is sent and heated by the heated air flow to evaporate, the bond due to the water between the solid particles disappears, and the solid particles are easily fluidized as a dry simple substance. Then, the fluidized solid particles collide with the heat transfer surface of the heat exchanger to destroy the temperature boundary layer. In this way, it is possible to prevent solid particles from sticking to each other due to moisture and solidifying, and moreover, since the speed of the air flow is uniform regardless of the location, the thermal conductivity is improved and uniformed,
The heat exchange rate is improved. By using a honeycomb-shaped ceramic heater as the heating means, it is possible to integrally manufacture the heater.
For example, the design and manufacturing becomes easier as compared with the case of using a nichrome wire or the like.

【0006】[0006]

【実施例】以下、この発明を図示の実施例により詳細に
説明する。図1はこの発明の一実施例の断面図である。
この流動層熱交換器は図3に示す従来例に、図2に示す
ようなハニカム状のセラミックヒータ(以下、単に、ヒ
ータという)7を追加したものである。このヒータ7
は、有孔板状部材であるネットフィルタ3の下のケーシ
ング1に固定されている。そして、その間を通過する風
の速度がその通過する場所にかかわらず均一になる(整
流される)ように、その穴の形状や大きさが決められて
いる。また、材料がセラミックであるので一体に形成で
き、設計製造が容易である。また、ネットフィルタ3は
格子状になっていてその穴の大きさは固体粒子の大きさ
よりも小さく、下方から送られてきた風を通過させると
共に固体粒子の落下を防止している。
The present invention will be described in detail below with reference to the embodiments shown in the drawings. FIG. 1 is a sectional view of an embodiment of the present invention.
This fluidized bed heat exchanger is obtained by adding a honeycomb-shaped ceramic heater (hereinafter, simply referred to as a heater) 7 as shown in FIG. 2 to the conventional example shown in FIG. This heater 7
Is fixed to the casing 1 below the net filter 3 which is a perforated plate member. The shape and size of the hole are determined so that the velocity of the wind passing therethrough is uniform (rectified) regardless of the place where the wind passes. Further, since the material is ceramic, it can be integrally formed, and the design and manufacture are easy. Further, the net filter 3 has a lattice shape, and the size of the holes is smaller than the size of the solid particles, so that the air sent from below is passed and the solid particles are prevented from falling.

【0007】送風機5から送られてきた風は矢印のごと
くケーシング1内に入り、ヒータ7を通って整流された
後、ネットフィルタ3を通過し、固体粒子の層4に当た
って、固体粒子の層4を流動化させ(この流動化した固
体粒子の層を流動層という)、固体粒子を浮き上がらせ
る。この風圧により浮き上がった固体粒子6は、熱交換
器2のパイプ2aおよびフィン2bの間を通過し、この
通過時にパイプ2aおよびフィン2bの表面に衝突し、
その衝突エネルギで温度境界層を破壊し、熱伝導率を著
しく向上させる。更に、風速を場所にかかわらず均一化
したことにより熱交換器2の熱伝導率が全体にわたって
平均化され、熱交換率が向上する。また、従来例のとこ
ろで述べたように、熱交換器2を気流と低温媒体との熱
交換に用いる場合には、上記浮き上がった固体粒子6に
よりパイプ2aやフィン2bの表面に付着した水滴を伝
熱面表面から吹き飛ばすため、水滴の付着による熱伝導
率の低下を防止できる。また、気流中の水分や上記固体
粒子6で吹き飛ばされて落下した水分が固体粒子に付着
し、固体粒子同士が密着して、流動層4が固形化し、圧
力損失を増大させる場合は、上記ヒータ7に通電すると
よい。そうすることにより、送風機5からの風がヒータ
7で加熱されて温風となり、ネットフィルタ3を通って
固体粒子の層4に当たり、固体粒子間の水分を蒸発さ
せ、固体粒子の結合を分離させ、層4を流動化させるの
で、流動層4の固形化による熱伝導率の低下を防止でき
る。また、上記ヒータ7を常時通電状態にしておくこと
により、常時流動層4を温め、固形化するのを防止でき
る。
The wind sent from the blower 5 enters the casing 1 as shown by the arrow, is rectified through the heater 7, passes through the net filter 3, and hits the solid particle layer 4 to reach the solid particle layer 4 Is fluidized (the layer of fluidized solid particles is referred to as a fluidized bed) to raise the solid particles. The solid particles 6 floated by this wind pressure pass between the pipes 2a and the fins 2b of the heat exchanger 2, and collide with the surfaces of the pipes 2a and the fins 2b during this passage,
The collision energy destroys the temperature boundary layer and significantly improves the thermal conductivity. Further, by uniformizing the wind speed regardless of the location, the thermal conductivity of the heat exchanger 2 is averaged over the whole, and the heat exchange rate is improved. Further, as described in the conventional example, when the heat exchanger 2 is used for heat exchange between the air flow and the low temperature medium, the water droplets adhering to the surfaces of the pipes 2a and the fins 2b are transferred by the floating solid particles 6. Since it is blown off from the surface of the hot surface, it is possible to prevent a decrease in thermal conductivity due to the attachment of water droplets. Further, when the water in the air flow or the water blown off by the solid particles 6 and dropped adheres to the solid particles and the solid particles adhere to each other to solidify the fluidized bed 4 and increase the pressure loss, the heater is used. It is good to energize 7. By doing so, the wind from the blower 5 is heated by the heater 7 to become warm air, passes through the net filter 3 and hits the layer 4 of solid particles to evaporate the moisture between the solid particles and separate the bonds of the solid particles. Since the layer 4 is fluidized, it is possible to prevent a decrease in thermal conductivity due to solidification of the fluidized layer 4. In addition, by keeping the heater 7 always energized, it is possible to prevent the fluidized bed 4 from always warming and solidifying.

【0008】[0008]

【発明の効果】以上より明らかなように、この発明の流
動層熱交換器は、熱交換器の下方に設けられ、固体粒子
の層を載せた有孔板状部材の下方に、下方からの気流を
通過させると共に通過する気流の速度が通過する場所に
かかわらず均一になる形状を有し、かつ、通過する気流
を加熱する加熱手段を設けたので、上記加熱手段を通過
する気流の速度をその通過する場所にかかわらず均一化
すると共に、上記加熱手段で加熱した気流で上記固体粒
子間の水分を蒸発させ、上記固体粒子同士が水分により
密着して固まるのを防止できるので、熱伝導率および熱
交換率を著しく向上させることができる。また、上記加
熱手段はハニカム状のセラミックヒータとすることによ
り一体製造が可能となり、例えば、ニクロム線等で構成
する場合に比べて、設計製造が容易となる。
As is apparent from the above, the fluidized bed heat exchanger according to the present invention is provided below the heat exchanger and below the perforated plate-like member on which the layer of solid particles is placed. The airflow has a shape in which the velocity of the airflow is uniform regardless of where it passes, and since the heating means for heating the airflow is provided, the velocity of the airflow passing through the heating means is The heat conductivity can be uniform regardless of where it passes, and the moisture between the solid particles can be evaporated by the air flow heated by the heating means to prevent the solid particles from adhering to each other and solidifying due to the moisture. And the heat exchange rate can be significantly improved. Further, the above heating means can be integrally manufactured by using a honeycomb-shaped ceramic heater, which facilitates design and manufacturing as compared with a case where the heating means is constituted by, for example, a nichrome wire.

【図面の簡単な説明】[Brief description of drawings]

【図1】 この発明の一実施例の断面図である。FIG. 1 is a sectional view of an embodiment of the present invention.

【図2】 上記実施例におけるハニカム状のセラミック
ヒータの部分斜視図である。
FIG. 2 is a partial perspective view of a honeycomb-shaped ceramic heater in the above embodiment.

【図3】 従来例の断面図である。FIG. 3 is a sectional view of a conventional example.

【符号の説明】[Explanation of symbols]

1…ケーシング、2…熱交換器、3…ネットフィルタ、
4…固体粒子の層(流動層)、5…送風機、6…吹きあげ
られた固体粒子、7…ハニカム状のセラミックヒータ。
1 ... Casing, 2 ... Heat exchanger, 3 ... Net filter,
4 ... Layer of solid particles (fluidized bed), 5 ... Blower, 6 ... Blown solid particles, 7 ... Honeycomb-shaped ceramic heater.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 下方から上方に向かう気流の通路に熱交
換器を設けると共に、上記熱交換器の下方に、固体粒子
の層を載せた有孔板状部材を設け、上記気流により上記
固体粒子の層を流動化して上記固体粒子を上記熱交換器
の伝熱面に衝突させて上記熱交換器の温度境界層を破壊
するようにした流動層熱交換器において、 上記有孔板状部材の下方に、上記気流を通過させると共
に通過する気流の速度が通過する場所にかかわらず均一
になる形状を有し、かつ、通過する気流を加熱する加熱
手段を設けたことを特徴とする流動層熱交換器。
1. A heat exchanger is provided in a passage of an air flow from a lower side to an upper side, and a perforated plate-like member on which a layer of solid particles is placed is provided below the heat exchanger, and the solid particles are provided by the air flow. In a fluidized bed heat exchanger in which the solid particles are fluidized to collide the solid particles with the heat transfer surface of the heat exchanger to destroy the temperature boundary layer of the heat exchanger, A fluidized bed heat characterized by having a heating means for heating the passing airflow, which has a shape that allows the airflow to pass therethrough and has a uniform velocity regardless of where the passing airflow passes. Exchanger.
【請求項2】 上記加熱手段はハニカム状のセラミック
ヒータである請求項1に記載の流動層熱交換器。
2. The fluidized bed heat exchanger according to claim 1, wherein the heating means is a honeycomb ceramic heater.
JP30757591A 1991-11-22 1991-11-22 Fluidized layer heat exchanger Pending JPH05141883A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30757591A JPH05141883A (en) 1991-11-22 1991-11-22 Fluidized layer heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30757591A JPH05141883A (en) 1991-11-22 1991-11-22 Fluidized layer heat exchanger

Publications (1)

Publication Number Publication Date
JPH05141883A true JPH05141883A (en) 1993-06-08

Family

ID=17970732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30757591A Pending JPH05141883A (en) 1991-11-22 1991-11-22 Fluidized layer heat exchanger

Country Status (1)

Country Link
JP (1) JPH05141883A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009510344A (en) * 2005-09-29 2009-03-12 エアバス・ドイチュラント・ゲーエムベーハー Low noise throttling with volumetric flow in fluid transport pipes

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009510344A (en) * 2005-09-29 2009-03-12 エアバス・ドイチュラント・ゲーエムベーハー Low noise throttling with volumetric flow in fluid transport pipes

Similar Documents

Publication Publication Date Title
JP4351075B2 (en) Dew point cooler
US3731461A (en) Drift eliminators for atmospheric cooling tower
JP2002502135A5 (en)
MY115020A (en) Heat exchanger having corrugated fins and air conditioner having the same
CA2148212A1 (en) Heat controlled humidifier
JPH05141883A (en) Fluidized layer heat exchanger
KR101887779B1 (en) Ventilation module of ventilation seat
JP2747835B2 (en) Filler
JPH0554441B2 (en)
JP3791286B2 (en) Ventilator with heat exchanger
JP2511354Y2 (en) White smoke prevention cooling tower
JPH0221505B2 (en)
JP3591090B2 (en) Heat exchanger
JPS5943718B2 (en) Air conditioning equipment
JPH08156578A (en) Dewing prevention structure for vehicular air conditioner
JPH06117789A (en) Heat exchanger
Hesselgreaves Effect of system parameters on the fouling performance of heat exchangers.
JPS59104089A (en) Heat exchanger
Beziel et al. Heat transfer and pressure drop in single rows of tubes in cross‐flow
JPH0221520B2 (en)
JPS6232092Y2 (en)
JPH0534598B2 (en)
JPS60263064A (en) Evaporator
JPH01147253A (en) Hot air heating device
JPH02251094A (en) Heat exchanger