JPH05141251A - Internal combustion engine with mechanical supercharger - Google Patents

Internal combustion engine with mechanical supercharger

Info

Publication number
JPH05141251A
JPH05141251A JP3303241A JP30324191A JPH05141251A JP H05141251 A JPH05141251 A JP H05141251A JP 3303241 A JP3303241 A JP 3303241A JP 30324191 A JP30324191 A JP 30324191A JP H05141251 A JPH05141251 A JP H05141251A
Authority
JP
Japan
Prior art keywords
engine
supercharger
intake
throttle valve
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3303241A
Other languages
Japanese (ja)
Inventor
Hidemi Onaka
英巳 大仲
Masaaki Tanaka
正明 田中
Yuichi Kato
雄一 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP3303241A priority Critical patent/JPH05141251A/en
Publication of JPH05141251A publication Critical patent/JPH05141251A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • F02B31/04Modifying induction systems for imparting a rotation to the charge in the cylinder by means within the induction channel, e.g. deflectors
    • F02B31/06Movable means, e.g. butterfly valves
    • F02B31/08Movable means, e.g. butterfly valves having multiple air inlets, i.e. having main and auxiliary intake passages

Abstract

PURPOSE:To improve a combustion condition in the case of low speed and low load operation at the time of cold operation of a engine. CONSTITUTION:A throttle valve 12 is provided in an intake passage 2 in the downstream of a supercharger 5, and the intake passage 2 between the supercharger 5 and the throttle valve 12 is connected to a jet stream hole 8, provided in an internal wall surface of an intake port 7 of an engine 1, by a communication path 9. By throttling the throttle valve 12 by actuating the supercharger 5 at an engine cold time, a delivery pressure of the supercharger and its temperature at low speed time are increased. In this way, an intake air temperature of the engine is increased and supercharger delivery air of high temperature and high pressure from the jet stream hole 8 is also injected, and since large disturbance is generated in a mixture in a combustion chamber 1a, combustion in the case of low speed and low load operation is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は車両用エンジン等に用い
る機械式過給機付内燃機関に関し、詳細には機関冷間時
に過給機を作動させて圧縮による吸気加熱を行う内燃機
関に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an internal combustion engine with a mechanical supercharger used for a vehicle engine or the like, and more particularly to an internal combustion engine which operates a supercharger to cool intake air by compression when the engine is cold.

【0002】[0002]

【従来の技術】エンジンの冷間運転では燃焼室壁温が低
く、圧縮後の混合気が燃焼室壁面で冷却されてしまい温
度が十分に上昇しない場合があり、このため混合気着火
性や燃焼速度が低下して燃焼状態が悪化する傾向があ
る。従来、この燃焼状態の悪化を補うために、冷間時に
は燃料を増量して濃混合気を形成することによって安定
燃焼を得ることが行われている。
2. Description of the Related Art In cold engine operation, the temperature of the combustion chamber wall is low, and the air-fuel mixture after compression may be cooled on the wall surface of the combustion chamber and the temperature may not rise sufficiently. The speed tends to decrease and the combustion state tends to deteriorate. Conventionally, in order to compensate for this deterioration of the combustion state, stable combustion is performed by increasing the amount of fuel during cold to form a rich mixture.

【0003】しかし、燃料増量によりエンジン燃費が悪
化する他、冷間時に点火プラグのくすぶりが発生した
り、濃混合気の燃焼によりHCやCOの発生量が増大す
る場合がある。また燃焼悪化のため排気温度も低いこと
から、触媒を使用する排気浄化装置では触媒温度が活性
領域に達するのが遅れるため冷間時に十分な排気浄化が
行われず、前述のHC,CO発生量の増大も加わり、冷
間時の排気エミッションが悪化する傾向が生じる。
However, in addition to the deterioration of engine fuel efficiency due to an increase in fuel, there are cases in which smoldering of the spark plug occurs during cold conditions and the amount of HC and CO generated due to combustion of a rich air-fuel mixture. Further, since the exhaust gas temperature is low due to the deterioration of combustion, the exhaust gas purification device using a catalyst does not sufficiently purify the exhaust gas in the cold state because the catalyst temperature delays reaching the active region, and the above-mentioned HC and CO generation amounts With the increase, the exhaust emission during cold tends to be deteriorated.

【0004】この問題を解決するためエンジン冷間時に
機械式過給機を作動させて圧縮による吸気加熱を行うよ
うにしたエンジンが知られている。予め吸気温度を上昇
させておくことにより燃焼室温度が低い場合でも圧縮後
の混合気温度を十分に高い温度に保持し、良好な燃焼が
得られるようにするためである。この種のエンジンの例
としては、例えば特開昭61−19933号公報に開示
されたものがある。
In order to solve this problem, there is known an engine in which a mechanical supercharger is operated to heat intake air by compression when the engine is cold. This is because by raising the intake air temperature in advance, even if the combustion chamber temperature is low, the mixture temperature after compression is maintained at a sufficiently high temperature so that good combustion can be obtained. An example of this type of engine is disclosed in Japanese Patent Laid-Open No. 61-19933.

【0005】同公報のエンジンは、クラッチを介してエ
ンジンから機械的に駆動される過給機を設け、通常の運
転条件ではエンジンの中高負荷運転領域でクラッチを接
続して過給を行うようにするとともに、エンジン冷間時
には低回転低負荷領域でもクラッチを接続するようにし
て過給運転領域を拡大している。低負荷運転時にも過給
運転を行うことにより過給により高温になった吸気をエ
ンジンに供給して燃焼状態の改善と暖機の促進とを図っ
たものである。
The engine disclosed in the above publication is provided with a supercharger mechanically driven from the engine through a clutch. Under normal operating conditions, the clutch is connected in the medium and high load operating range of the engine to perform supercharging. At the same time, when the engine is cold, the clutch is engaged even in the low rotation and low load region to expand the supercharging operation region. By performing supercharging operation even during low load operation, intake air that has become hot due to supercharging is supplied to the engine to improve the combustion state and promote warm-up.

【0006】しかし、上記特開昭61−19933号公
報のように過給機のみを用いて吸気の昇温を行うと、エ
ンジン始動後に低負荷低回転で運転を行うような場合過
給機の圧縮比が上らないため、外気温が低いと十分に高
い吸気温度を得ることができない。本願出願人はこの問
題を解決するため、従前の出願(特願平3−76374
号)において、過給機下流側吸気通路に絞り弁を設け、
吸気加熱時に過給機下流側吸気通路を絞るようにした過
給制御装置を提案している。過給機下流側吸気通路に絞
り抵抗を与えると過給機の圧縮比が増大し、吐出温度も
上昇することから、本装置を使用することにより低負荷
低回転運転においても吸気温度を高く維持することが可
能となる。
However, when the intake air is heated only by using the supercharger as in the above-mentioned Japanese Patent Laid-Open No. 61-19933, when the engine is operated at low load and low speed after starting, Since the compression ratio does not rise, a sufficiently high intake air temperature cannot be obtained when the outside air temperature is low. To solve this problem, the applicant of the present application has filed a prior application (Japanese Patent Application No. 3-76374).
No.), a throttle valve is provided in the intake passage on the downstream side of the supercharger,
We have proposed a supercharging control device that throttles the intake passage on the downstream side of the supercharger when heating the intake air. If throttle resistance is applied to the intake passage on the downstream side of the supercharger, the compression ratio of the supercharger will increase and the discharge temperature will also rise. It becomes possible to do.

【0007】[0007]

【発明が解決しようとする課題】上述のように、エンジ
ン冷間時に過給機を用いて吸気加熱を行うことにより、
燃焼室内での混合気冷却による燃焼状態の悪化を防止す
ることができる。しかし、エンジン冷間時に吸気加熱を
行っても依然として低速、低負荷運転時には高速高負荷
運転時に較べて燃焼状態が不十分な場合がある。
As described above, by performing intake air heating using the supercharger when the engine is cold,
It is possible to prevent deterioration of the combustion state due to cooling of the air-fuel mixture in the combustion chamber. However, even if the intake air is heated when the engine is cold, the combustion state may still be insufficient during low speed and low load operation as compared to high speed and high load operation.

【0008】通常運転中、燃焼室内には吸気ポートから
流入する新気により混合気の乱れが発生しており、この
乱れにより混合気燃焼速度が速められ燃焼が促進され
る。高速高負荷運転においては、この混合気の乱れは十
分に大きく燃焼状態も良好であるが、低速低負荷運転に
おいては燃焼室に流入する吸気の流速が低下するため燃
焼室内の混合気の乱れは小さく、十分な燃焼速度が得ら
れない問題がある。
During normal operation, turbulence of the air-fuel mixture is generated in the combustion chamber by the fresh air flowing from the intake port, and this turbulence accelerates the air-fuel mixture combustion speed and promotes combustion. In high-speed high-load operation, the turbulence of the air-fuel mixture is sufficiently large and the combustion state is good, but in low-speed low-load operation the turbulence of the air-fuel mixture in the combustion chamber decreases because the flow velocity of the intake air flowing into the combustion chamber decreases. There is a problem that it is small and a sufficient burning rate cannot be obtained.

【0009】エンジン冷間時の低速低負荷運転では、こ
の乱れの減少による燃焼速度の低下に混合気温度の低下
による燃焼速度の低下が加わるため燃焼状態の悪化も大
きくなっている。上記のように吸気加熱を行えば混合気
温度の低下による燃焼悪化は防止できるものの、低速低
負荷運転時の乱れの減少による燃焼悪化は依然として存
在するため、低速低負荷運転時には吸気加熱を実施する
だけでは燃焼状態の改善は不十分なものとなっている。
In low-speed low-load operation when the engine is cold, the deterioration of the combustion state is large because the decrease in combustion speed due to the reduction in turbulence is accompanied by the decrease in combustion speed due to the decrease in mixture temperature. If intake air heating is performed as described above, combustion deterioration due to a decrease in air-fuel mixture temperature can be prevented, but combustion deterioration due to reduced turbulence during low speed low load operation still exists, so intake air heating is performed during low speed low load operation. The improvement of the combustion state is not sufficient by itself.

【0010】低速低負荷運転時の乱れの減少による燃焼
悪化を防止する手段としては、吸気ポート内壁の吸気弁
近傍に吸気噴流孔を設け、この噴流孔から吸気弁に向け
て空気を噴出するようにした装置が知られている(特公
昭56−50102号公報参照)。噴流孔からの空気流
により吸気弁開弁時に燃焼室内に大きな乱れを発生さ
せ、燃焼状態の改善を図ったものである。
As means for preventing deterioration of combustion due to reduction of turbulence during low speed and low load operation, an intake jet hole is provided on the inner wall of the intake port near the intake valve, and air is jetted from this jet hole toward the intake valve. There is a known device (see Japanese Patent Publication No. 56-50102). This is to improve the combustion state by causing a large turbulence in the combustion chamber when the intake valve is opened by the air flow from the jet hole.

【0011】しかし、これらの装置では噴流孔から噴射
する空気は、スロットル弁上流側や他の吸気ポートから
導かれ、吸気ポートと大気圧との圧力差や吸気ポートの
圧力変動により生じる圧力差により憤流孔から噴射され
る。しかし、上記圧力差は限られており、それにより生
じる噴流速度も小さいため燃焼室内に生じる乱れは比較
的小さくなっている。噴流速度を増大させるためにエア
ポンプ等を設け、加圧空気を噴流孔から噴射することも
可能であるが構成が複雑になりコストアップの要因とな
るため好ましくない。
However, in these devices, the air jetted from the jet holes is introduced from the upstream side of the throttle valve or from another intake port, and due to the pressure difference between the intake port and the atmospheric pressure or the pressure difference caused by the pressure fluctuation of the intake port. It is ejected from the indignation hole. However, since the pressure difference is limited and the jet velocity generated thereby is small, the turbulence generated in the combustion chamber is relatively small. It is also possible to provide an air pump or the like in order to increase the jet velocity and inject the pressurized air from the jet holes, but this is not preferable because it complicates the configuration and causes a cost increase.

【0012】また、エンジン冷間時の低速低負荷運転で
は乱れの減少による燃焼の悪化と共に、混合気温度の低
下による燃焼の悪化も生じているため、単に噴流速度を
上げて乱れを増加させただけでは燃焼状態は十分に改善
されない。このため、十分な燃焼改善効果を得るために
は別途加熱装置を設けて憤流孔から噴射する空気を予熱
する必要があり、更に構成の複雑化やコストアップを生
じる原因となる。
Further, in low-speed low-load operation when the engine is cold, combustion is deteriorated due to a decrease in turbulence and combustion is deteriorated due to a decrease in mixture temperature. Therefore, the turbulence is increased simply by increasing the jet speed. The combustion condition is not sufficiently improved by itself. Therefore, in order to obtain a sufficient combustion improvement effect, it is necessary to separately provide a heating device to preheat the air jetted from the indignation hole, which further complicates the configuration and raises the cost.

【0013】本発明は上記問題に鑑み、簡易な構成でエ
ンジン冷間時の低速低負荷運転の際に混合気の加熱と乱
れの増大とにより燃焼状態の改善を図ることのできる手
段を備えた機械式過給機付内燃機関を提供することを目
的としている。
In view of the above problems, the present invention is provided with a means capable of improving the combustion state by heating the air-fuel mixture and increasing turbulence in a low-speed low-load operation while the engine is cold, with a simple structure. An object is to provide an internal combustion engine with a mechanical supercharger.

【0014】[0014]

【課題を解決するための手段】本発明によれば、機械式
過給気と、該機械式下流側吸気通路に絞り弁とを備え、
機関冷間時に過給機を作動させると共に前記絞り弁で吸
気通路を絞り、過給機による吸気圧縮加熱を行う内燃機
関において、機関吸気ポート内壁面に機関吸気弁を指向
する噴流孔と、過給気と前記絞り弁との間の吸気通路内
の吸気を該噴流孔に導く連通路とを設けたことを特徴と
する機械式過給機付内燃機関が提供される。
According to the present invention, there is provided a mechanical supercharged air and a throttle valve in the mechanical downstream intake passage,
In an internal combustion engine in which the turbocharger is operated while the engine is cold and the intake passage is throttled by the throttle valve to perform intake compression heating by the supercharger, a jet hole that directs the engine intake valve to the inner wall surface of the engine intake port, An internal combustion engine with a mechanical supercharger is provided, which is provided with a communication passage for guiding intake air in an intake passage between the supply air and the throttle valve to the jet hole.

【0015】[0015]

【作用】エンジン冷間時には絞り弁により過給機下流側
吸気通路を絞るため、過給機の圧縮比が増大し、過給機
吐出温度が上昇する。吸気は絞り弁を通過することによ
り通常の過給圧力まで減圧されるが、絞り弁での摩擦損
失や渦損失が大きいため膨張による温度降下はほとんど
生じず、エンジンには高い温度の吸気が供給される。
When the engine is cold, the throttle valve restricts the intake passage on the downstream side of the supercharger, so that the compression ratio of the supercharger increases and the discharge temperature of the supercharger rises. The intake air is depressurized to the normal supercharging pressure by passing through the throttle valve, but the friction loss and eddy loss at the throttle valve are large, so there is almost no temperature drop due to expansion, and the intake air of high temperature is supplied to the engine. To be done.

【0016】また吸気ポートの噴流孔は過給機と絞り弁
との間の吸気通路に連通しており、高温高圧の過給機吐
出空気が噴流孔から噴出されるため、エアポンプや加熱
装置を用いずに噴流速度と温度とを上昇させることがで
きる。このためエンジン冷間時の低速低負荷運転時にお
いても混合気温度を高く保持し、かつ燃焼室内に大きな
乱れを生じさせることができる。
Further, the jet hole of the intake port communicates with the intake passage between the supercharger and the throttle valve, and high temperature and high pressure supercharger discharge air is ejected from the jet hole, so that an air pump and a heating device are installed. The jet velocity and temperature can be increased without using. Therefore, the mixture temperature can be kept high even during low-speed low-load operation during cold engine operation, and a large turbulence can be generated in the combustion chamber.

【0017】[0017]

【実施例】図1に本発明の一実施例の構成を示す。図に
おいて1はエンジン、2はエンジンの吸気通路、3は運
転者のアクセルペダル(図示せず)の操作に応じて吸気
流量を連続的に変化させるスロットル弁、5はスロット
ル弁3の下流側吸気通路に設けられた過給機である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows the configuration of an embodiment of the present invention. In the figure, 1 is an engine, 2 is an intake passage of the engine, 3 is a throttle valve that continuously changes an intake flow rate in accordance with an operation of an accelerator pedal (not shown) by a driver, and 5 is intake air on the downstream side of the throttle valve 3. It is a supercharger installed in the passage.

【0018】過給機5は本実施例では容積型の圧縮機が
用いられ、エンジン1のクランク軸4に設けたプーリ4
aから電磁クラッチ6を介してベルト等により機械的に
駆動される。図に15で示すのは過給機5をバイパスし
てスロットル弁3下流側吸気通路と過給機出口側吸気通
路とを接続する吸気バイパス通路である。吸気バイパス
通路15にはバイパス制御弁16が設けられ、吸気バイ
パス通路15を通る空気流量を連続的に調節できるよう
になっている。17はバイパス制御弁16を開閉駆動す
るステップモータ等のアクチュエータである。
In this embodiment, the supercharger 5 is a positive displacement compressor, and the pulley 4 provided on the crankshaft 4 of the engine 1 is used.
It is mechanically driven by a belt or the like from a through the electromagnetic clutch 6. Indicated at 15 in the drawing is an intake bypass passage that bypasses the supercharger 5 and connects the intake passage downstream of the throttle valve 3 and the intake passage on the outlet side of the supercharger. The intake bypass passage 15 is provided with a bypass control valve 16 so that the air flow rate through the intake bypass passage 15 can be continuously adjusted. Reference numeral 17 denotes an actuator such as a step motor that opens and closes the bypass control valve 16.

【0019】バイパス制御弁16はエンジンの通常運転
時にはエンジン過給圧力を調節するために用いられる。
すなわちバイパス制御弁16の開度を大きくすれば過給
機5の吐出側から入口側に吸気バイパス通路15を通っ
て還流する空気量が増大するため過給機前後の差圧が減
少し、過給機吐出圧力も低下する。逆にバイパス制御弁
16の開度を小さくすれば過給機吐出圧力が上昇する。
後述のようにエンジン暖機運転中はバイパス制御弁16
は全閉に保持される。
The bypass control valve 16 is used for adjusting the engine supercharging pressure during normal operation of the engine.
That is, if the opening degree of the bypass control valve 16 is increased, the amount of air that recirculates from the discharge side of the supercharger 5 to the inlet side through the intake bypass passage 15 increases, so the differential pressure before and after the supercharger decreases, and The feeder discharge pressure also drops. On the contrary, if the opening degree of the bypass control valve 16 is reduced, the discharge pressure of the supercharger rises.
As will be described later, the bypass control valve 16 is used during engine warm-up operation.
Is held fully closed.

【0020】また、本実施例では過給機吐出側の吸気通
路には、バイパス通路15の合流部下流にバタフライ弁
の形状の絞り弁12が設けられている。絞り弁12は後
述するようにエンジン冷間時にはエンジン吸気温度に応
じて開度制御される。絞り弁12の開度が減少すると過
給機下流側吸気通路の絞り抵抗が増大するため同一の回
転数であっても過給機吐出圧力が上昇する。このため圧
縮比増大により過給機吐出温度も上昇し、外気温が低い
場合でもエンジン吸気温度を高く維持することができ
る。なお、絞り弁12はエンジン暖機完了後の高速高負
荷運転時には全開に保持される。絞り弁12はバタフラ
イ弁の形状であるため、全開時には抵抗が小さく、高速
高負荷運転時に吸気抵抗を生じない一方、部分開度にあ
るときは吸気の渦損失が比較的大きくなり吸気が絞り弁
12を通過する際の温度降下を少なくすることができ
る。図に13で示したのは、絞り弁12を駆動する、ス
テッパモータ等のアクチュエータである。
Further, in this embodiment, a throttle valve 12 in the shape of a butterfly valve is provided in the intake passage on the discharge side of the supercharger downstream of the confluence of the bypass passage 15. As will be described later, the throttle valve 12 is controlled in opening degree according to the engine intake air temperature when the engine is cold. When the opening degree of the throttle valve 12 decreases, the throttle resistance of the intake passage on the downstream side of the supercharger increases, so that the supercharger discharge pressure rises even at the same rotational speed. Therefore, the discharge temperature of the supercharger rises due to the increase of the compression ratio, and the engine intake air temperature can be kept high even when the outside air temperature is low. The throttle valve 12 is held fully open during high-speed, high-load operation after the engine has been warmed up. Since the throttle valve 12 is in the shape of a butterfly valve, its resistance is small when it is fully opened, and intake resistance does not occur during high-speed and high-load operation. The temperature drop when passing through 12 can be reduced. Indicated at 13 in the drawing is an actuator such as a stepper motor for driving the throttle valve 12.

【0021】本実施例では、エンジン1の吸気ポート内
壁面7には噴流孔8が設けられ、連通路9を介して過給
機5と絞り弁12との間の吸気通路2に接続されてい
る。噴流孔8は燃焼室1a横断面に対して接線方向に開
口しており、吸気弁10開弁時に吸気弁10と弁座との
間に形成される間隔を指向している。従って噴流孔8か
ら噴出する空気は、吸気弁10開弁時にこの間隔を通っ
て燃焼室1a内に入り、図に矢印Sで示した旋回流を生
成する。この結果燃焼室1a内の混合気に大きな乱れが
生じ、燃焼状態が改善される。
In this embodiment, a jet hole 8 is provided on the inner wall surface 7 of the intake port of the engine 1 and is connected to the intake passage 2 between the supercharger 5 and the throttle valve 12 via a communication passage 9. There is. The jet hole 8 is opened tangentially to the cross section of the combustion chamber 1a, and is directed to the interval formed between the intake valve 10 and the valve seat when the intake valve 10 is opened. Therefore, the air ejected from the jet holes 8 enters the combustion chamber 1a through this interval when the intake valve 10 is opened, and produces the swirling flow shown by the arrow S in the figure. As a result, the air-fuel mixture in the combustion chamber 1a is greatly disturbed, and the combustion state is improved.

【0022】本実施例ではエンジンの暖機状態を検出す
るため、エンジン冷却水通路に冷却水温度を検出する冷
却水温度センサ21と、吸気通路2のエンジン入口近傍
にエンジン吸気温度を検出する吸気温度センサ18とが
それぞれ設けられている他、スロットル弁3にはスロッ
トル弁開度を検出するスロットルセンサ22、クランク
軸4にはエンジン回転数を検出する回転数23が、また
吸気通路2のスロットル弁3上流側には吸気流量を検出
するエアフローメータ25がそれぞれ設けられている。
In this embodiment, in order to detect the warm-up state of the engine, a cooling water temperature sensor 21 for detecting the cooling water temperature in the engine cooling water passage, and an intake air for detecting the engine intake air temperature in the vicinity of the engine inlet of the intake passage 2 are provided. In addition to the temperature sensor 18, the throttle valve 3 has a throttle sensor 22 for detecting the throttle valve opening, the crankshaft 4 has a rotational speed 23 for detecting the engine speed, and the throttle valve of the intake passage 2 An air flow meter 25 for detecting the intake air flow rate is provided on the upstream side of the valve 3.

【0023】図に31で示すのはエンジンの制御を行う
電子制御装置(ECU)である。本実施例ではECU
31は中央演算装置(CPU)33、ランダムアクセス
メモリ(RAM)34、リードオンリメモリ(ROM)
35及び入力ポート36、出力ポート37をそれぞれ相
互に双方向性バス38で接続した構成のディジタルコン
ピュータが用いられている。
Reference numeral 31 in the drawing denotes an electronic control unit (ECU) for controlling the engine. In this embodiment, the ECU
31 is a central processing unit (CPU) 33, a random access memory (RAM) 34, a read only memory (ROM)
A digital computer having a configuration in which the bidirectional bus 38 connects the 35, the input port 36, and the output port 37 to each other is used.

【0024】ECU 31の入力ポート36には本過給
制御のため冷却水温度センサ21、吸気温度センサ1
8、回転数センサ23、エアフロメータ25、スロット
ルセンサ22が接続され、それぞれ冷却水温度、エンジ
ン吸気温度、エンジン回転数、吸気流量、スロットル開
度が入力されている。またECU 31の出力ポート3
7は図示しない駆動回路を介してバイパス制御弁16の
アクチュエータ17と絞り弁12のアクチュエータ13
と接続され、バイパス制御弁16と絞り弁12の開度変
更を行うほか、電磁クラッチ6に接続され、クラッチO
N/OFFとを制御するようになっている。
The input port 36 of the ECU 31 has a cooling water temperature sensor 21 and an intake air temperature sensor 1 for main supercharging control.
8, a rotation speed sensor 23, an air flow meter 25, and a throttle sensor 22 are connected, and a cooling water temperature, an engine intake air temperature, an engine rotation speed, an intake air flow rate, and a throttle opening are input respectively. Also, the output port 3 of the ECU 31
7 is an actuator 17 of the bypass control valve 16 and an actuator 13 of the throttle valve 12 via a drive circuit (not shown).
Connected to the bypass control valve 16 and the throttle valve 12 to change the opening, and also connected to the electromagnetic clutch 6 to connect the clutch O.
N / OFF is controlled.

【0025】過給機5は通常運転時(エンジン暖機完了
後の状態)にはエンジン負荷に応じて作動する。図2実
線Aは通常運転時のクラッチ6のON/OFF領域を示
す。図の横軸はエンジン回転数N、縦軸はエンジン負荷
を表すパラメータとしてエンジン1回転当りの吸入空気
量Q/Nをとっている。図からわかるように過給機5は
通常運転時は中高負荷領域においてのみ作動(クラッチ
6がON)するように制御される。
The supercharger 5 operates according to the engine load during normal operation (after completion of engine warm-up). The solid line A in FIG. 2 shows the ON / OFF region of the clutch 6 during normal operation. In the figure, the horizontal axis represents the engine speed N and the vertical axis represents the intake air amount Q / N per engine revolution as a parameter representing the engine load. As can be seen from the figure, the supercharger 5 is controlled so as to operate (the clutch 6 is turned on) only in the medium and high load range during the normal operation.

【0026】また、図3は通常運転時におけるバイパス
制御弁9開度と負荷条件との関係を示す図で、縦軸はバ
イパス制御弁16の開度θb、横軸はスロットル開度θ
tを示している。図からわかるようにバイパス制御弁1
6は通常運転時にはスロットル弁開度の小さい低負荷領
域で全開とされ、過給機駆動負荷を低減するようにして
いるが中高負荷領域では負荷の増大と共に開度が減少
し、過給圧を上昇させて出力増大を図っている。また高
負荷領域ではバイパス制御弁16は全閉となり最大過給
圧を得るように制御される。
FIG. 3 is a diagram showing the relationship between the opening degree of the bypass control valve 9 and the load condition during normal operation. The vertical axis represents the opening degree θb of the bypass control valve 16 and the horizontal axis represents the throttle opening degree θ.
indicates t. As you can see, bypass control valve 1
No. 6 is fully opened in the low load region where the throttle valve opening is small during normal operation to reduce the supercharger drive load, but in the middle and high load regions the opening decreases with increasing load and the supercharging pressure is reduced. I am trying to increase the output by raising it. Further, in the high load region, the bypass control valve 16 is fully closed and controlled so as to obtain the maximum boost pressure.

【0027】次に本実施例のエンジン低温時の吸気加熱
操作について説明する。本実施例では冷却水温度センサ
21の出力によりエンジンが低温状態にあると判断され
た場合、軽負荷状態であってもクラッチ6を接続し、過
給機5を作動させる。過給機5により吸気を圧縮し、圧
縮仕事により吸気温度を上昇させるためである。
Next, the intake air heating operation when the engine temperature is low according to this embodiment will be described. In the present embodiment, when it is determined from the output of the cooling water temperature sensor 21 that the engine is in the low temperature state, the clutch 6 is connected and the supercharger 5 is operated even in the light load state. This is because the intake air is compressed by the supercharger 5 and the intake air temperature is raised by the compression work.

【0028】図2の点線Bは冷間時における過給機の作
動制御線を示している。本実施例では冷却水温度が所定
値(例えば50℃)以下の場合には機関が冷間状態にあ
ると判定して、通常時の作動線の代わりに点線Bで示す
作動線により電磁クラッチ6のON/OFFを行う。図
に示すように冷間時においては、エンジン極低負荷かつ
低回転数で運転されている場合(すなわち過給機を作動
させると駆動損失によりエンジンが停止する恐れがある
場合)を除いた全領域で過給機が作動する。
Dotted line B in FIG. 2 shows the operation control line of the supercharger during cold operation. In this embodiment, when the temperature of the cooling water is below a predetermined value (for example, 50 ° C.), it is determined that the engine is in the cold state, and the electromagnetic clutch 6 is operated by the operation line indicated by the dotted line B instead of the operation line in the normal state. ON / OFF of. As shown in the figure, during cold conditions, all except for the case where the engine is operating at extremely low load and low rotation speed (that is, when the turbocharger is operated, the engine may stop due to drive loss) The turbocharger operates in the area.

【0029】また、エンジン冷間時に過給機5を作動さ
せる際にはバイパス制御弁16は全閉位置に保持され、
絞り弁12の開度を変更することによりエンジン吸気温
度制御を行う。本実施例では絞り弁12開度は吸気温度
センサ18の検出したエンジン吸気温度に基づいて、エ
ンジン吸気温度が予め設定された目標値になるようにフ
ィードバック制御される。
When the supercharger 5 is operated when the engine is cold, the bypass control valve 16 is held in the fully closed position,
The engine intake air temperature control is performed by changing the opening degree of the throttle valve 12. In the present embodiment, the opening degree of the throttle valve 12 is feedback-controlled based on the engine intake air temperature detected by the intake air temperature sensor 18 so that the engine intake air temperature reaches a preset target value.

【0030】図4はエンジン吸入空気温度(絞り弁下流
側での吸入空気温度)の目標値を示している。図4から
わかるように、吸入空気温度目標値は冷却水温度TWの
値に応じて設定され、冷却水温度TWが低いほど高く、
冷却水温度TWが高いほど低くなるように設定される。
冷却水温度TWが低いほど吸入空気温度目標値を高く設
定しているのは、冷却水温度が低い場合には吸気管や吸
気ポートの温度も低くなっており、吸入空気がこれらの
部分を通過する際の温度低下が大きくなることを考慮し
たためである。
FIG. 4 shows the target value of the engine intake air temperature (the intake air temperature on the downstream side of the throttle valve). As can be seen from FIG. 4, the target value of the intake air temperature is set according to the value of the cooling water temperature TW, and the lower the cooling water temperature TW, the higher the
The cooling water temperature TW is set to be lower as it is higher.
The lower the cooling water temperature TW, the higher the intake air temperature target value is set because the intake pipe and intake port temperatures are lower when the cooling water temperature is lower and the intake air passes through these parts. This is because it takes into consideration the fact that the temperature drop when performing is large.

【0031】なお、冷却水温度TWが極めて低い場合の
吸入空気温度は、過給機5を保護するため、過給機出口
温度が過大にならない範囲でできるだけ高くなるように
(例えば最高100℃前後)に設定される。このように
エンジン吸入空気温度に基づいて絞り弁12をフィード
バック制御することにより、大気温度やエンジン運転条
件に影響されることなく、エンジン吸入温度を常に設定
値に保持することが可能となる。
In order to protect the supercharger 5, the intake air temperature when the cooling water temperature TW is extremely low should be as high as possible within the range where the supercharger outlet temperature does not become excessive (for example, around 100 ° C. at maximum). ) Is set. By performing feedback control of the throttle valve 12 based on the engine intake air temperature in this manner, the engine intake temperature can always be maintained at the set value without being affected by the atmospheric temperature and the engine operating conditions.

【0032】エンジン冷間時に絞り弁12の開度調節を
行うと絞り弁12の開度減少に応じて過給機の吐出圧力
と温度とが上昇する。前述のように吸気ポート内壁面7
の噴流孔8は連通路9を介して過給機5と絞り弁12と
の間の吸気通路2に接続されているため、上記の吸気加
熱操作時には噴流孔8からは高温高圧になった過給機吐
出空気が噴射される。この噴流孔8から噴射される空気
は過給機吐出圧力が高い程流速が大きく、これにより燃
焼室1a内に生じる旋回流による乱れも大きくなる。
When the opening degree of the throttle valve 12 is adjusted while the engine is cold, the discharge pressure and temperature of the supercharger rise as the opening degree of the throttle valve 12 decreases. As mentioned above, the intake port inner wall surface 7
Since the jet hole 8 is connected to the intake passage 2 between the supercharger 5 and the throttle valve 12 via the communication passage 9, the high temperature and high pressure from the jet hole 8 is generated during the above-mentioned intake heating operation. The dispenser discharge air is injected. The higher the discharge pressure of the supercharger, the higher the flow velocity of the air injected from the jet holes 8, and the greater the turbulence due to the swirling flow generated in the combustion chamber 1a.

【0033】従って、エンジン冷間時には絞り弁12の
開度が小さい程、すなわちエンジンが低温である程燃焼
室内に生じる混合気の乱れが大きくなり、大きな燃焼改
善効果が得られることになる。しかも噴流孔8から噴射
される空気も、絞り弁12を通ってエンジンに供給され
る吸気と同様高温になっているため、燃焼室1a内の混
合気が噴射空気により冷却されることがない。
Accordingly, when the engine is cold, the smaller the degree of opening of the throttle valve 12, that is, the lower the temperature of the engine, the larger the turbulence of the air-fuel mixture produced in the combustion chamber, and the greater the effect of improving combustion. Moreover, since the air injected from the jet holes 8 is also at a high temperature like the intake air supplied to the engine through the throttle valve 12, the air-fuel mixture in the combustion chamber 1a is not cooled by the injection air.

【0034】従って、本実施例のように過給気吐出空気
の一部を噴流孔8から噴射することによりエンジンが低
温である程大きな燃焼改善効果が得られ、低温時の燃焼
悪化が生じない。図5は本実施例の吸気加熱制御動作の
フローチャートを示す。本ルーチンは前述のECU 3
1により一定時間毎(例えば16ミリ秒毎)に実行され
る。なお、この制御のためECU 31は図2から図4
の関数をROM 35に記憶しており、これらを基に以
下の制御を行う。
Therefore, by injecting a part of the supercharged air from the jet holes 8 as in the present embodiment, a larger combustion improving effect is obtained as the engine temperature is lower, and combustion deterioration at low temperature does not occur. .. FIG. 5 shows a flowchart of the intake air heating control operation of this embodiment. This routine is executed by the ECU 3 described above.
1 is executed at regular time intervals (for example, every 16 milliseconds). Note that, for this control, the ECU 31 controls the ECUs shown in FIGS.
Is stored in the ROM 35, and the following control is performed based on these.

【0035】図5でルーチンがスタートするとステップ
100では前述の各センサからエンジン回転数N、吸気
流量Q、スロットル開度θt、冷却水温度TWエンジン
吸気温度TSが読込まれ、ステップ105では負荷パラ
メータQ/Nが算出される。次にステップ110ではエ
ンジンが低温状態にあるか否かが判定される。本実施例
ではエンジン冷却水温度TWを用いTW<50℃の場合
にはエンジンが低温状態にあると判断してステップ11
5〜ステップ160の吸気加熱操作を行う。
When the routine starts in FIG. 5, the engine speed N, the intake air flow rate Q, the throttle opening θt, the cooling water temperature TW, and the engine intake temperature TS are read from the above-mentioned sensors at step 100, and at step 105, the load parameter Q. / N is calculated. Next, at step 110, it is judged if the engine is in a low temperature state. In the present embodiment, the engine cooling water temperature TW is used, and if TW <50 ° C., it is determined that the engine is in a low temperature state and step 11
The intake air heating operation of steps 5 to 160 is performed.

【0036】すなわちステップ115ではエンジン回転
数Nと負荷パラメータQ/Nとから図2の点線Bの関係
を基に過給機5を作動できる負荷条件か否かが判定され
る。過給機5が作動可能であれば、過給機による吸気加
熱を行うこととして、ステップ120でバイパス制御弁
16のアクチュエータ17に閉弁信号を出力し、バイパ
ス制御弁16を全閉にする。次いでステップ125では
冷却水温度TWから図4に基づいてエンジン吸気温度の
目標値を設定し、ステップ130では、この目標温度と
実際の吸気温度TSとの差に基づいて絞り弁12の開度
をフィードバック制御し、ステップ135ではクラッチ
6をONにして過給機5を作動させる。これによりエン
ジン吸気温度が目標値より低い場合には絞り弁12の開
度が減少し、逆に高い場合には開度が増大してエンジン
吸気温度TSは冷却水温度TWに応じて常に適切な値に
維持される。また、吸気ポートに設けた噴流孔8からは
エンジンが低温である程高温かつ高圧の空気が噴射さ
れ、燃焼室1a内の混合気に大きな乱れを生じさせる。
That is, at step 115, it is judged from the engine speed N and the load parameter Q / N based on the relationship of the dotted line B of FIG. If the supercharger 5 is operable, intake air heating by the supercharger is performed, and a valve closing signal is output to the actuator 17 of the bypass control valve 16 in step 120 to fully close the bypass control valve 16. Next, at step 125, the target value of the engine intake air temperature is set from the cooling water temperature TW based on FIG. 4, and at step 130, the opening degree of the throttle valve 12 is set based on the difference between this target temperature and the actual intake air temperature TS. Feedback control is performed, and in step 135, the clutch 6 is turned on to operate the supercharger 5. As a result, when the engine intake air temperature is lower than the target value, the opening degree of the throttle valve 12 decreases, and conversely, when the engine intake air temperature is higher than the target value, the opening degree increases, and the engine intake air temperature TS is always appropriate according to the cooling water temperature TW. Maintained at the value. Further, from the jet hole 8 provided in the intake port, the higher the temperature of the engine is, the higher the temperature and the pressure of the air are jetted, and the air-fuel mixture in the combustion chamber 1a is greatly disturbed.

【0037】ステップ115で過給機作動不可と判定さ
れた場合には、吸気加熱は行わない。すなわちステップ
150でバイパス制御弁16を全開にしてバイパス通路
15を通してエンジンに吸気を供給すると共に、ステッ
プ155では絞り弁12を全開にして吸気抵抗を減少さ
せ、ステップ160ではクラッチをOFF状態に保持し
て過給機は作動させない。
If it is determined in step 115 that the supercharger cannot be operated, intake air heating is not performed. That is, in step 150, the bypass control valve 16 is fully opened to supply intake air to the engine through the bypass passage 15, and in step 155, the throttle valve 12 is fully opened to reduce intake resistance, and in step 160, the clutch is held in the OFF state. Do not operate the turbocharger.

【0038】また、ステップ110でTW≧50℃、す
なわち暖機が完了していると判定された場合はステップ
170に進み、通常運転時の過給圧制御を行う。すなわ
ち、ステップ170では暖機完了後の過給機作動線(図
2、実線A)から過給機作動要否を判定し、過給機作動
が必要な場合にはステップ175に進む。ステップ17
5では、図3に基づいてスロットル弁開度θtからバイ
パス制御弁の開度設定値θbを決定し、アクチュエータ
17を駆動してバイパス制御弁開度をθbに設定する。
次いでステップ180で絞り弁12を全開にした後ステ
ップ185でクラッチ6をONにして過給機を作動させ
る。
When TW ≧ 50 ° C., that is, when it is determined in step 110 that the warm-up is completed, the routine proceeds to step 170, where supercharging pressure control during normal operation is performed. That is, in step 170, it is judged from the supercharger operation line (solid line A in FIG. 2) after the completion of warm-up whether or not the supercharger operation is necessary. Step 17
5, the opening setting value θb of the bypass control valve is determined from the throttle valve opening θt based on FIG. 3, and the actuator 17 is driven to set the bypass control valve opening to θb.
Next, in step 180, the throttle valve 12 is fully opened, and then in step 185, the clutch 6 is turned on to operate the supercharger.

【0039】これにより暖機完了後は過給圧力がエンジ
ン負荷条件に応じた適切な値に制御される。なお、ステ
ップ170で過給機作動が必要ないと判定された場合は
ステップ150以下を実行し、バイパス制御弁全開(ス
テップ150)、絞り弁全開(ステップ155)、クラ
ッチOFF(ステップ160)の操作を行う。
As a result, after the completion of warming up, the supercharging pressure is controlled to an appropriate value according to the engine load condition. If it is determined in step 170 that the supercharger operation is not necessary, step 150 and subsequent steps are executed to operate the bypass control valve fully open (step 150), the throttle valve fully open (step 155), and the clutch off (step 160). I do.

【0040】次に図6に本発明の第二の実施例を示す。
図6において図1と同じ参照符号は図1と同じ要素を示
す。本実施例では噴流孔8はECU 31により切換操
作される電磁三方切換弁11aにより、過給機吐出側
(絞り弁12上流側)の吸気通路とスロットル弁3上流
側の吸気通路とに選択的に連通されるようになってお
り、スロットル弁3上流側に連通する連通路9bには電
磁三方切換弁11a側からスロットル弁3上流側へ吸気
が逆流することを防止する逆止弁11bが設けられてい
る。
Next, FIG. 6 shows a second embodiment of the present invention.
6, the same reference numerals as those in FIG. 1 denote the same elements as those in FIG. In this embodiment, the injection hole 8 is selectively switched between an intake passage on the discharge side of the supercharger (upstream side of the throttle valve 12) and an intake passage on the upstream side of the throttle valve 3 by an electromagnetic three-way switching valve 11a which is switched by the ECU 31. A check valve 11b for preventing intake air from flowing backward from the electromagnetic three-way switching valve 11a side to the throttle valve 3 upstream side is provided in the communication passage 9b communicating with the throttle valve 3 upstream side. Has been.

【0041】図5からわかるように前述の実施例では吸
気抵抗を減少させるために、過給機5非作動時には絞り
弁12は全開に保持される。このため絞り弁12の前後
で差圧がなくなり、噴流孔8からは空気が噴射されなく
なってしまう。過給機5はエンジン冷間時には極低負荷
低速運転時には作動を禁止されるため、前述の実施例で
は、極低負荷低速運転時には吸気加熱も空気噴射も行わ
れず燃焼状態の改善が得られないことになる。
As can be seen from FIG. 5, in the above-described embodiment, the throttle valve 12 is held fully open when the supercharger 5 is not operating in order to reduce the intake resistance. Therefore, there is no differential pressure before and after the throttle valve 12, and air is no longer ejected from the jet holes 8. Since the supercharger 5 is prohibited from operating at the time of extremely low load low speed operation when the engine is cold, in the above-described embodiment, neither intake air heating nor air injection is performed at the time of extremely low load low speed operation, and improvement of the combustion state cannot be obtained. It will be.

【0042】本実施例では、これを防止するためECU
31は過給機5の作動停止(クラッチ6 OFF)時
には電磁三方切換弁11aを切換えて、噴流孔8とスロ
ットル弁3上流側とを連通させるようにしている。過給
機非作動時には、吸気ポート付近は負圧になるため、こ
のように切換操作を行うことにより、噴流口8からは吸
気ポートとスロットル弁3上流側の大気圧との差圧に応
じて空気が噴射され、燃焼室1a内に乱れを生成するこ
とができる。なお逆止弁11bは、電磁切換弁11aが
故障した際等に過給機吐出空気が連通路9bを通ってス
ロットル弁上流側に逆流することを防止するために設け
られている。
In this embodiment, in order to prevent this, the ECU
When the operation of the supercharger 5 is stopped (the clutch 6 is OFF), the numeral 31 switches the electromagnetic three-way switching valve 11a so that the jet hole 8 and the upstream side of the throttle valve 3 are communicated with each other. When the supercharger is not operating, a negative pressure is generated in the vicinity of the intake port. Therefore, by performing the switching operation in this manner, the jet port 8 is operated according to the pressure difference between the intake port and the atmospheric pressure on the upstream side of the throttle valve 3. Air is injected and turbulence can be generated in the combustion chamber 1a. The check valve 11b is provided to prevent the supercharger discharge air from flowing back to the upstream side of the throttle valve through the communication passage 9b when the electromagnetic switching valve 11a fails.

【0043】なお、上記実施例では、エンジン冷間時の
吸気加熱の際に、バイパス制御弁16を全閉にして絞り
弁12を用いてエンジン吸気温度の制御を行っている
が、これとは逆に吸気加熱時に絞り弁12を一定開度に
保持したままでバイパス制御弁16をエンジン吸気温度
に基づいてフィードバック制御することも可能である。
In the above embodiment, when the intake air is heated when the engine is cold, the bypass control valve 16 is fully closed and the throttle valve 12 is used to control the engine intake air temperature. Conversely, it is also possible to perform feedback control of the bypass control valve 16 based on the engine intake air temperature while maintaining the throttle valve 12 at a constant opening during intake air heating.

【0044】[0044]

【発明の効果】本発明によれば、エンジン冷間時に過給
機と絞り弁とを用いて吸気加熱を行うと共に、吸気ポー
トに設けた噴流孔から高温高圧の過給機吐出空気の一部
を噴射して燃焼室内に混合気の乱れを生成させることに
より、燃焼室内の混合気温度上昇と乱れの増大を生じさ
せ、エンジン冷間時の低速低負荷運転の燃焼を大幅に改
善することができる。
According to the present invention, the intake air is heated by using the supercharger and the throttle valve when the engine is cold, and at the same time, a part of the high temperature and high pressure supercharger discharge air is discharged from the jet holes provided in the intake port. By injecting the air-fuel mixture to generate turbulence of the air-fuel mixture in the combustion chamber, it is possible to increase the temperature of the air-fuel mixture and increase the turbulence, and to significantly improve combustion in low-speed low-load operation when the engine is cold. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の機械式過給機付内燃機関の一実施例構
成を示す略示図である。
FIG. 1 is a schematic diagram showing the configuration of an embodiment of an internal combustion engine with a mechanical supercharger of the present invention.

【図2】同上実施例の過給機作動領域を示す図である。FIG. 2 is a diagram showing a supercharger operation region of the embodiment.

【図3】同上実施例のバイパス制御弁開度設定を示す図
である。
FIG. 3 is a diagram showing a bypass control valve opening setting according to the embodiment.

【図4】同上実施例のエンジン吸入空気温度目標値と冷
却水温度との関係を示す図である。
FIG. 4 is a diagram showing a relationship between an engine intake air temperature target value and a cooling water temperature in the above embodiment.

【図5】同上実施例の吸気加熱制御動作を示すフローチ
ャートである。
FIG. 5 is a flowchart showing an intake air heating control operation of the above embodiment.

【図6】本発明の機械式過給機付内燃機関の図1とは別
の実施例構成を示す略示図である。
FIG. 6 is a schematic view showing the configuration of an embodiment of the internal combustion engine with a mechanical supercharger of the present invention, which is different from FIG.

【符号の説明】[Explanation of symbols]

1…エンジン 2…吸気通路 3…スロットル弁 5…過給機 8…噴流孔 9…連通路 12…絞り弁 15…吸気バイパス通路 16…バイパス制御弁 31…電子制御装置(ECU) DESCRIPTION OF SYMBOLS 1 ... Engine 2 ... Intake passage 3 ... Throttle valve 5 ... Supercharger 8 ... Jet hole 9 ... Communication passage 12 ... Throttle valve 15 ... Intake bypass passage 16 ... Bypass control valve 31 ... Electronic control unit (ECU)

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 F02D 45/00 Q 8109−3G F02M 23/14 7114−3G 31/04 B 8923−3G ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Office reference number FI technical display location F02D 45/00 Q 8109-3G F02M 23/14 7114-3G 31/04 B 8923-3G

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 機械式過給機と、該機械式下流側吸気通
路に絞り弁とを備え、機関冷間時に過給機を作動させる
と共に前記絞り弁で吸気通路を絞り、過給機による吸気
圧縮加熱を行う内燃機関において、 機関吸気ポート内壁面に機関吸気弁を指向する噴流孔
と、過給機と前記絞り弁との間の吸気通路内の吸気を該
噴流孔に導く連通路とを設けたことを特徴とする機械式
過給機付内燃機関。
1. A mechanical supercharger and a throttle valve in the mechanical downstream side intake passage, wherein the supercharger is operated when the engine is cold and the intake passage is throttled by the throttle valve. In an internal combustion engine that performs intake compression heating, a jet hole that points the engine intake valve on the inner wall surface of the engine intake port, and a communication passage that guides the intake air in the intake passage between the supercharger and the throttle valve to the jet hole. An internal combustion engine with a mechanical supercharger characterized by being provided with.
JP3303241A 1991-11-19 1991-11-19 Internal combustion engine with mechanical supercharger Pending JPH05141251A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3303241A JPH05141251A (en) 1991-11-19 1991-11-19 Internal combustion engine with mechanical supercharger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3303241A JPH05141251A (en) 1991-11-19 1991-11-19 Internal combustion engine with mechanical supercharger

Publications (1)

Publication Number Publication Date
JPH05141251A true JPH05141251A (en) 1993-06-08

Family

ID=17918577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3303241A Pending JPH05141251A (en) 1991-11-19 1991-11-19 Internal combustion engine with mechanical supercharger

Country Status (1)

Country Link
JP (1) JPH05141251A (en)

Similar Documents

Publication Publication Date Title
JP3997477B2 (en) Control device for internal combustion engine
US8001778B2 (en) Turbocharged engine control operation with adjustable compressor bypass
EP1167727B1 (en) Internal combustion engine and method for recirculating exhaust gas
US20020069859A1 (en) Internal combustion engine
JP3951951B2 (en) Control device for internal combustion engine
JPH08296469A (en) Compressive end temperature control method and control in diesel engine
JP2004360525A (en) Engine with turbocharger
JPH05321643A (en) Exhaust device of engine having turbo supercharger
JP3054430B2 (en) Engine intake system
JP3743232B2 (en) White smoke emission suppression device for internal combustion engine
JPH05141251A (en) Internal combustion engine with mechanical supercharger
JP2002188522A (en) Egr control device for engine with turbocharger
JP3538860B2 (en) Engine intake system
JPH05141252A (en) Internal combustion engine with mechanical supercharger
JP4155131B2 (en) Combustion control system for premixed compression ignition combustion internal combustion engine
JP2987675B2 (en) Intake control device for internal combustion engine
JPS5974345A (en) Cylinder-number controlling apparatus for engine
JPH05133235A (en) Internal combustion engine with mechanical supercharger
JPH0526049A (en) Supercharging control device for mechanical supercharger
JP2574089Y2 (en) Assist air system for supercharged internal combustion engine
JP2987658B2 (en) Assist air supply device for internal combustion engine
JP3748575B2 (en) Intake device for internal combustion engine
JPH05263701A (en) Internal combustion engine with mechanical superchrger
JPH10141072A (en) Control device for engine with mechanical supercharger
JPH1077870A (en) Engine with supercharger