JPH05141839A - Controller of rapid cooling of cold storage box - Google Patents

Controller of rapid cooling of cold storage box

Info

Publication number
JPH05141839A
JPH05141839A JP31094191A JP31094191A JPH05141839A JP H05141839 A JPH05141839 A JP H05141839A JP 31094191 A JP31094191 A JP 31094191A JP 31094191 A JP31094191 A JP 31094191A JP H05141839 A JPH05141839 A JP H05141839A
Authority
JP
Japan
Prior art keywords
temperature
load
rapid cooling
temperature sensor
quick
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31094191A
Other languages
Japanese (ja)
Inventor
Toshimichi Hirata
俊通 平田
Masashi Toyoshima
昌志 豊嶋
Motoharu Kobayashi
素晴 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP31094191A priority Critical patent/JPH05141839A/en
Publication of JPH05141839A publication Critical patent/JPH05141839A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2400/00General features of, or devices for refrigerators, cold rooms, ice-boxes, or for cooling or freezing apparatus not covered by any other subclass
    • F25D2400/28Quick cooling

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

PURPOSE:To provide a controller of rapid cooling which judges automatically an applied load and determines automatically rapid cooling time for carrying out rapid cooling according to the largeness of the applied load. CONSTITUTION:A rapid refrigeration controller 60 is provided which judges load application based on detected temperature of a load temperature sensor 54 that detects the temperature at the bottom of a rapid refrigeration chamber and judges the largeness of the load based on both detected temperatures by a rapid-cooled room temperature sensor 53 for detecting the temperature of rapid refrigeration chamber and load temperature and automatically determines rapid cooling time and starts rapid cooling.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、急速冷凍室に食品を投
入したときに、自動的に食品の熱容量(即ち投入負荷の
大きさ)を検出し、検出した負荷の大きさに合わせた急
速冷却時間を決定する冷蔵庫の急速冷却制御装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention automatically detects the heat capacity of food (that is, the size of the input load) when the food is put into the quick freezing chamber, and quickly detects the load according to the detected load. The present invention relates to a quick cooling control device for a refrigerator that determines a cooling time.

【0002】[0002]

【従来の技術】本発明に先行する実公平3−3462
9号公報には、急速凍結室の床面を形成する棚板に温度
調節器の感温部を固定し、床面が設定温度以下になるま
で圧縮機モータ及びファンモータを連続運転するように
した急速冷凍室付冷蔵庫が開示されている。この公報で
は、急速冷凍運転の開始を押釦操作の有無により決めて
いた。
2. Description of the Related Art Japanese Utility Model Publication No.
No. 9 discloses that a temperature-sensing part of a temperature controller is fixed to a shelf plate forming a floor surface of a quick freezing chamber, and a compressor motor and a fan motor are continuously operated until the floor surface falls below a set temperature. A refrigerator with a quick freezer is disclosed. In this publication, the start of the quick freezing operation is determined by whether or not the push button is operated.

【0003】また、本発明に先行する特公平3−51
988号公報には、急速冷凍運転用スイッチの操作に基
づいて、補助冷却器に冷媒を供給するとともに、主冷却
器によって冷却された冷気の一部を仕様切換室に供給す
ることにより、仕様切換室の急速冷却を行なう冷蔵庫が
開示されていた。この公報では、急速冷却運転は一定時
間行なわれるものであった。
Japanese Patent Publication No. 3-51 prior to the present invention.
Japanese Patent No. 988 discloses specification switching by supplying a refrigerant to an auxiliary cooling device and supplying a part of cold air cooled by a main cooling device to a specification switching chamber based on operation of a quick freezing operation switch. A refrigerator for rapid cooling of a room has been disclosed. In this publication, the rapid cooling operation is performed for a fixed time.

【0004】[0004]

【発明が解決しようとする課題】上記及びの両公報
にあっては、急速冷却用スイッチの操作に基づいて急速
冷却が開始されるものであり、投入された負荷の大きさ
に応じて急速冷却の設定時間を変更するものではなく、
どんな負荷に対してもそれぞれ同じ冷却方式をとるもの
であった。また、負荷の投入に伴ない自動的に急速冷却
が開始される機能は有しておらず、使い勝手の面で多少
煩わしさがある。さらに急速冷却中における他室の温度
上昇を抑制するための工夫がなされておらず、他室の温
度上昇が激しい場合には、貯蔵食品の品質を損なう危惧
があった。
In the above and both publications, the rapid cooling is started based on the operation of the rapid cooling switch, and the rapid cooling is performed according to the size of the applied load. It does not change the set time of
The same cooling method was used for any load. Further, it does not have a function of automatically starting the rapid cooling when a load is applied, which is a little troublesome in terms of usability. Furthermore, no measures have been taken to suppress the temperature rise in the other room during rapid cooling, and if the temperature rise in the other room is severe, there is a danger of impairing the quality of the stored food.

【0005】そこで本発明では、負荷投入に伴ない自動
的に急速冷却を行なうとともに、投入負荷の大きさ(詳
しくは熱容量)に応じて急速冷却時間を決定するように
した使い勝手のよい冷蔵庫の急速冷却制御装置を提供す
ることを目的とする。
Therefore, in the present invention, rapid cooling of a refrigerator which is easy to use is performed by automatically performing rapid cooling according to the load application and determining the rapid cooling time according to the size of the input load (specifically, heat capacity). An object is to provide a cooling control device.

【0006】[0006]

【課題を解決するための手段】本発明は、冷凍室の中に
独立して形成される急速冷凍室と、冷却器で冷却された
冷気を庫内に循環させる送風機と、圧縮機と、この圧縮
機及び送風機の動作を制御する制御装置とを備えた冷蔵
庫において、前記制御装置は、急速冷凍室の温度を検出
する急冷室温度センサと、急速冷凍室の底部の温度を検
出する負荷温度センサと、負荷温度センサの検出温度に
基づいて負荷の投入を判断しこれら両温度センサの検出
温度に基づいて負荷の熱容量を判断しその熱容量に対応
して前記圧縮機及び送風機を連続運転させる時間を決定
する急速冷凍制御手段とを備えた冷蔵庫の急速冷却制御
装置を提供するものである。
DISCLOSURE OF THE INVENTION The present invention comprises a quick freezing chamber independently formed in a freezing chamber, a blower for circulating cold air cooled by a cooler in the chamber, a compressor, and In a refrigerator equipped with a control device for controlling the operations of a compressor and a blower, the control device comprises a quenching chamber temperature sensor for detecting the temperature of the quick freezing chamber and a load temperature sensor for detecting the temperature of the bottom of the quick freezing chamber. The load temperature is determined based on the temperature detected by the load temperature sensor, the heat capacity of the load is determined based on the temperature detected by both temperature sensors, and the time for continuously operating the compressor and the blower is determined according to the heat capacity. A quick cooling control device for a refrigerator provided with a quick freezing control means for determining.

【0007】[0007]

【作用】急速冷凍制御手段が負荷温度センサの検出温度
の変化する勾配により負荷の投入を判断し、投入後の温
度上昇値と温度下降速度及び急冷室温度センサの検出温
度とにより負荷の大きさ(=熱容量)を判断し、この大
きさに基づいて急冷時間を決定する。
The quick-freezing control means determines the load application based on the gradient of the temperature detected by the load temperature sensor, and the magnitude of the load is determined by the temperature rise value, the temperature decrease rate, and the temperature detected by the quenching chamber temperature sensor after the application. (= Heat capacity) is determined, and the quenching time is determined based on this value.

【0008】[0008]

【実施例】以下図面に基づいて本発明の実施例を説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

【0009】1は家庭用冷蔵庫であり、この冷蔵庫1は
その本体を構成する前面開口の断熱箱2と、この開口を
閉塞する扉3,4,5,6,7,8とで構成されてい
る。
Reference numeral 1 denotes a household refrigerator, which is composed of a heat insulating box 2 having a front opening which constitutes the main body thereof, and doors 3, 4, 5, 6, 7, 8 which close the opening. There is.

【0010】11は断熱箱2の内部を上下に仕切る横仕
切壁であり、本実施例ではこの横仕切壁11の上方を凍
結温度に冷却される冷凍室12、下方を食品が凍結しな
い温度に冷却される貯蔵室とするものである。尚、貯蔵
室は仕切前部材13及び仕切板14により更に上下に仕
切られ、仕切板14の上方を3℃程度の温度に冷却され
る冷蔵室15、下方を−1℃〜7℃程度の温度帯で温度
設定可能な選択室16としている。
Reference numeral 11 denotes a horizontal partition wall which divides the inside of the heat insulating box 2 into upper and lower parts. In this embodiment, the upper part of the horizontal partition wall 11 is a freezing chamber 12 which is cooled to a freezing temperature, and the lower part is a temperature at which food is not frozen. The storage room is to be cooled. The storage chamber is further divided into upper and lower parts by a pre-partitioning member 13 and a partition plate 14, a refrigerating chamber 15 is cooled above the partition plate 14 to a temperature of about 3 ° C., and a lower part thereof is at a temperature of about -1 ° C. to 7 ° C. The selection chamber 16 in which the temperature can be set in the band is used.

【0011】扉3及び4は、冷凍室12に対応する回動
式の扉であり、扉4には冷凍室の開口を左右に仕切る仕
切体17を設けている。扉5及び6は冷蔵室15に対応
する回動式の扉であり、扉6には冷蔵室の開口を左右に
仕切る仕切体18を設けている。
The doors 3 and 4 are rotatable doors corresponding to the freezing compartment 12, and the door 4 is provided with a partition body 17 for partitioning the opening of the freezing compartment into left and right. The doors 5 and 6 are pivotable doors corresponding to the refrigerating compartment 15, and the door 6 is provided with a partition 18 for partitioning the opening of the refrigerating compartment into left and right.

【0012】扉7及び8は、選択室16において、縦仕
切壁30によって左右に仕切られるボトル室及び野菜室
に対応する引き出し式扉であり、両扉にはそれぞれ主と
してボトル及び野菜を収納するための上面開口の容器2
1,22が着脱自在に設けてある。
The doors 7 and 8 are drawer-type doors corresponding to the bottle room and the vegetable room, which are partitioned by the vertical partition wall 30 into the left and right sides in the selection room 16, and both doors mainly store the bottle and the vegetable, respectively. Container 2 with a top opening
1, 22 are detachably provided.

【0013】冷凍室12の背部には冷却器カバー31と
断熱箱2とで形成される冷却器室があり、この冷却器室
には冷却器としてのプレートフィン型蒸発器(図示せ
ず)及びシロッコファン等の送風機32が配置されてい
る。尚、冷却器室は、カバー32に形成した吹出口3
3,34及び35にて冷凍室12と連通する一方、横仕
切壁11によって冷蔵室15と連通している。
At the back of the freezer compartment 12 is a cooler compartment formed by a cooler cover 31 and a heat insulating box 2. In this cooler compartment, a plate fin type evaporator (not shown) as a cooler and A blower 32 such as a sirocco fan is arranged. In addition, the cooler chamber has a blowout port 3 formed in the cover 32.
3, 34 and 35 communicate with the freezing compartment 12, while the horizontal partition wall 11 communicates with the refrigerating compartment 15.

【0014】冷凍室12は棚36及び37により上中下
3段に仕切られており、下段は縦仕切板38により左右
に仕切られている。
The freezer compartment 12 is divided into upper, middle and lower three stages by shelves 36 and 37, and the lower stage is divided into left and right by a vertical partition plate 38.

【0015】また、中段、左側の後部には自動製氷機3
9が配置されており、この後部空間を製氷室という。製
氷室は製氷機カバー40にて覆われるとともに中段左側
の前部と仕切られている。さらに、縦仕切板38の左側
の空間には自動製氷機で製作した氷を貯める容器41が
出し入れ自在に配置してある。縦仕切板38の右側空間
には、底板42、左右側板及び背板からなる容器43が
冷凍室の底壁となる横仕切壁11の上面と間隔を存して
引き出し自在に配置されており、この空間を急速冷凍室
という。この容器の底板にはアルミニウム等熱伝導性の
良好な金属板を採用している。
Further, an automatic ice maker 3 is provided at the middle and rear of the left side.
9 is arranged, and this rear space is called an ice making chamber. The ice making chamber is covered with the ice making machine cover 40 and is partitioned from the front part on the left side of the middle stage. Further, in the space on the left side of the vertical partition plate 38, a container 41 for storing ice produced by an automatic ice making machine is arranged so as to be freely taken in and out. In the space on the right side of the vertical partition plate 38, a container 43 including a bottom plate 42, left and right side plates, and a back plate is arranged so as to be freely drawn out at a distance from the upper surface of the horizontal partition wall 11 serving as the bottom wall of the freezer compartment. This space is called a quick freezer. The bottom plate of this container is made of a metal plate having good thermal conductivity such as aluminum.

【0016】尚、冷凍室12に吹き出された冷気は、容
器43の底板42と横仕切壁11とで作られる冷気帰還
路44を介して冷却器室の下部へ帰還する。また、以下
の説明の便宜上、急速冷凍室46以外の冷凍室を第1冷
凍室45と称する。
The cool air blown into the freezer compartment 12 returns to the lower part of the cooler compartment through a cool air return path 44 formed by the bottom plate 42 of the container 43 and the horizontal partition wall 11. Further, for convenience of the following description, the freezing chambers other than the quick freezing chamber 46 are referred to as the first freezing chamber 45.

【0017】第1冷凍室45には、その温度を検出する
ための2つの温度センサが設けてあり、2つのうちの一
方は吹出口34の近傍に設けられた主温度センサ51で
あり、2つのうちの他方は製氷室の製氷皿近傍に設けら
れた従温度センサ52である。また、急速冷凍室46に
は、吹出口35近傍に急冷室温度センサ53が設けら
れ、容器43の底板42下面に接触する負荷温度センサ
54が設けてある。
The first freezing chamber 45 is provided with two temperature sensors for detecting its temperature, one of the two is a main temperature sensor 51 provided in the vicinity of the air outlet 34, and The other of the two is a secondary temperature sensor 52 provided near the ice tray in the ice making chamber. Further, in the quick freezing chamber 46, a quenching chamber temperature sensor 53 is provided near the blowout port 35, and a load temperature sensor 54 that comes into contact with the lower surface of the bottom plate 42 of the container 43 is provided.

【0018】55は冷却器に冷媒を供給する電動圧縮機
の駆動用の圧縮機モータ、56は送風機32のモータ、
57は氷温室への冷気供給を制御する氷温用ダンパー装
置、58は冷蔵室への冷気供給を制御する冷蔵用ダンパ
ー装置である。尚、氷温用ダンパー装置(以下Hダンパ
ーという)57は氷温室内に配置され氷温室の温度を検
出する氷温室温度センサの検出温度に基づいて開閉動作
を制御されるものである。冷蔵用ダンパー装置(以下R
ダンパーという)58は冷蔵室の温度を検出する冷蔵室
温度センサの検出温度に基づいて開閉動作を制御される
ものである。
Reference numeral 55 is a compressor motor for driving an electric compressor for supplying refrigerant to the cooler, 56 is a motor for the blower 32,
Reference numeral 57 is an ice temperature damper device that controls the supply of cold air to the ice greenhouse, and 58 is a refrigeration damper device that controls the supply of cold air to the refrigerating compartment. The ice temperature damper device (hereinafter referred to as “H damper”) 57 is arranged in the ice greenhouse, and its opening / closing operation is controlled based on the detected temperature of the ice greenhouse temperature sensor for detecting the temperature of the ice greenhouse. Damper device for refrigeration (hereinafter R
A damper (58) controls the opening / closing operation based on the temperature detected by the refrigerating compartment temperature sensor that detects the temperature of the refrigerating compartment.

【0019】次に急速冷凍室46の急速冷却を制御する
急速冷却制御装置60を図1のブロック回路図に基づき
説明する。61は急冷室温度センサ53と負荷温度セン
サ54の両検出温度に基づいて送風機モータ56及び圧
縮機モータ55をそれぞれ連続運転させる時間(これを
急冷時間という)を決定する急速冷凍制御手段としての
マイクロコンピュータである。本実施例を通して急速冷
却制御装置60は、この急速冷凍制御手段61、急冷室
温度センサ53及び負荷温度センサ54にて構成される
ものとする。
Next, a quick cooling control device 60 for controlling the quick cooling of the quick freezing chamber 46 will be described with reference to the block circuit diagram of FIG. Reference numeral 61 designates a micro as a quick freezing control means for determining the time during which the blower motor 56 and the compressor motor 55 are continuously operated (this is referred to as a quenching time) based on both the temperatures detected by the quenching chamber temperature sensor 53 and the load temperature sensor 54. It is a computer. In the present embodiment, the quick cooling control device 60 is composed of the quick freezing control means 61, the quench chamber temperature sensor 53 and the load temperature sensor 54.

【0020】急速冷凍制御手段61は、負荷温度センサ
54の検出温度に基づいて負荷の投入を判断して投入信
号を出力するとともに、負荷温度センサ54と急冷室温
度センサ53の検出温度に基づいて負荷の大きさを判断
してこの負荷の大きさに合わせた急冷時間を決定する負
荷判別部62と、前記投入信号及び急冷時間に基づき圧
縮機モータ55、送風機モータ56、Hダンパー57及
びRダンパー58の動作を制御する制御部63とを備え
る。
The quick-freezing control means 61 judges the loading of the load based on the temperature detected by the load temperature sensor 54 and outputs a loading signal, and based on the temperatures detected by the load temperature sensor 54 and the quenching chamber temperature sensor 53. A load determination unit 62 that determines the magnitude of the load and determines a quenching time according to the magnitude of the load, and a compressor motor 55, a blower motor 56, an H damper 57, and an R damper based on the closing signal and the quenching time. And a control unit 63 for controlling the operation of 58.

【0021】負荷判別部62には、負荷投入による温度
上昇値Bと温度下降速度Cと急冷室温度Aとからファジ
イ推論により急冷時間Qを決定するファジイ推論部65
がある。
The load discriminating unit 62 has a fuzzy inference unit 65 which determines a quenching time Q by fuzzy inference from a temperature rise value B, a temperature lowering speed C and a quenching chamber temperature A due to load application.
There is.

【0022】以下の構成に基づき図5及び図6のフロー
チャートを参照しながら急速冷却制御装置60の動作の
流れを説明する。
The flow of operation of the quick cooling controller 60 will be described with reference to the flowcharts of FIGS. 5 and 6 based on the following configuration.

【0023】まず、ステップS1にて所定時間(例えば
30秒間)における負荷温度センサ54の検出温度の上
昇値が一定温度(例えば0.8℃)以上か否かを判断
し、一定温度未満であれは、ステップS1へ戻り、一定
温度以上であればステップS2で負荷投入信号を出力
し、圧縮機モータ56を運転させるとともに送風機モー
タ57を高速回転で運転させ、ステップS3で負荷温度
センサの検出温度を開始温度TIとしてサンプリングす
る。
First, in step S1, it is judged whether or not the rise value of the temperature detected by the load temperature sensor 54 during a predetermined time (for example, 30 seconds) is a constant temperature (for example, 0.8 ° C.) or more. Returns to step S1, and if the temperature is equal to or higher than a certain temperature, a load input signal is output in step S2 to operate the compressor motor 56 and the blower motor 57 at high speed, and in step S3, the temperature detected by the load temperature sensor is detected. Is sampled as a starting temperature TI.

【0024】この負荷投入信号により圧縮機及び送風機
が強制的に動作するため、冷凍室12・冷蔵室15及び
氷温室に冷気が強制的に供給されることとなり、冷蔵庫
全体の冷却運転が行なわれる。この冷却運転は、負荷の
投入を判断した後行われ負荷投入による温度上昇を抑制
するための冷却であり、後述する急速冷却運転に先立ち
行なわれることから、通常予備冷却運転と称している。
Since the compressor and the blower are forcibly operated by this load input signal, cold air is forcibly supplied to the freezer compartment 12, the refrigerator compartment 15 and the ice greenhouse, and the cooling operation of the entire refrigerator is performed. .. This cooling operation is a cooling operation that is performed after it is determined that a load has been applied and that suppresses a temperature rise due to the application of a load. Since this cooling operation is performed prior to a rapid cooling operation that will be described later, it is generally called a preliminary cooling operation.

【0025】ステップS4では、負荷温度センサ54の
検出温度が上昇傾向から下降傾向に変化したか否かが判
断され、変化するまで継続し、変化すればステップS5
で負荷温度センサの検出温度を最大温度TOとしてサン
プリングし、ステップS6でタイマーを安定時間(例え
ば10分間)にセットする。この最大温度TOから開始
温度TIを差し引いた値を温度上昇値Bとする。
In step S4, it is judged whether or not the temperature detected by the load temperature sensor 54 changes from an increasing tendency to a decreasing tendency, and it is continued until it changes, and if it changes, step S5
In step S6, the temperature detected by the load temperature sensor is sampled as the maximum temperature TO, and in step S6 the timer is set to a stable time (for example, 10 minutes). A value obtained by subtracting the starting temperature TI from the maximum temperature TO is set as a temperature increase value B.

【0026】ステップS7では、安定時間が経過したか
否かが判断され、経過するまでこの動作が行なわれ、経
過したらステップS8でHダンパー57及びRダンパー
58を強制的に閉じるためのダンパー閉信号を出力す
る。ステップS9で負荷温度センサ54の検出温度を下
降速度の測定開始温度TAとしてサンプリングし、ステ
ップS10でタイマーを測定時間(例えば1分間)にセ
ットする。ステップS11では、測定時間が経過したか
否かが判断され、経過すればステップS12で負荷温度
センサ54の検出温度を測定終了温度TBとしてサンプ
リングする。
In step S7, it is judged whether or not the stable time has elapsed, and this operation is performed until the stable time elapses. After that, in step S8, a damper closing signal for forcibly closing the H damper 57 and the R damper 58. Is output. In step S9, the temperature detected by the load temperature sensor 54 is sampled as the measurement start temperature TA of the descending speed, and in step S10 the timer is set to the measurement time (for example, 1 minute). In step S11, it is determined whether or not the measurement time has elapsed, and if it has elapsed, the temperature detected by the load temperature sensor 54 is sampled as the measurement end temperature TB in step S12.

【0027】フローチャートには示さないが、測定開始
温度TAから測定終了温度TBを差し引いた値を下降温
度とする。この下降温度と測定時間に基づき下降速度C
が演算される。尚、ステップS8のダンパー閉信号によ
りRダンパー58及びHダンパー57が閉塞されるた
め、冷却器に帰還する冷気は冷凍室12からの冷気だけ
になり、冷凍室特に急速冷凍室46の温度変化要因を少
なくして負荷の冷却速度をより正確に検出することがで
きるようにしている。また、下降速度Cが測定できれ
ば、ステップS13でダンパー閉信号を解除し、氷温室
の温度に基づくHダンパー57の動作制御及び冷蔵室の
温度に基づくRダンパー58の動作制御即ち通常のダン
パー制御に戻す。
Although not shown in the flow chart, the value obtained by subtracting the measurement end temperature TB from the measurement start temperature TA is the falling temperature. Based on this falling temperature and measurement time, the falling speed C
Is calculated. Since the R damper 58 and the H damper 57 are closed by the damper closing signal in step S8, the only cool air that returns to the cooler is the cool air from the freezer compartment 12, which causes a temperature change in the freezer compartment, especially in the quick freezer compartment 46. The cooling rate of the load can be detected more accurately by reducing the above. If the descending speed C can be measured, the damper closing signal is released in step S13, and the operation control of the H damper 57 based on the temperature of the ice greenhouse and the operation control of the R damper 58 based on the temperature of the refrigerating room, that is, the normal damper control are performed. return.

【0028】ステップS4〜ステップS13までの動作
は負荷の大きさを測定するために必要な動作であり、こ
れを負荷判別運転という。
The operations from step S4 to step S13 are necessary for measuring the magnitude of the load, and this is called load discriminating operation.

【0029】次に、ステップS15で急冷室温度センサ
53の検出温度を急冷室温度Aとしてサンプリングし、
ステップS16でファジイ推論部65によるファジイ推
論を行ない急冷時間Qを決定する。ステップS17はこ
の急冷時間Qをタイマーにセットし、急冷信号を出力す
る。ステップS18では急冷時間Qが経過したか否かが
判断され、経過するまでこの動作が続き経過すればステ
ップS1へ復帰する。尚、急冷信号により冷凍室12の
温度に関係なく圧縮機モータ55及び送風機モータ56
が運転されるため、急速冷凍室の急速冷却が行える。こ
の際、HR両ダンパー57,58の動作制御は通常の制
御である。
Next, in step S15, the temperature detected by the quenching chamber temperature sensor 53 is sampled as the quenching chamber temperature A,
In step S16, the fuzzy inference unit 65 performs fuzzy inference to determine the quenching time Q. In step S17, the rapid cooling time Q is set in the timer and a rapid cooling signal is output. In step S18, it is determined whether or not the quenching time Q has elapsed, and if this operation continues until the time elapses, the process returns to step S1. The quench motor signal causes the compressor motor 55 and the blower motor 56 to operate regardless of the temperature of the freezer compartment 12.
Is operated, the quick freezing chamber can be rapidly cooled. At this time, the operation control of both HR dampers 57 and 58 is a normal control.

【0030】ここで、ファジイ推論部65におけるファ
ジイ推論について説明する。まず、急冷室温度Aに対す
るメンバーシップ関数を変数〔−21.2,−14.
6〕の区間で(低い・高い)の2通りに正規化し、負荷
投入による温度上昇値Bに対するメンバーシップ関数を
変数〔4.6,24.0〕の区間で(小さい・中・大き
い)の3通りに正規化し、温度下降速度Cに対するメン
バーシップ関数を〔0.2,2.8〕の区間で(遅い・
中・速い)の3通りに正規化する。また、これらの入力
に基づく出力としての急冷時間Qに対するメンバーシッ
プ関数を変数〔30,150〕の区間で(超短い・短い
・やや短い・普通・やや長い・長い)の6通りに正規化
する。ただし「超短い」の頂点から「短い」の適合度が
1となる部分までを同じ30分とし、「普通」の適合度
が1となる部分から「長い」の頂点までを同じ150分
とする。以上のファジイ変数の定義を示したものが図7
及び図8である。
Here, the fuzzy inference in the fuzzy inference unit 65 will be described. First, the membership function with respect to the quenching room temperature A is set to variables [-21.2, -14.
6] is normalized to two types (low / high), and the membership function for the temperature rise value B due to loading is set to the variable [4.6, 24.0] (small / medium / large). The membership function with respect to the temperature decrease rate C is normalized in three ways (slow / slow) in the interval of [0.2, 2.8].
Normalize into 3 ways (medium / fast). In addition, the membership function for the quenching time Q as an output based on these inputs is normalized in six ways (ultra short / short / slightly short / normal / slightly long / long) in the interval of the variable [30,150]. .. However, from the "ultra-short" vertex to the portion where the "short" fitness is 1 is the same 30 minutes, and from the portion where the "normal" fitness is 1 to the "long" vertex is the same 150 minutes. .. Figure 7 shows the definition of the above fuzzy variables.
8 and FIG.

【0031】この急冷時間Qを決定する制御ルール(1
〜18までの18通りのルール)を表1に示すように定
めた。
A control rule (1 for determining the quenching time Q)
(18 rules up to 18) are defined as shown in Table 1.

【0032】[0032]

【表1】 [Table 1]

【0033】例えば、急冷室温度Aが「低い」、温度上
昇値Bが「大きい」、下降速度Cが「遅い」場合には、
ルール7に基づき急冷時間Qは「長い」と判定される。
また、急冷室温度Aが「高い」、温度上昇値Bが「小さ
い」、下降速度Cが「速い」場合には、ルール12に基
づき急冷時間Qは「超短い」と判定される。
For example, when the quenching chamber temperature A is "low", the temperature rise value B is "large", and the descending speed C is "slow",
Based on Rule 7, the quenching time Q is determined to be “long”.
Further, when the quenching chamber temperature A is “high”, the temperature increase value B is “small”, and the descending speed C is “fast”, the quenching time Q is determined to be “ultra short” based on the rule 12.

【0034】次にファジイ推論の過程を図7及び図8に
従い説明する。尚、それぞれのルール毎の結論(急冷時
間Qとその適合度0〜1)をMIN−MAX法と重心法
により求める。
Next, the process of fuzzy inference will be described with reference to FIGS. In addition, the conclusion (quenching time Q and its compatibility 0 to 1) for each rule is obtained by the MIN-MAX method and the center of gravity method.

【0035】即ち、ルールに対して、A,B,C3つ
の変数に対する適合度の中で一番小さいもの(MIN)
をそのルールの適合度とし、ルールの回答を急冷時間
Qの長さとする。そしてルールの結論の中で適合度が
最も大きいもの(MAX)に対応した回答を急冷時間の
長さとし、ルールの全結論に対する重心値を重心法に
よって求め、重心値に対応する時間を急冷時間Qとす
る。
That is, the smallest fit (MIN) among the goodness of fit for the three variables A, B, and C with respect to the rule.
Is the fitness of the rule, and the answer to the rule is the length of the quenching time Q. Then, the answer corresponding to the one with the highest suitability (MAX) among the rule conclusions is taken as the length of the quenching time, the centroid values for all the conclusions of the rule are obtained by the centroid method, and the time corresponding to the centroid values is the quenching time Q. And

【0036】最後に実験値の一例を示すと、急冷室温度
Aが−19℃で温度上昇値Bが20℃でかつ温度下降速
度Cが1.6であったときには、Aとして「低い,0.
625」と「高い,0.375」の2通り、Bとして
「中,0.625」と「大きい,0.375」の2通
り、Cとして「中,0.875」と「速い,0.12
5」の2通りの結果がえられ、各結果を組み合わせると
ルール番号5,6,8,9,14,15,17,18の
8通りのルールができる。8つのルールに対してMIN
−MAX法により急冷時間の長さ「普通」が、重心法に
よって急冷時間(125分)が推論された。
Finally, as an example of experimental values, when the quenching chamber temperature A was -19 ° C, the temperature increase value B was 20 ° C, and the temperature decrease rate C was 1.6, A was "low, 0. .
625 "and" high, 0.375 ", B as" medium, 0.625 "and" large, 0.375 ", and C as" medium, 0.875 "and" fast, 0. 12
5 ”is obtained, and when the results are combined, eight rules with rule numbers 5, 6, 8, 9, 14, 15, 17, and 18 are created. MIN for 8 rules
The MAX method infers a "normal" quenching time length, and the centroid method infers a quenching time (125 minutes).

【0037】他の例として、Aが−14℃、Bが10℃
及びCが1.0の場合には、Aとして「低い,0.12
5」と「高い,0.875」の2通り、Bとして「小さ
い,0.375」と「中,0.625」の2通り及びC
として「遅い,0.375」と「中,0.625」の2
通りの結果が得られる。各結果を組み合わせると、ルー
ル番号1,2,4,5,10,11,13,14の計8
通りのルールができる。この8つのルールに対しMIN
−MAX法により長さ「やや短い」が、重心法により急
冷時間「135分」が推論された。
As another example, A is -14 ° C and B is 10 ° C.
And C is 1.0, A is “low, 0.12
5 "and" high, 0.875 ", B as" small, 0.375 "and" medium, 0.625 ", and C
2 as "slow, 0.375" and "medium, 0.625"
You get street results. Combining each result, a total of 8 rule numbers 1, 2, 4, 5, 10, 11, 13, 14
You can do street rules. MIN for these 8 rules
-The MAX method infers a length of "slightly short" and the center of gravity method infers a quenching time of "135 minutes".

【0038】尚、このような推論の実行は、汎用のマイ
クロコンピュータやディジタルシグナルプロセットを利
用することにより実現できる。
Execution of such inference can be realized by using a general-purpose microcomputer or digital signal processor.

【0039】[0039]

【発明の効果】以上のように本発明によれば、急速冷凍
制御手段が負荷温度センサの検出温度に基づいて負荷の
投入を判断することから、従来のように急速冷却スイッ
チ等の手動操作を行なうことなく急速冷却を開始させる
ことができ、急速冷却スイッチを不要とできる。また、
急速冷凍制御手段が急冷室温度センサと負荷温度センサ
の両検出温度に基づいて負荷の熱容量を判断し、判断さ
れた熱容量に基づいて圧縮機と送風機を連続運転させる
時間を決定することから、急速冷却運転の開始から終了
までを全て自動的に制御でき、使い勝手の良い冷蔵庫を
提供できる。
As described above, according to the present invention, the quick freezing control means determines the load application based on the temperature detected by the load temperature sensor. Rapid cooling can be started without performing it, and the rapid cooling switch can be omitted. Also,
Since the quick-freezing control means determines the heat capacity of the load based on both the temperature detected by the quenching chamber temperature sensor and the load temperature sensor, and determines the time for continuously operating the compressor and the blower based on the determined heat capacity, It is possible to automatically control everything from the start to the end of the cooling operation and provide a refrigerator that is easy to use.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の急速冷却制御装置を示すブロック回路
図である。
FIG. 1 is a block circuit diagram showing a rapid cooling control device of the present invention.

【図2】冷蔵庫の扉を開いた状態の外観斜視図である。FIG. 2 is an external perspective view of the refrigerator with the door open.

【図3】冷蔵庫の扉を外した状態を示す斜視図である。FIG. 3 is a perspective view showing a state in which a door of the refrigerator is removed.

【図4】冷凍室の正面図である。FIG. 4 is a front view of a freezing room.

【図5】急速冷却制御装置の制御動作を示すフローチャ
ート図である。
FIG. 5 is a flowchart showing a control operation of the quick cooling control device.

【図6】図6同様急速冷却制御装置の制御動作を示すフ
ローチャート図である。
FIG. 6 is a flow chart showing the control operation of the rapid cooling control device as in FIG.

【図7】ファジイ推論の過程の一例を示す線図である。FIG. 7 is a diagram showing an example of a process of fuzzy inference.

【図8】図7とは異なる例を示す線図である。FIG. 8 is a diagram showing an example different from FIG.

【符号の説明】[Explanation of symbols]

1 冷蔵庫 12 冷凍室 46 急速冷凍室 53 急冷室温度センサ 54 負荷温度センサ 55 圧縮機モータ 56 送風機モータ 60 急速冷却制御装置 61 急速冷凍制御手段 DESCRIPTION OF SYMBOLS 1 Refrigerator 12 Freezing room 46 Rapid freezing room 53 Rapid cooling room temperature sensor 54 Load temperature sensor 55 Compressor motor 56 Blower motor 60 Rapid cooling control device 61 Rapid freezing control means

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 冷凍室の中に独立して形成される急速冷
凍室と、冷却器で冷却された冷気を庫内に循環させる送
風機と、圧縮機と、この圧縮機及び送風機の動作を制御
する制御装置とを備えた冷蔵庫において、前記制御装置
は、急速冷凍室の温度を検出する急冷室温度センサと、
急速冷凍室の底部の温度を検出する負荷温度センサと、
負荷温度センサの検出温度に基づいて負荷の投入を判断
しこれら両温度センサの検出温度に基づいて負荷の熱容
量を判断しその熱容量に対応して前記圧縮機及び送風機
を連続運転させる時間を決定する急速冷凍制御手段とを
備えたことを特徴とする冷蔵庫の急速冷却制御装置。
1. A quick freezer compartment independently formed in the freezer compartment, a blower for circulating cold air cooled by a cooler in the refrigerator, a compressor, and control of operations of the compressor and the blower. In a refrigerator equipped with a control device, the control device, a quenching chamber temperature sensor for detecting the temperature of the quick freezing chamber,
A load temperature sensor that detects the temperature of the bottom of the quick freezer,
The load is judged based on the temperature detected by the load temperature sensor, the heat capacity of the load is judged based on the temperature detected by these temperature sensors, and the time for continuously operating the compressor and the blower is determined in accordance with the heat capacity. A quick cooling control device for a refrigerator, comprising: a quick freezing control means.
JP31094191A 1991-11-26 1991-11-26 Controller of rapid cooling of cold storage box Pending JPH05141839A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31094191A JPH05141839A (en) 1991-11-26 1991-11-26 Controller of rapid cooling of cold storage box

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31094191A JPH05141839A (en) 1991-11-26 1991-11-26 Controller of rapid cooling of cold storage box

Publications (1)

Publication Number Publication Date
JPH05141839A true JPH05141839A (en) 1993-06-08

Family

ID=18011232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31094191A Pending JPH05141839A (en) 1991-11-26 1991-11-26 Controller of rapid cooling of cold storage box

Country Status (1)

Country Link
JP (1) JPH05141839A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009300053A (en) * 2008-06-17 2009-12-24 Panasonic Corp Refrigerator
JP2010038524A (en) * 2008-03-14 2010-02-18 Panasonic Corp Refrigerator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010038524A (en) * 2008-03-14 2010-02-18 Panasonic Corp Refrigerator
JP2009300053A (en) * 2008-06-17 2009-12-24 Panasonic Corp Refrigerator

Similar Documents

Publication Publication Date Title
JPH07174453A (en) Refrigerator
JP3454522B2 (en) Refrigerator quick cooling control device
JPH05141839A (en) Controller of rapid cooling of cold storage box
JP3354165B2 (en) Refrigerator refrigerator temperature control device
JP2686182B2 (en) Quick cooling operation method of refrigerator
JPH06185847A (en) Refrigerator
JP3197593B2 (en) Refrigerator temperature controller
JP3197589B2 (en) Refrigerator refrigerator temperature control device
JPH06294568A (en) Controller for freezer/refrigerator
JPH05223429A (en) Ice temperature chamber temperature controller for refrigerator
KR100650746B1 (en) Method for controlling refrigeration of kimchi refrigerator
KR100305059B1 (en) Control method for operation of kimch'i store house
JP3732032B2 (en) refrigerator
JPH05231760A (en) Temperature control device for refrigerator
JP3474889B2 (en) Refrigerator freezer temperature control device
JPH0552459A (en) Refrigerator
JPH10332242A (en) Refrigerator
JPH07110182A (en) Refrigerator chamber temperature control device in refrigerator
KR100595438B1 (en) Refrigerator and Control Method Thereof
JPH05106958A (en) Refrigerator
JPH05141838A (en) Temperature controller of cold storage box
JPH05149665A (en) Device for controlling temperature of ice temperature chamber of refrigerator
JPH08261624A (en) Control device for freezing refrigerator
JP2000121228A (en) Freezer
JPH0334629Y2 (en)