JPH05140707A - Heat treating method for improving corrosion resistance of solid-solution strengthened ni base alloy - Google Patents

Heat treating method for improving corrosion resistance of solid-solution strengthened ni base alloy

Info

Publication number
JPH05140707A
JPH05140707A JP30336891A JP30336891A JPH05140707A JP H05140707 A JPH05140707 A JP H05140707A JP 30336891 A JP30336891 A JP 30336891A JP 30336891 A JP30336891 A JP 30336891A JP H05140707 A JPH05140707 A JP H05140707A
Authority
JP
Japan
Prior art keywords
based alloy
corrosion resistance
less
heat treatment
solid solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30336891A
Other languages
Japanese (ja)
Inventor
Yoshinao Urayama
義直 浦山
Masayoshi Kanno
正義 管野
Masakiyo Izumitani
雅清 泉谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP30336891A priority Critical patent/JPH05140707A/en
Publication of JPH05140707A publication Critical patent/JPH05140707A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide the heat treating method for improving the corrosion resistance of a solid-soln. strengthened Ni base alloy for a nuclear reactor for solving the serious problem of the corrosive damage of 'Inconel(R)' 600 used for a structure in a BWR(boiling water reactor) caused by the sensitization of material in a reactor water environment of BWR. CONSTITUTION:This method is characterized in that in heat treatment in the final stage, for obtaining high corrosion resistance and good mechanical properties of a solid solution strengthened Ni base alloy, setting its heating temp. to 1000 to 1100 deg.C, allowing >=60% of the C content therein to enter into solid solution, regulating the grain size to fine one of >=4 grain size number and thereafter executing rapid cooling from the heating temp. to 300 deg.C at >=200 deg.C/sec cooling rate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、固溶強化型Ni基合金
の固溶化熱処理状態または最終熱処理状態における耐食
性改善熱処理法に係り、特に軽水炉等の高温高圧水環境
下で懸念される粒界型応力腐食割れ(以下IGSCCと
称する。)を防止するために好適な固溶強化型Ni基合
金の耐食性改善熱処理法及び固溶強化型Ni基合金に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat treatment method for improving the corrosion resistance of a solid solution strengthened Ni-based alloy in a solution heat treatment state or a final heat treatment state, and particularly to a grain boundary which is of concern in a high temperature and high pressure water environment such as a light water reactor. TECHNICAL FIELD The present invention relates to a heat treatment method for improving corrosion resistance of a solid solution strengthened Ni-based alloy and a solution-strengthened Ni-based alloy, which are suitable for preventing type stress corrosion cracking (hereinafter referred to as IGSCC).

【0002】[0002]

【従来の技術】Crを10%以上を含有するNi基合
金、例えばインコネル600(15%Cr、7%Fe、
残余は不純物等を除きNi)は、高温強度と耐食性を要
求される機器の構造材料として応く用いられている。一
般にこの種の合金は高Cr含有のため耐食性が優れてい
ると言えるが、酸やアルカリ環境あるいは原子炉水環境
などで腐食や応力腐食割れ(以下SCCと称する。)を
生じることが知られている。これらの腐食損傷は、ほと
んどが粒界腐食又はIGSCCであり、熱処理により生
ずる粒界でのCr炭化物析出や不純物の粒界偏析が主な
原因と考えられている。すなわち、固溶強化型Ni基合
金のうち、例えばインコネル600はNiによる非酸化
性酸中での耐食性とCrによる酸化性酸中での耐食性と
を兼ね備えているとともに、オーステナイト系ステンレ
ス鋼の決定的な弱点である塩化物による応力腐食割れに
対して極めて優れた抵抗力を有し、応力腐食割れ対策の
切札的な存在であるが、従来の固溶化処理あるいは最終
熱処理(MA:ミルアニール処理)を施した場合、熱処
理条件により生じる鋭敏化を考慮していなかったために
熱処理過程で鋭敏化が生じ、耐粒界腐食性や耐高温高圧
水IGSCC性が低下するということが知られている。
2. Description of the Related Art Ni-based alloys containing 10% or more of Cr, such as Inconel 600 (15% Cr, 7% Fe,
Ni) is used as a structural material of equipment requiring high temperature strength and corrosion resistance, except for impurities. In general, it can be said that this type of alloy has excellent corrosion resistance due to its high Cr content, but it is known that corrosion and stress corrosion cracking (hereinafter referred to as SCC) occur in an acid or alkaline environment or a reactor water environment. There is. Most of these corrosion damages are intergranular corrosion or IGSCC, and it is considered that Cr carbide precipitation and intergranular segregation of impurities at the grain boundaries caused by heat treatment are the main causes. That is, of the solid solution strengthened Ni-based alloys, for example, Inconel 600 has both corrosion resistance in a non-oxidizing acid due to Ni and corrosion resistance in an oxidizing acid due to Cr, and is also a decisive factor for austenitic stainless steel. It has excellent resistance to stress corrosion cracking due to chloride, which is a weak point, and is a trump card against stress corrosion cracking. However, conventional solution treatment or final heat treatment (MA: mill annealing treatment) It is known that when applied, since sensitization caused by heat treatment conditions is not taken into consideration, sensitization occurs in the heat treatment process, and intergranular corrosion resistance and high-temperature high-pressure water IGSCC resistance decrease.

【0003】粒界腐食性を改善するために、1050℃
〜1200℃で0.5h程度の固溶化処理を施すことな
どが考えられているが、耐粒界腐食性を向上させるに至
っていない。特開昭57−9861号公報では固溶化処
理温度を摂氏T度とし、固溶化処理時間をt時間とした
場合、18260/T≦logt+12.00の条件を満
足する固溶化熱処理を施せば、インコネル600の耐粒
界腐食性が改善されるとしているが、粒界腐食感受性や
高温高圧純水SCC感受性を完全に消失させるには至っ
ていない。また、特開昭61−284558号公報に
は、耐水素割れ性に優れたNi基合金の製造法として、
溶体化処理における冷却速度を50℃/sec以上(具体的
実施例では60℃/sec、80℃/sec)とすることが示
されているが、軽水炉等の高温高圧水環境下で懸念され
る粒界型応力腐食割れの問題については全く考慮されて
いない。
1050 ° C. in order to improve intergranular corrosion resistance
It has been considered to carry out a solution treatment at about 1200 ° C. for about 0.5 h, but the intergranular corrosion resistance has not been improved yet. In JP-A-57-9861, when the solution treatment temperature is set to T degrees Celsius and the solution treatment time is set to t hours, if the solution heat treatment satisfying the condition of 18260 / T ≦ logt + 12.00 is performed, Inconel Although the intergranular corrosion resistance of 600 is improved, the intergranular corrosion susceptibility and the high temperature high pressure pure water SCC susceptibility have not been completely eliminated. Further, Japanese Patent Application Laid-Open No. 61-284558 discloses a method for producing a Ni-based alloy having excellent hydrogen crack resistance.
Although it has been shown that the cooling rate in the solution heat treatment is 50 ° C./sec or more (60 ° C./sec, 80 ° C./sec in the specific examples), it is feared in a high temperature and high pressure water environment such as a light water reactor. No consideration has been given to the problem of intergranular stress corrosion cracking.

【0004】従って、該当合金から成る原子炉用機器等
の健全性と信頼性を確保する上では、粒界腐食機構また
はSCC機構に基づいた粒界腐食及び高温高圧純水SC
C防止技術の確立が重要となった。
Therefore, in order to ensure the soundness and reliability of the nuclear reactor equipment made of the corresponding alloy, the intergranular corrosion and the high temperature high pressure pure water SC based on the intergranular corrosion mechanism or the SCC mechanism are used.
The establishment of C prevention technology became important.

【0005】[0005]

【発明が解決しようとする課題】固溶強化型Ni基合金
のうち例えばインコネル600は、受入れのままの状態
あるいは固溶化処理の状態で粒界腐食感受性や高温高圧
純水SCC感受性を示した。これは熱処理により生ずる
不純物の粒界偏析が主要因と考えられていたが、それを
証明すべく実験事実が見当らず粒界腐食及び高温水IG
SCC防止技術の確立が困難な状況にあった。
Among the solid solution strengthened Ni-based alloys, for example, Inconel 600 exhibits intergranular corrosion susceptibility and high temperature high pressure pure water SCC susceptibility in the as-received state or in the state of solution treatment. It was thought that the main cause of this was grain boundary segregation of impurities caused by heat treatment, but no experimental facts were found to prove it and grain boundary corrosion and high temperature water IG
It was difficult to establish SCC prevention technology.

【0006】本発明の目的は、固溶化処理状態または最
終熱処理状態で生じる粒界腐食や高温高圧純水SCCの
発生機構に基づいて、含有C量に応じた適正固溶化処
理温度あるいは最終熱処理温度並びに適正な結晶粒径
と適正な冷却方法のとととを組合せた熱処理法
により、耐食性に優れた固溶強化型Ni基合金を得るこ
とにある。本発明によれば、固溶化処理状態または最終
熱処理状態において、該当合金の機械的性質を損うこと
なく耐食性に優れた固溶強化型Ni基合金が提供でき
る。
The object of the present invention is to provide an appropriate solution treatment temperature or final heat treatment temperature according to the C content based on the intergranular corrosion occurring in the solution treatment state or the final heat treatment state and the generation mechanism of high temperature high pressure pure water SCC. Another object of the present invention is to obtain a solid solution strengthened Ni-based alloy having excellent corrosion resistance by a heat treatment method that combines an appropriate crystal grain size and an appropriate cooling method. According to the present invention, it is possible to provide a solution strengthened Ni-based alloy having excellent corrosion resistance without impairing the mechanical properties of the alloy in the solution treatment state or the final heat treatment state.

【0007】[0007]

【課題を解決するための手段】本発明は、固溶強化型N
i基合金の固溶化処理状態または最終熱処理状態におい
て生じる粒界腐食あるいは高温高圧純水IGSCCを防
止するための熱処理法に係る。固溶強化型Ni基合金は
C固溶度が小さいために従来の固溶化処理法または最終
熱処理法において鋭敏化(Cr欠乏)が生じ、その結果
耐食性の低下が生じ得ることを発見した。従って、耐食
性を向上させるためには固溶化処理状態または最終熱処
理状態において鋭敏化を抑制すべき熱処理技術の確立が
有益であることを見い出した。
SUMMARY OF THE INVENTION The present invention is a solid solution strengthened type N
The present invention relates to a heat treatment method for preventing intergranular corrosion or high temperature high pressure pure water IGSCC that occurs in a solution treatment state or final heat treatment state of an i-based alloy. It has been discovered that since the solid solution strengthened Ni-based alloy has a low C solid solubility, sensitization (Cr deficiency) may occur in the conventional solution treatment method or the final heat treatment method, resulting in a decrease in corrosion resistance. Therefore, it has been found that it is beneficial to establish a heat treatment technique for suppressing sensitization in the solution treatment state or the final heat treatment state in order to improve the corrosion resistance.

【0008】すなわち本発明は、Crを含有するNi基
合金であって高温高圧水中で使用される固溶強化型Ni
基合金の耐食性改善熱処理法において、前記Ni基合金
を加熱して含有C量の60%以上を固溶させる加熱工程
と、この加熱工程後に結晶粒径を結晶粒度番号(JIS
G 0552)が4以上の細粒にするよう一定時間保持
する加熱保持工程と、200℃/sec以上の冷却速度で
300℃まで冷却する急冷工程と、を含むことを特徴と
するものである。
That is, the present invention is a solid solution strengthened Ni which is a Ni-based alloy containing Cr and which is used in high temperature high pressure water.
In the heat treatment method for improving the corrosion resistance of a base alloy, a heating step of heating the Ni-based alloy to form a solid solution in an amount of 60% or more of the C content, and a crystal grain size after the heating step
G 0552) is characterized by including a heating and holding step of holding it for a certain period of time so as to make fine particles of 4 or more, and a rapid cooling step of cooling to 300 ° C. at a cooling rate of 200 ° C./sec or more.

【0009】また、本発明は、Crを含有するNi基合
金であって高温高圧水中で使用される固溶強化型Ni基
合金の耐食性改善熱処理法において、前記Ni基合金を
1000〜1100℃に加熱する工程と、この加熱工程
後に結晶粒径を結晶粒度番号4以上の細粒にするよう一
定時間保持する加熱保持工程と、冷却過程で結晶粒界に
Cr欠乏が生じない速度で300℃まで冷却する急冷工
程と、を含むことを特徴とするものである。ここで、急
冷工程は10℃以下の水、油またはガス雰囲気中で行な
われるものがよい。
Further, the present invention is a heat treatment method for improving the corrosion resistance of a Cr-containing Ni-base alloy which is used in high-temperature high-pressure water, wherein the Ni-base alloy is heated to 1000 to 1100 ° C. A heating step, a heating and holding step of holding the crystal grain size for 4 hours or more so that the crystal grain size becomes finer than the crystal grain size number 4 after the heating step, and a rate of not depleting Cr in the crystal grain boundaries during the cooling process up to 300 ° C. And a quenching step of cooling. Here, the quenching step is preferably performed in a water, oil or gas atmosphere at 10 ° C. or lower.

【0010】また、本発明は、Crを含有するNi基合
金であって高温高圧水中で使用される固溶強化型Ni基
合金において、結晶粒界及び粒界近傍部におけるCrの
濃度がほぼ一様のものであることを特徴とするものであ
る。ここで、Ni基合金は重量比で、C:0.15%以
下、Si:0.5%以下、Mn:1.0%以下、Cr:
14〜17%、Fe:6〜10%含有し、残部がNi及
び不可避的不純物であるものがよい。または、Ni基合
金は重量比で、C:0.1%以下、Si:0.5%以
下、Mn:0.5%以下、Cr:20〜23%、Mo:
8〜10%、Nb:3.15〜4.15%、Ti:0.
4%以下、Al:0.4%以下、Fe:5%以下含有
し、残部がNi及び不可避的不純物であるものがよい。
または、Ni基合金は重量比で、C:0.05%以下、
Si:0.5%以下、Mn:0.5%以下、Cr:27
〜31%、Fe:7〜11%含有し、残部がNi及び不
可避的不純物であるものがよい。
Further, according to the present invention, in a Ni-based alloy containing Cr, which is used in high-temperature high-pressure water, a solution-strengthened Ni-based alloy, the concentration of Cr in the crystal grain boundaries and in the vicinity of the grain boundaries is almost equal. It is characterized by being like. Here, the weight ratio of the Ni-based alloy is C: 0.15% or less, Si: 0.5% or less, Mn: 1.0% or less, Cr:
It is preferable to contain 14 to 17% and Fe: 6 to 10% with the balance being Ni and inevitable impurities. Alternatively, the weight ratio of the Ni-based alloy is C: 0.1% or less, Si: 0.5% or less, Mn: 0.5% or less, Cr: 20-23%, Mo :.
8 to 10%, Nb: 3.15 to 4.15%, Ti: 0.
It is preferable that the content is 4% or less, Al: 0.4% or less, Fe: 5% or less, and the balance is Ni and inevitable impurities.
Alternatively, the weight ratio of the Ni-based alloy is C: 0.05% or less,
Si: 0.5% or less, Mn: 0.5% or less, Cr: 27
.About.31%, Fe: 7 to 11%, with the balance being Ni and inevitable impurities.

【0011】[0011]

【作用】固溶化処理温度または最終熱処理温度は良好な
機械的性質を得るために含有C量の60%以上を固溶さ
せる1000℃〜1100℃としたものである。更に1
000℃〜1100℃の加熱条件における結晶粒径は結
晶粒度番号が4以上の細粒にするため、1分間以上その
温度に保持するものである。更に、加熱保持後の冷却速
度は冷却過程で粒界Cr欠乏が生じ得ない冷却速度すな
わち、加熱保持温度から300℃までを200℃/sec
以上、特に、200℃/secを越えるものとしたもので
ある。以上の、加熱条件と結晶粒径と冷却速度とを組合
せた熱処理を実施すれば耐食性に優れた固溶強化型Ni
基合金が得られる。この加熱速度は中心部までの冷却速
度とし、表面はもっと早い冷却速度となる。本発明は冷
媒の温度を制御することにより大きい部材での冷却速度
が大きくなるようにした。冷却の仕方は冷媒中に浸漬又
は冷媒を噴霧して冷却することができる。冷媒の温度は
10℃以下にして冷却するのが好ましく、特に0℃に保
って冷却するのが好ましい。
The solution treatment temperature or the final heat treatment temperature is 1000 ° C. to 1100 ° C. at which 60% or more of the C content is dissolved to obtain good mechanical properties. 1 more
The crystal grain size under the heating condition of 000 ° C. to 1100 ° C. is kept at that temperature for 1 minute or more in order to make fine grains having a crystal grain size number of 4 or more. Furthermore, the cooling rate after heating and holding is 200 ° C./sec from the heating and holding temperature to 300 ° C. so that grain boundary Cr deficiency cannot occur in the cooling process.
Above, in particular, it is set to exceed 200 ° C./sec. When the above heat treatment in which the heating conditions, the crystal grain size, and the cooling rate are combined is carried out, solid solution strengthened Ni excellent in corrosion resistance is obtained.
A base alloy is obtained. This heating rate is the cooling rate up to the center, and the surface has a higher cooling rate. In the present invention, controlling the temperature of the refrigerant enables the cooling rate of a larger member to be increased. As for the cooling method, it can be cooled by dipping it in a refrigerant or spraying a refrigerant. The temperature of the refrigerant is preferably 10 ° C. or lower for cooling, and particularly preferably kept at 0 ° C. for cooling.

【0012】[0012]

【実施例】以下、本発明を実施例により詳しく説明す
る。供試材は2ヒート(試料記号A、B)で表1に化学
組成を示す。これらはいずれもミルアニール(MA)処
理が施された市販材である。
EXAMPLES The present invention will be described in detail below with reference to examples. The test materials are 2 heats (sample symbols A and B) and the chemical compositions are shown in Table 1. All of these are commercially available materials that have been subjected to mill annealing (MA).

【0013】[0013]

【表1】 [Table 1]

【0014】実験には表2(試料記号A)と表3(試料
記号B)に示す加工・熱処理材を供した。供試材の耐食
性は下記に示す粒界腐食試験と高温水SCC試験及び図
3のSCC試験装置により評価した。 (粒界腐食試験) 試 験:ストライカ試験 試 験 液:400mlH2O+236mlH2SO4+5
0gFe(SO43(沸騰水溶液) 比 液 量:20ml/cm2 試験時間:24h 評 価:最大粒界侵食深さ(μm) (高温水SCC試験) 温 度:288℃ 圧 力:85Kg/cm2 溶存酸素:32ppm(O2ガス連続注入) 電気伝導度:0.8μs/cm以下 流 量:20リットル/h 隙 間:グラファイトウール 付与ひずみ:max2.0〜3.0% 試験時間:640h 図1及び図2は、本発明熱処理材と従来熱処理材の結晶
粒界及び粒界近傍部の成分分析結果を示す。また、耐食
性と機械的性質について実施した試験結果は表4及び表
5にまとめて示した。
In the experiment, the processed / heat-treated materials shown in Table 2 (Sample Code A) and Table 3 (Sample Code B) were used. The corrosion resistance of the test material was evaluated by the intergranular corrosion test, high temperature water SCC test and SCC test device shown in FIG. (Grain boundary corrosion test) Test: striker test Test liquid: 400 ml H 2 O + 236 ml H 2 SO 4 +5
0 g Fe (SO 4 ) 3 (boiling aqueous solution) Specific liquid amount: 20 ml / cm 2 Test time: 24 h Evaluation: Maximum intergranular erosion depth (μm) (high temperature water SCC test) Temperature: 288 ° C Pressure: 85 Kg / cm 2 Dissolved oxygen: 32 ppm (O 2 gas continuous injection) Electric conductivity: 0.8 μs / cm or less Flow rate: 20 liters / h Gap: Graphite wool Applied strain: max 2.0 to 3.0% Test time: 640 h 1 and 2 show the results of component analysis of the crystal grain boundaries and the vicinity of the grain boundaries of the heat-treated material of the present invention and the conventional heat-treated material. The results of the tests conducted on corrosion resistance and mechanical properties are summarized in Tables 4 and 5.

【0015】[0015]

【表2】 [Table 2]

【0016】[0016]

【表3】 [Table 3]

【0017】[0017]

【表4】 [Table 4]

【0018】[0018]

【表5】 [Table 5]

【0019】原子炉プラント材料として使用される固溶
強化型Ni基合金は良好な耐食性と良好な機械的性質が
要求される。しかしながら、該当合金の耐食性や機械的
性質は、加熱温度と結晶粒径と冷却速度との組合
せにより複雑に変化するために、これら、、の好
適な組合せの選定が特に重要となる。加熱温度は図4に
示したとおり、含有C量を固溶させて良好な機械的性質
を得るために、含有C量が60%以上固溶せしめる温度
(C:0.07%材で1000℃以上)にする。一方、
耐食性は加熱保持温度を必要以上に高くすると結晶粒の
粗大化に伴って低下する傾向を示すために、良好な耐食
性を得るためには結晶粒をできるだけ細かくすることが
好ましい。また、図5に示したとおり、該当合金はC固
溶度が小さいために加熱保持温度から約300℃までの
冷却過程で鋭敏化が生じるので、高耐食性を得る上では
鋭敏化を阻止すべく急速冷却速度の選定も不可欠とな
る。この場合、耐食性は150℃/sec以上で良好とな
るが、200℃/sec以上とすると更に改善される。
A solid solution strengthened Ni-based alloy used as a material for a reactor plant is required to have good corrosion resistance and good mechanical properties. However, since the corrosion resistance and mechanical properties of the corresponding alloy change intricately depending on the combination of the heating temperature, the grain size, and the cooling rate, it is particularly important to select a suitable combination of these. As shown in FIG. 4, the heating temperature is a temperature at which the content of C is 60% or more so as to form a solid solution with the content of C to obtain good mechanical properties (C: 0.07%, 1000 ° C.). Above). on the other hand,
Since the corrosion resistance tends to decrease with the coarsening of the crystal grains when the heating and holding temperature is increased more than necessary, it is preferable to make the crystal grains as fine as possible in order to obtain good corrosion resistance. Further, as shown in FIG. 5, since the corresponding alloy has a low C solid solubility, sensitization occurs in the cooling process from the heating and holding temperature to about 300 ° C. Therefore, in order to obtain high corrosion resistance, the sensitization should be prevented. Selection of rapid cooling rate is also essential. In this case, the corrosion resistance is good at 150 ° C./sec or more, but further improved at 200 ° C./sec or more.

【0020】本発明は固溶強化型Ni基合金の良好な耐
食性と良好な機械的性質を得るための熱処理法に係るも
のである。以下に上記、、の組合せによる諸特性
についての検討結果を説明する。
The present invention relates to a heat treatment method for obtaining good corrosion resistance and good mechanical properties of a solid solution strengthened Ni-based alloy. Below, the examination results of various characteristics by the combination of the above will be explained.

【0021】原子炉プラント用該当合金製機器は、主に
冷間加工材(管)または鍛造材(ボルト、ナット、リン
グetc……)より製作構成されることから、この点に
ついても評価した。表4及び表5に従来熱処理と本発明
熱処理を実施した試料記号Aと試料記号Bの加工・熱処
理材の耐粒界腐食性と耐高温高圧純水SCC性と機械的
性質の関連について評価した結果を示す。冷間加工の有
無によらず、加熱温度が1000℃未満ではCの固溶が
不十分となり、機械的性質が低下する(A−1〜A−
4、A−17、A−18、B−1)ため、良好な機械的
性質を得るための加熱温度としては1000℃以上とす
ることが好ましい。この場合、良好な機械的性質は含有
C量を60%以上固溶させる必要がある。しかし、加熱
温度が1150℃以上になると結晶粒径が粗大化(結晶
粒度番号:1〜2)し、加熱温度からの冷却速度を20
0℃/secに調整しても耐食性(耐粒界腐食性と耐高温
高圧純水SCC性)が低下(A−14〜A−16、A−
25、A−26、B−5〜B−7、B−11〜B−1
3)する。
Since the corresponding alloy equipment for a nuclear reactor plant is mainly made of cold-worked materials (pipes) or forged materials (bolts, nuts, rings etc ...), this point was also evaluated. Tables 4 and 5 evaluate the relationship between the intergranular corrosion resistance, the high-temperature high-pressure pure water SCC property, and the mechanical properties of the processed and heat-treated materials of sample symbol A and sample symbol B that were subjected to the conventional heat treatment and the heat treatment of the present invention. The results are shown. Regardless of whether cold working is performed or not, if the heating temperature is less than 1000 ° C., the solid solution of C becomes insufficient and the mechanical properties deteriorate (A-1 to A-
4, A-17, A-18, B-1), the heating temperature for obtaining good mechanical properties is preferably 1000 ° C. or higher. In this case, good mechanical properties require that the C content be 60% or more to form a solid solution. However, when the heating temperature is 1150 ° C. or higher, the crystal grain size becomes coarse (grain size number: 1-2), and the cooling rate from the heating temperature is 20%.
Even if adjusted to 0 ° C / sec, the corrosion resistance (grain boundary corrosion resistance and high temperature high pressure pure water SCC resistance) decreases (A-14 to A-16, A-
25, A-26, B-5 to B-7, B-11 to B-1
3) Do.

【0022】従って、熱処理前の塑性加工条件によらず
良好な耐食性と良好な機械的性質を得るための加熱温度
は含有C量の60%以上を固溶させる1000℃〜11
00℃の範囲に設定し、更に加熱温度での結晶粒径を結
晶粒度番号4以上の細粒にする必要がある。
Therefore, the heating temperature for obtaining good corrosion resistance and good mechanical properties irrespective of the plastic working conditions before heat treatment is from 1000 ° C. to 11 ° C. at which 60% or more of the C content is dissolved.
The crystal grain size at the heating temperature must be set to a range of 00 ° C., and the fine grain size of grain size number 4 or more must be set.

【0023】一方、加熱温度を1000℃、1050
℃、1100℃に調整しても耐食性は加熱保持温度から
300℃までの冷却速度に依存していることが示された
(図5)。すなわち、1000℃〜1100℃の温度で
加熱保持しても加熱保持温度から300℃までの冷却速
度が100℃/sec以下(100℃/sec、50℃/se
c)になると、耐食性の低下(A−5、A−6、A−
8、A−9、A−11、A−12、A−19、A−2
1、A−23、A−27、A−29、A−31、B−
2、B−3、B−8、B−9)が認められた。従って、
加熱保持温度から300℃までの冷却速度は200℃/
sec以上とする必要がある。この場合、200℃/sec以
上の冷却速度は0℃の氷水中に試料をすばやく入れるこ
とにより得た。厳密には試料の形状と冷媒の温度と容量
により冷却速度が決定されるが、本発明では試料表面の
冷却速度を規定している。しかし、熱処理後に機械加工
等により表面を研削する場合は仕上げ面の部位を200
℃/sec以上の冷却速度に調整することが好ましい。ま
た、ガス雰囲気中で200℃/sec以上の冷却速度を得
るには水素ガスを用いることが望ましい。なお、従来熱
処理材で耐粒界腐食性及び耐高温高圧純水SCC性が劣
る試料は図2に示したとおり、結晶粒界で鋭敏化(Cr
欠乏)が生じていることが明らかとなった。この場合の
冷却速度は約100℃/secである。
On the other hand, the heating temperature is 1000 ° C., 1050
It was shown that the corrosion resistance depends on the cooling rate from the heating / holding temperature to 300 ° C. even when adjusted to 1 ° C. and 1100 ° C. (FIG. 5). That is, the cooling rate from the heating / holding temperature to 300 ° C. is 100 ° C./sec or less (100 ° C./sec, 50 ° C./se even when heated and held at a temperature of 1000 ° C. to 1100 ° C.
In the case of c), the corrosion resistance decreases (A-5, A-6, A-
8, A-9, A-11, A-12, A-19, A-2
1, A-23, A-27, A-29, A-31, B-
2, B-3, B-8, B-9) were observed. Therefore,
The cooling rate from the heating temperature to 300 ℃ is 200 ℃ /
It must be sec or more. In this case, a cooling rate of 200 ° C./sec or more was obtained by rapidly putting the sample in ice water at 0 ° C. Strictly speaking, the cooling rate is determined by the shape of the sample and the temperature and capacity of the refrigerant, but in the present invention, the cooling rate of the sample surface is specified. However, if the surface is to be ground by mechanical processing after heat treatment, the finished surface area should be 200
It is preferable to adjust the cooling rate to not less than ° C / sec. Further, in order to obtain a cooling rate of 200 ° C./sec or more in a gas atmosphere, it is desirable to use hydrogen gas. As shown in FIG. 2, the samples that were inferior in intergranular corrosion resistance and high-temperature high-pressure high-pressure pure water SCC resistance in the conventional heat-treated material were sensitized (Cr
Deficiency) has become apparent. The cooling rate in this case is about 100 ° C./sec.

【0024】本発明の熱処理を実施した試料(A−7、
A−10、A−13、A−20、A−22、A−24、
A−28、A−30、A−32、B−4、B−10)
は、含有C量の差異(試料記号A:0.03%C、試料
記号B:0.07%C)や冷間加工の有無(冷間加工
度:0、20%、30%、40%)によらず、1000
℃〜1100℃の加熱条件で結晶粒径を結晶粒度番号4
以上の細粒となるように調整した後、加熱保持温度から
300℃までを200℃/sec以上の冷却速度で急冷し
たために、図1に示したとおり、結晶粒界において鋭敏
化が生じ得ず良好な耐食性と良好な機械的性質が得られ
た。
Samples (A-7,
A-10, A-13, A-20, A-22, A-24,
A-28, A-30, A-32, B-4, B-10)
Indicates the difference in the C content (sample code A: 0.03% C, sample code B: 0.07% C) and whether cold working is performed (cold workability: 0, 20%, 30%, 40% ), 1000
Under the heating condition of ℃ to 1100 ℃
After the fine grains were adjusted as described above, the heating and holding temperature to 300 ° C. was rapidly cooled at a cooling rate of 200 ° C./sec or more, so that no sensitization could occur at the grain boundaries as shown in FIG. Good corrosion resistance and good mechanical properties were obtained.

【0025】本発明の熱処理法によれば、これまで問題
とされていた高温高圧アルカリ環境下あるいは原子炉炉
水中において隙間部で生じ得るPH低下による酸性環境
下または塩素イオンを含む高温高圧水環境下等で使用さ
れる該当合金製機器部材の耐食性が著しく向上され、ひ
いては原子炉プラントの信頼性と長寿命化を図ることが
できる。また、本発明は該当合金の溶接部での耐食性改
善法としても有効である。また、本発明はBWR及びP
WR原子力プラントをはじめ化学プラントやボイラ等に
使用される該当合金の機器部材にも応用できる。図6は
BWRにおける本発明対象のNi基合金製部品の例を示
す。図において、1は給水ノズルサーマルスリーブ、2
は計装ノズル、3はシュラウドヘッドボルト、4はシュ
ラウドサポート、5はジェットポンプロアーリング、6
は炉心差圧計装ノズル、7は下鏡パタリング、8はイン
コアハウジング、9はCRDスタブチューブを示し、こ
れらが上記Ni基合金で作られている。
According to the heat treatment method of the present invention, there has been a high temperature and high pressure alkaline environment which has been a problem until now, or an acidic environment due to a decrease in PH which may occur in the gap in the reactor water, or a high temperature and high pressure water environment containing chlorine ions. Corrosion resistance of the corresponding alloy equipment members used underneath, etc. is remarkably improved, and eventually reliability and long life of the reactor plant can be achieved. The present invention is also effective as a method for improving the corrosion resistance in the welded part of the corresponding alloy. The present invention also relates to BWR and P
It can also be applied to equipment parts of the corresponding alloys used in chemical plants, boilers, etc. including WR nuclear plants. FIG. 6 shows an example of a Ni-based alloy part of the present invention in a BWR. In the figure, 1 is a water supply nozzle thermal sleeve, 2
Is an instrument nozzle, 3 is a shroud head bolt, 4 is a shroud support, 5 is a jet pump lower ring, 6
Is a core differential pressure instrumentation nozzle, 7 is a lower mirror patterning, 8 is an in-core housing, and 9 is a CRD stub tube, and these are made of the above Ni-based alloy.

【0026】[0026]

【発明の効果】本発明によれば、十分な固溶強化を図る
ための固溶化処理温度を設定すると共に、耐食性を得る
上で重要な固溶化処理温度における結晶粒径を規定し、
更に急速冷却することにより冷却過程で生じ得る鋭敏化
を阻止する、すなわち加熱温度と結晶粒径と冷却速度と
を好適に組合せたので、良好な耐食性と良好な機械的性
質とを兼ねそなえた固溶強化型Ni基合金を提供でき
る。
According to the present invention, the solution treatment temperature for achieving sufficient solid solution strengthening is set, and the crystal grain size at the solution treatment temperature important for obtaining the corrosion resistance is specified.
Further rapid cooling prevents sensitization that may occur during the cooling process, that is, since the heating temperature, the crystal grain size, and the cooling rate are suitably combined, a solid material having both good corrosion resistance and good mechanical properties can be obtained. A solution strengthened Ni-based alloy can be provided.

【0027】該当合金に本発明熱処理を施せば、耐食性
と機械的性質に優れた原子炉用機器部材が提供でき、ひ
いては原子炉プラントの高信頼性と長寿命化を図ること
ができる。
By subjecting the alloy of interest to the heat treatment of the present invention, it is possible to provide a nuclear reactor equipment member having excellent corrosion resistance and mechanical properties, and thus to achieve high reliability and a long life of the nuclear reactor plant.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明熱処理材の結晶粒界及び粒界近傍部の成
分分析結果を示す図である。
FIG. 1 is a diagram showing a result of component analysis of a crystal grain boundary and a portion near the grain boundary of a heat treated material of the present invention.

【図2】従来熱処理材の結晶粒界及び粒界近傍部の成分
分析結果を示す図である。
FIG. 2 is a diagram showing a result of component analysis of a crystal grain boundary and a portion near the grain boundary of a conventional heat-treated material.

【図3】高温水SCC試験装置の概略図である。FIG. 3 is a schematic view of a high temperature water SCC test apparatus.

【図4】各種合金のC量と固溶温度との関係を示す図で
ある。
FIG. 4 is a diagram showing the relationship between the C content of various alloys and the solid solution temperature.

【図5】300℃における冷却速度と鋭敏化の関係を示
す図である。
FIG. 5 is a diagram showing a relationship between a cooling rate at 300 ° C. and sensitization.

【図6】BWRにおける本発明対象のNi基合金製部品
例を示す一部切欠斜視図である。
FIG. 6 is a partially cutaway perspective view showing an example of a Ni-based alloy part of the present invention in a BWR.

【符号の説明】[Explanation of symbols]

1 給水ノズルサーマルスリーブ 9 CRDスタブチューブ 1 Water supply nozzle Thermal sleeve 9 CRD stub tube

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 Crを含有するNi基合金であって高温
高圧水中で使用される固溶強化型Ni基合金の耐食性改
善熱処理法において、前記Ni基合金を加熱して含有C
量の60%以上を固溶させる加熱工程と、この加熱工程
後に結晶粒径を結晶粒度番号(JIS G 0552)が
4以上の細粒にするよう一定時間保持する加熱保持工程
と、200℃/sec以上の冷却速度で300℃まで冷却
する急冷工程と、を含むことを特徴とする固溶強化型N
i基合金の耐食性改善熱処理法。
1. In a heat treatment method for improving the corrosion resistance of a Ni-based alloy containing Cr, which is used in high-temperature high-pressure water, in a solution-solution strengthened Ni-based alloy, the Ni-based alloy is heated to contain C.
A heating step of forming a solid solution of 60% or more of the amount, and a heating holding step of holding the crystal grain size for a certain period of time after the heating step so that the grain size becomes fine grains having a grain size number (JIS G 0552) of 4 or more, and 200 ° C / A solid solution strengthened type N characterized by including a quenching step of cooling to 300 ° C. at a cooling rate of sec or more.
A heat treatment method for improving the corrosion resistance of an i-based alloy.
【請求項2】 Crを含有するNi基合金であって高温
高圧水中で使用される固溶強化型Ni基合金の耐食性改
善熱処理法において、前記Ni基合金を1000〜11
00℃に加熱する工程と、この加熱工程後に結晶粒径を
結晶粒度番号4以上の細粒にするよう一定時間保持する
加熱保持工程と、冷却過程で結晶粒界にCr欠乏が生じ
ない速度で300℃まで冷却する急冷工程と、を含むこ
とを特徴とする固溶強化型Ni基合金の耐食性改善熱処
理法。
2. A heat treatment method for improving the corrosion resistance of a Ni-based alloy containing Cr, which is used in high-temperature and high-pressure water, in a heat treatment method for improving the corrosion resistance of the Ni-based alloy.
A heating step of heating to 00 ° C., a heating and holding step of holding the crystal grain size for a certain period of time so that the crystal grain size becomes finer than the crystal grain size number 4 after the heating step, and a rate at which Cr deficiency does not occur in the crystal grain boundaries during the cooling process A rapid cooling step of cooling to 300 ° C .; and a heat treatment method for improving corrosion resistance of a solid solution strengthened Ni-based alloy.
【請求項3】 請求項1又は2において、急冷工程は1
0℃以下の水、油またはガス雰囲気中で行なわれること
を特徴とする固溶強化型Ni基合金の耐食性改善熱処理
法。
3. The quenching step according to claim 1 or 2,
A heat treatment method for improving corrosion resistance of a solid solution strengthened Ni-based alloy, which is carried out in a water, oil or gas atmosphere at 0 ° C or lower.
【請求項4】 Crを含有するNi基合金であって高温
高圧水中で使用される固溶強化型Ni基合金において、
結晶粒界及び粒界近傍部におけるCrの濃度がほぼ一様
のものであることを特徴とする固溶強化型Ni基合金。
4. A solution-strengthened Ni-based alloy containing Cr, which is used in high-temperature high-pressure water,
A solid solution strengthened Ni-based alloy characterized in that the concentration of Cr in the grain boundaries and in the vicinity of the grain boundaries is substantially uniform.
【請求項5】 請求項4において、Ni基合金は重量比
で、C:0.15%以下、Si:0.5%以下、Mn:
1.0%以下、Cr:14〜17%、Fe:6〜10%
含有し、残部がNi及び不可避的不純物である固溶強化
型Ni基合金。
5. The Ni-based alloy according to claim 4, wherein the weight ratio of C: 0.15% or less, Si: 0.5% or less, and Mn:
1.0% or less, Cr: 14 to 17%, Fe: 6 to 10%
A solid solution strengthened Ni-based alloy containing Ni and the balance Ni and inevitable impurities.
【請求項6】 請求項4において、Ni基合金は重量比
で、C:0.1%以下、Si:0.5%以下、Mn:
0.5%以下、Cr:20〜23%、Mo:8〜10
%、Nb:3.15〜4.15%、Ti:0.4%以
下、Al:0.4%以下、Fe:5%以下含有し、残部
がNi及び不可避的不純物である固溶強化型Ni基合
金。
6. The Ni-based alloy according to claim 4, wherein the weight ratio of C: 0.1% or less, Si: 0.5% or less, and Mn:
0.5% or less, Cr: 20-23%, Mo: 8-10
%, Nb: 3.15 to 4.15%, Ti: 0.4% or less, Al: 0.4% or less, Fe: 5% or less, and the balance is Ni and unavoidable impurities. Ni-based alloy.
【請求項7】 請求項4において、Ni基合金は重量比
で、C:0.05%以下、Si:0.5%以下、Mn:
0.5%以下、Cr:27〜31%、Fe:7〜11%
含有し、残部がNi及び不可避的不純物である固溶強化
型Ni基合金。
7. The Ni-based alloy according to claim 4, wherein the weight ratio of C: 0.05% or less, Si: 0.5% or less, and Mn:
0.5% or less, Cr: 27 to 31%, Fe: 7 to 11%
A solid solution strengthened Ni-based alloy containing Ni and the balance Ni and inevitable impurities.
JP30336891A 1991-11-19 1991-11-19 Heat treating method for improving corrosion resistance of solid-solution strengthened ni base alloy Pending JPH05140707A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30336891A JPH05140707A (en) 1991-11-19 1991-11-19 Heat treating method for improving corrosion resistance of solid-solution strengthened ni base alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30336891A JPH05140707A (en) 1991-11-19 1991-11-19 Heat treating method for improving corrosion resistance of solid-solution strengthened ni base alloy

Publications (1)

Publication Number Publication Date
JPH05140707A true JPH05140707A (en) 1993-06-08

Family

ID=17920156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30336891A Pending JPH05140707A (en) 1991-11-19 1991-11-19 Heat treating method for improving corrosion resistance of solid-solution strengthened ni base alloy

Country Status (1)

Country Link
JP (1) JPH05140707A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009139387A1 (en) * 2008-05-16 2009-11-19 住友金属工業株式会社 Ni-cr alloy material
JP4683712B2 (en) * 2000-12-06 2011-05-18 日本冶金工業株式会社 Ni-base alloy with excellent hot workability
JP2013049902A (en) * 2011-08-31 2013-03-14 Nippon Steel & Sumitomo Metal Corp Ni-BASED ALLOY AND METHOD FOR PRODUCING THE SAME
JP2018119194A (en) * 2017-01-26 2018-08-02 株式会社東芝 Method for modifying surface of structure
CN110592505A (en) * 2019-09-12 2019-12-20 中国航发北京航空材料研究院 Solution treatment method for accurately controlling structural properties of GH720Li alloy
US10513756B2 (en) 2017-09-14 2019-12-24 Nippon Yakin Kogyo Co., Ltd. Nickel-based alloy

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4683712B2 (en) * 2000-12-06 2011-05-18 日本冶金工業株式会社 Ni-base alloy with excellent hot workability
WO2009139387A1 (en) * 2008-05-16 2009-11-19 住友金属工業株式会社 Ni-cr alloy material
JP4518210B2 (en) * 2008-05-16 2010-08-04 住友金属工業株式会社 Ni-Cr alloy material
JPWO2009139387A1 (en) * 2008-05-16 2011-09-22 住友金属工業株式会社 Ni-Cr alloy material
US8241439B2 (en) 2008-05-16 2012-08-14 Sumitomo Metal Industries, Ltd. Ni-Cr alloy material
JP2013049902A (en) * 2011-08-31 2013-03-14 Nippon Steel & Sumitomo Metal Corp Ni-BASED ALLOY AND METHOD FOR PRODUCING THE SAME
JP2018119194A (en) * 2017-01-26 2018-08-02 株式会社東芝 Method for modifying surface of structure
US10513756B2 (en) 2017-09-14 2019-12-24 Nippon Yakin Kogyo Co., Ltd. Nickel-based alloy
CN110592505A (en) * 2019-09-12 2019-12-20 中国航发北京航空材料研究院 Solution treatment method for accurately controlling structural properties of GH720Li alloy

Similar Documents

Publication Publication Date Title
Bruemmer et al. Microstructural and microchemical mechanisms controlling intergranular stress corrosion cracking in light-water-reactor systems
Kai et al. The effects of heat treatment on the chromium depletion, precipitate evolution, and corrosion resistance of INCONEL alloy 690
Gorynin et al. Structural materials for atomic reactors with liquid metal heat-transfer agents in the form of lead or lead—Bismuth alloy
KR100441562B1 (en) Nuclear fuel cladding tube of zirconium alloys having excellent corrosion resistance and mechanical properties and process for manufacturing thereof
KR20020062052A (en) Method of Manufacturing A Tube and A Sheet of Niobium-containing Zirconium Alloys for High Burn-up Nuclear Fuel
Parvathavarthini et al. Influence of prior deformation on the sensitization of AISI Type 316LN stainless steel
JPH06271988A (en) Structural member excellent in neutron irradiation embrittlement resistance, austenitic steel used therefor and its use
US4360389A (en) Zirconium alloy heat treatment process
JPH0372054A (en) Austenitic stainless steel excellent in neutron irradiation embrittlement resistance and its use
Rebak et al. Resistance of Ferritic FeCrAl alloys to stress corrosion cracking for light water reactor fuel cladding applications
JPH05140707A (en) Heat treating method for improving corrosion resistance of solid-solution strengthened ni base alloy
Charquet Improvement of the uniform corrosion resistance of Zircaloy-4 in the absence of irradiation
Jacobs et al. Low-temperature annealing: a process to mitigate irradiation-assisted stress corrosion cracking
Wasnik et al. Controlling grain boundary energy to make austenitic stainless steels resistant to intergranular stress corrosion cracking
Klueh et al. Elevated-temperature tensile properties of irradiated 214 Cr-1 Mo steel
Penttilä et al. Generation IV Material Issues-Case SCWR
VERMILYEA Susceptibility of Iron-and Nickel-Base Alloys to SCC in pH 2.5 H2SO4 at 289 C
Khandelwal et al. Influence of soaking temperature and time on microstructure and mechanical properties of water quenched Zr–2.5 Nb alloy
JPH05171359A (en) Austenitic stainless steel markedly lowered in contents of nitrogen and boron
Shen Review of the Effect of Cold Work on Stress Corrosion Cracking
US5949838A (en) Manufacture of materials and workpieces for components in nuclear plant applications
JP2014005509A (en) Highly corrosion-resistant austenitic stainless steel and weld joint structure
US6132525A (en) Manufacturing of materials and workpieces for components in nuclear plant applications
Schäfer et al. Tensile properties of 1.4970 austenitic stainless steel after corrosion caused by uranium dioxide and simulated fission products
Slattery Mechanical properties and structure of as-received, heat-treated and hydrided Zr-1.5 wt% Cr-0.1 wt% Fe alloy tubing