JPH05139892A - Production of oxide ferroelectric thin film - Google Patents

Production of oxide ferroelectric thin film

Info

Publication number
JPH05139892A
JPH05139892A JP30512591A JP30512591A JPH05139892A JP H05139892 A JPH05139892 A JP H05139892A JP 30512591 A JP30512591 A JP 30512591A JP 30512591 A JP30512591 A JP 30512591A JP H05139892 A JPH05139892 A JP H05139892A
Authority
JP
Japan
Prior art keywords
thin film
oxide ferroelectric
buffer layer
ferroelectric thin
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP30512591A
Other languages
Japanese (ja)
Inventor
Shunji Watanabe
俊二 渡辺
Hisamitsu Fujio
尚光 藤生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP30512591A priority Critical patent/JPH05139892A/en
Publication of JPH05139892A publication Critical patent/JPH05139892A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To form a good epitaxial ferroelectric thin film on a silicon single crystal substrate, and to utilize a lower electrode layer. CONSTITUTION:A nickel silicide NiSi2 (100) as a buffer layer is epitaxially grown on the surface of a silicon single crystal (100). Further, a magnesium oxide MgO (100) layer is epitaxially grown on the surface, and an oxide ferroelectric thin film is epitaxially grown on the surface of the buffer layer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、酸化物強誘電薄膜の
製造方法に関するものである。さらに詳しくは、この発
明は、光導波路素子、圧電素子、電気光学素子、赤外線
検出素子、不揮発性メモリー等に用いられる酸化物強誘
電薄膜の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an oxide ferroelectric thin film. More specifically, the present invention relates to a method for manufacturing an oxide ferroelectric thin film used for an optical waveguide element, a piezoelectric element, an electro-optical element, an infrared detection element, a non-volatile memory and the like.

【0002】[0002]

【従来の技術】エレクトロニクス、オプトエレクトロニ
クス技術の急速な発展にともなって、これら技術の基盤
としての電子材料の機能高度化への要請が強まってい
る。このような状況において各種の材料の微細結晶構
造、精密組織制御等の検討が精力的に進められており、
酸化物強誘電材料についても高度機能化のための工夫が
なされてきている。
2. Description of the Related Art With the rapid development of electronics and optoelectronics, there is an increasing demand for functional enhancement of electronic materials as the basis of these technologies. Under such circumstances, studies on fine crystal structures of various materials, precise structure control, etc. are being actively pursued.
The oxide ferroelectric materials are also being devised for higher functionality.

【0003】このような検討にとって、酸化物強誘電材
料のエレクトロニクス分野への応用のためにその薄膜化
が重要な課題になっている。特に、シリコン単結晶基板
上にこの酸化物強誘電薄膜をエピタキシャル成長させる
ことが肝要である。しかしながら、これまでは、酸化物
強誘電材料をシリコン基板表面上に直接形成しようとす
ると酸化物強誘電材料内にシリコンが拡散したり、酸化
物強誘電材料の構成原子がシリコン中に拡散するなどの
不都合が生じ、良質の酸化物強誘電薄膜を得ることがで
きなかった。そこで、白金等の金属材料や、熱処理によ
って生成することのできる二酸化硅素膜を原子拡散の障
壁としてシリコン表面上に形成することが試みられてい
るが、いずれの場合にも障壁としての機能が十分でな
く、良質の酸化物強誘電薄膜を得ることはできない。さ
らにエピタキシャル成長という点でもこれらの緩衝層は
最適な材料とは言いがたいのが実情である。
For such studies, thinning the oxide ferroelectric material is an important subject for application to the electronics field. In particular, it is important to epitaxially grow this oxide ferroelectric thin film on a silicon single crystal substrate. However, until now, when an oxide ferroelectric material was directly formed on the surface of a silicon substrate, silicon was diffused into the oxide ferroelectric material, or constituent atoms of the oxide ferroelectric material were diffused into the silicon. However, a high quality oxide ferroelectric thin film could not be obtained. Therefore, it has been attempted to form a metal material such as platinum or a silicon dioxide film that can be generated by heat treatment on the silicon surface as a barrier for atomic diffusion. In either case, the barrier function is not sufficient. Moreover, it is not possible to obtain a good quality oxide ferroelectric thin film. Further, it is difficult to say that these buffer layers are optimal materials in terms of epitaxial growth.

【0004】この問題を解決するために、この発明の発
明者らは、シリコン基板上に酸化マグネシウム(Mg
O)の緩衝層を形成し、この上に酸化物強誘電薄膜を成
膜することを提案している。この方法は良質な酸化物強
誘電薄膜を製造する上で注目すべきものである。しかし
ながら、この方法では酸化物強誘電薄膜に対する下部電
極を付けることができないという欠点があった。素子と
しての使い型によっては下部電極を必須とするものもあ
り、下部電極のない構成は応用範囲が著しく狭くなるか
らである。
In order to solve this problem, the inventors of the present invention have found that magnesium oxide (Mg) is formed on a silicon substrate.
It is proposed that a buffer layer of O) is formed and an oxide ferroelectric thin film is formed on the buffer layer. This method is remarkable in producing a good oxide ferroelectric thin film. However, this method has a drawback that the lower electrode cannot be attached to the oxide ferroelectric thin film. This is because the lower electrode is indispensable depending on the type of device used, and the application range is remarkably narrowed without the lower electrode.

【0005】[0005]

【発明が解決しようとする課題】以上の通り、従来の技
術においては、シリコン単結晶基板上への良質な酸化物
強誘電薄膜の形成は極めて困難であり、かつ、すでに提
案している酸化マグネシウム緩衝層形成の方法において
は、エピタキシャル成長用緩衝層の原子拡散抑制の能力
を実用的レベルまで上げるために酸化マグネシウム薄膜
を緩衝層として使用することが必要であるが、この場合
には、酸化物強誘電薄膜に対する下部電極が付けられな
いという問題があった。そこでこの発明は、酸化物強誘
電薄膜をシリコン単結晶基板上に形成するに際し、優れ
た原子拡散抑制の能力とともに、酸化物強誘電材料をエ
ピタキシャル成長させるのに適した格子定数を持ち、し
かも下部電極として使うのに適した電気伝導性を持った
緩衝層を介在させることにより、良質な酸化物強誘電薄
膜の製造を可能とする新しい方法を提供することを目的
としている。
As described above, according to the conventional technique, it is extremely difficult to form a high-quality oxide ferroelectric thin film on a silicon single crystal substrate, and the magnesium oxide which has already been proposed has been proposed. In the method of forming the buffer layer, it is necessary to use a magnesium oxide thin film as the buffer layer in order to raise the atomic diffusion suppressing ability of the epitaxial growth buffer layer to a practical level. There is a problem that the lower electrode cannot be attached to the dielectric thin film. Therefore, the present invention has an excellent ability to suppress atomic diffusion when forming an oxide ferroelectric thin film on a silicon single crystal substrate, and has a lattice constant suitable for epitaxially growing an oxide ferroelectric material, and further, a lower electrode. The purpose of the present invention is to provide a new method that enables the production of a high-quality oxide ferroelectric thin film by interposing a buffer layer having an electrical conductivity suitable for use as.

【0006】[0006]

【課題を解決するための手段】この発明は、上記の課題
を解決するものとして、シリコン単結晶基板の(10
0)面に緩衝層として硅化ニッケル(100)面をエピ
タキシャル成長させ、さらにその表面上に酸化マグネシ
ウム(100)をエピタキシャル成長させた後に、酸化
物強誘電薄膜をこの緩衝層表面上にエピタキシャル成長
させることを特徴とする酸化物強誘電薄膜の製造方法を
提供する。
The present invention is provided to solve the above-mentioned problems by (10) of a silicon single crystal substrate.
A nickel silicide (100) surface is epitaxially grown on the (0) surface as a buffer layer, magnesium oxide (100) is epitaxially grown on the surface, and then an oxide ferroelectric thin film is epitaxially grown on the surface of the buffer layer. A method of manufacturing an oxide ferroelectric thin film is provided.

【0007】すなわち、この発明は、電気的に導体であ
る(比抵抗:0.02 ohm-cm )硅化ニッケルNiSi2
Si(100)基板上に[100]方向にエピタキシャ
ル成長すること、またそのNiSi2 (100)と酸化
マグネシウムMgO(100)の格子不整合が小さいこ
とに着目し、NiSi2 (100)膜を酸化物強誘電薄
膜成膜のための第一緩衝層とし、さらに酸化物強誘電材
料構成原子との反応性が著しく低く、また格子定数が酸
化物強誘電材料の格子定数に近いMgO(100)膜を
NiSi2 (100)上にエピタキシャルに形成して第
二緩衝層としている。
That is, according to the present invention, nickel silicide NiSi 2 which is electrically conductive (specific resistance: 0.02 ohm-cm 2) is epitaxially grown in the [100] direction on a Si (100) substrate, and the NiSi 2 ( Paying attention to the small lattice mismatch between 100) and magnesium oxide MgO (100), the NiSi 2 (100) film was used as the first buffer layer for forming the oxide ferroelectric thin film, and the oxide ferroelectric material composition was used. A MgO (100) film having extremely low reactivity with atoms and having a lattice constant close to that of an oxide ferroelectric material is epitaxially formed on NiSi 2 (100) to form a second buffer layer.

【0008】[0008]

【作用】第一緩衝層であるNiSi2 は良好な電極とな
る。しかしながら、酸化物強誘電材料を直接シリコン基
板、あるいは表面が酸化されたシリコン基板、もしくは
白金等の金属薄膜を形成したシリコン単結晶基板上に形
成すると酸化物強誘電材料の構成原子が緩衝層中を拡散
してシリコン基板まで達してしまうことが多いという問
題は、NiSi2 (100)膜のみを緩衝層とした場合
には解決することができない。この場合には酸化物強誘
電材料の組成が変化し強誘電性のないパイロクロア等の
結晶相が生成するからである。これに対してMgO(1
00)膜を第二緩衝層としてNiSi2 (100)の上
に形成し、さらにこのMgO(100)膜上に酸化物強
誘電薄膜を形成する場合には、MgO(100)膜が酸
化物強誘電材料構成原子の拡散を抑制するため酸化物強
誘電材料の組成変化は起こらず、適切な処理温度により
強誘電性を持つペロブスカイト結晶相が生成する。形成
された酸化物薄膜がほぼ100%ペロブスカイト結晶構
造を持つことにより強誘電材料としての特性は十分に引
き出される。
The first buffer layer NiSi 2 is a good electrode. However, when the oxide ferroelectric material is directly formed on the silicon substrate, the silicon substrate whose surface is oxidized, or the silicon single crystal substrate on which the metal thin film such as platinum is formed, the constituent atoms of the oxide ferroelectric material are contained in the buffer layer. The problem that it often diffuses to reach the silicon substrate cannot be solved when only the NiSi 2 (100) film is used as the buffer layer. This is because in this case, the composition of the oxide ferroelectric material is changed and a crystal phase such as pyrochlore having no ferroelectric property is generated. On the other hand, MgO (1
When a (00) film is formed on NiSi 2 (100) as a second buffer layer and an oxide ferroelectric thin film is further formed on this MgO (100) film, the MgO (100) film is a strong oxide film. Since the diffusion of constituent atoms of the dielectric material is suppressed, the composition of the oxide ferroelectric material does not change, and a perovskite crystal phase having ferroelectricity is generated at an appropriate processing temperature. Since the formed oxide thin film has a perovskite crystal structure of almost 100%, the characteristics as a ferroelectric material can be sufficiently obtained.

【0009】また、NiSi2 (100)は、Si(1
00)基板上に、0.45%の格子不整合でエピタキシャル
成長でき、MgO(100)は、エピタキシャル成長し
たNiSi2 (100)表面上に9%の格子不整合でエ
ピタキシャル成長できる。さらに、酸化物強誘電材料の
多くが4Å程度の格子定数を持つことから、Si(10
0)上に形成したNiSi2 (100)/MgO(10
0)緩衝層表面に5%程度の格子不整合で多くの酸化物
強誘電材料がエピタキシャル成長することが可能とな
る。
NiSi 2 (100) is Si (1
00) substrate can be epitaxially grown with 0.45% lattice mismatch, and MgO (100) can be epitaxially grown with 9% lattice mismatch on the epitaxially grown NiSi 2 (100) surface. Furthermore, since many oxide ferroelectric materials have a lattice constant of about 4Å, Si (10
0) NiSi 2 (100) / MgO (10) formed on
0) Many oxide ferroelectric materials can be epitaxially grown on the surface of the buffer layer with a lattice mismatch of about 5%.

【0010】さらにNiSi2 (100)膜は、MgO
(100)のエピタキシャル成長を妨げるSi(10
0)表面上のダングリングボンドを取り除くという効果
も持っている。もちろん、この発明においては、第一緩
衝層のNiSi2 (100)膜を成膜する方法として各
種のものを使用することができる。たとえば、スパッタ
法、真空蒸着法、分子線エピタキシー法等で金属ニッケ
ルをシリコン単結晶Si(100)表面上に堆積後、1
-6Pa程度の高真空中で基板温度700℃以上でアニ
ールすることで作製することができる。第二緩衝層のM
gO(100)膜についても同様であり、真空蒸着法、
分子線エピタキシー法等で金属マグネシウムをNiSi
2 (100)表面上に堆積後、残留ガスを除いた酸素ガ
ス10-3Pa中で基板温度800℃以上で酸化すること
で作製することができる。さらに上記の緩衝層を成膜し
たSi(100)基板上に形成する酸化物強誘電薄膜
も、スパッタ法、真空蒸着法、分子線エピタキシー法、
MO−CVD法、ゾルゲル法等の任意の方法によって成
膜することができる。
Further, the NiSi 2 (100) film is MgO.
Si (10) which hinders the epitaxial growth of (100)
0) It also has the effect of removing dangling bonds on the surface. Of course, in the present invention, various methods can be used as a method for forming the NiSi 2 (100) film of the first buffer layer. For example, after depositing metallic nickel on the surface of the silicon single crystal Si (100) by sputtering, vacuum deposition, molecular beam epitaxy, etc., 1
It can be manufactured by annealing at a substrate temperature of 700 ° C. or higher in a high vacuum of about 0 −6 Pa. Second buffer layer M
The same applies to the gO (100) film, and the vacuum deposition method,
Metallic magnesium is converted into NiSi by molecular beam epitaxy or the like.
2 It can be prepared by depositing on the (100) surface and then oxidizing it at a substrate temperature of 800 ° C. or higher in oxygen gas 10 −3 Pa excluding residual gas. Further, the oxide ferroelectric thin film formed on the Si (100) substrate on which the above buffer layer is formed is also formed by sputtering, vacuum deposition, molecular beam epitaxy,
The film can be formed by any method such as MO-CVD method and sol-gel method.

【0011】硅化ニッケルNiSi2 (100)および
MgO(100)からなる緩衝層の厚さは、PZT,P
LZT,チタン酸バリウム等の酸化物強誘電薄膜と同様
に適宜とすることができる。以下、実施例を示し、さら
にこの発明を具体的に説明する。
The thickness of the buffer layer composed of nickel silicide NiSi 2 (100) and MgO (100) is PZT, P.
It can be appropriately set similarly to the oxide ferroelectric thin film such as LZT or barium titanate. Hereinafter, the present invention will be specifically described with reference to examples.

【0012】[0012]

【実施例】実施例1 Si(100)基板をフッ化水素酸中で洗浄し表面酸化
膜を除去したのち、真空槽中においてアルゴンガス圧力
1Pa、基板温度は室温で、ニッケルをターゲットとし
たスパッタ法により厚さ50nmのニッケル薄膜を形成し
た。その後、真空度10-6Paにおいて、基板温度80
0℃、時間10分間でニッケルと基板とのシリコンを反
応させNiSi2 (100)膜をエピタキシャル成長さ
せた。この様にして形成したNiSi2 (100)膜表
面上に、真空度10-6Pa、室温でマグネシウムを10
nm蒸着した後、酸素ガスを10-3Paまで導入し、基板
温度を800℃まで昇温し、マグネシウムと酸素を反応
させて反応させてMgO(100)膜を作製した。その
後、有機金属錯体を用いた分子線エピタキシー法により
ジルコニウム酸チタン酸鉛(PZT)を作製した。背圧
10-7Paの超高真空槽中において、NiSi2 (10
0)/MgO(100)緩衝層を成膜したSi(10
0)基板上に金属鉛、ジルコニウムテトラプロポキシ
ド、チタンテトライソプロポキシドをそれぞれ適当な蒸
気圧にして蒸着した。このとき基板温度は500℃、酸
素ガス圧10-3Paで成膜するためジルコニウムテトラ
プロポキシド、チタンテトライソプロポキシドは基板表
面上でそれぞれジルコニウム、チタンになり、さらに鉛
と共に酸化・結晶化してPZTになる。その結果、50
0nmの厚さのPZTエピタキシャル膜を得た。x線回析
法により、得られた薄膜が、菱面体晶系PZTのc軸配
向膜であることを確認した。
Example 1 After cleaning a Si (100) substrate in hydrofluoric acid to remove a surface oxide film, an argon gas pressure was 1 Pa, a substrate temperature was room temperature, and a sputtering targeting nickel was performed in a vacuum chamber. A nickel thin film having a thickness of 50 nm was formed by the method. Then, at a vacuum degree of 10 −6 Pa and a substrate temperature of 80
The nickel and silicon of the substrate were reacted at 0 ° C. for 10 minutes to epitaxially grow a NiSi 2 (100) film. In this way the to form the NiSi 2 (100) film on the surface, the vacuum degree 10 -6 Pa, the magnesium at room temperature for 10
After the vapor deposition of nm, oxygen gas was introduced up to 10 −3 Pa, the substrate temperature was raised to 800 ° C., and magnesium and oxygen were reacted and reacted to form a MgO (100) film. Then, lead zirconate titanate (PZT) was produced by a molecular beam epitaxy method using an organometallic complex. In an ultrahigh vacuum chamber with a back pressure of 10 −7 Pa, NiSi 2 (10
0) / MgO (100) buffer layer deposited Si (10
0) Metallic lead, zirconium tetrapropoxide, and titanium tetraisopropoxide were vapor-deposited on the substrate at appropriate vapor pressures. At this time, since the substrate temperature is 500 ° C. and the oxygen gas pressure is 10 −3 Pa, the zirconium tetrapropoxide and titanium tetraisopropoxide become zirconium and titanium on the substrate surface, respectively, and are oxidized and crystallized with lead. Become PZT. As a result, 50
A PZT epitaxial film having a thickness of 0 nm was obtained. By the x-ray diffraction method, it was confirmed that the obtained thin film was a rhombohedral PZT c-axis oriented film.

【0013】実施例2 実施例1と同様にして成膜したMgO(100)面上
に、酸素ガス圧力10-4Torr下において、PZT焼結体
をターゲットとするスパッタ法によりPZT層をエピタ
キシャル成長させた。1000nmの厚みとした。x線回
析法により、得られた薄膜がc軸配向であることを確認
した。
Example 2 A PZT layer was epitaxially grown on the MgO (100) surface formed in the same manner as in Example 1 by a sputtering method targeting a PZT sintered body under an oxygen gas pressure of 10 −4 Torr. It was The thickness was 1000 nm. It was confirmed by x-ray diffraction method that the obtained thin film had c-axis orientation.

【0014】[0014]

【発明の効果】以上詳しく説明した通り、この発明によ
り、基板上に第一緩衝層としてNiSi2 (100)、
第二緩衝層としてMgOを成膜することによりシリコン
と酸化物強誘電材料との相互反応を抑制し、かつ、酸化
物強誘電薄膜をエピタキシャル成長させることができ
る。また、緩衝層であるNiSo2 (100)を下部電
極として使用することかできるためエレクトロニクス素
子への応用が容易になる。
As described in detail above, according to the present invention, NiSi 2 (100) as a first buffer layer on the substrate,
By depositing MgO as the second buffer layer, the interaction between silicon and the oxide ferroelectric material can be suppressed, and the oxide ferroelectric thin film can be epitaxially grown. In addition, since NiSo 2 (100) which is a buffer layer can be used as the lower electrode, application to an electronic device becomes easy.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01L 41/24 // C30B 25/06 9040−4G ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location H01L 41/24 // C30B 25/06 9040-4G

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 シリコン単結晶基板の(100)面上に
緩衝層として硅化ニッケル(100)面をエピタキシャ
ル成長させ、さらにその表面上に酸化マグネシウム(1
00)面をエピタキシャル成長させた後に、酸化物強誘
電薄膜をこの緩衝層表面上にエピタキシャル成長させる
ことを特徴とする酸化物強誘電薄膜の製造方法。
1. A nickel silicide (100) plane is epitaxially grown as a buffer layer on a (100) plane of a silicon single crystal substrate, and magnesium oxide (1) is further formed on the surface thereof.
00) surface is epitaxially grown, and then an oxide ferroelectric thin film is epitaxially grown on the surface of the buffer layer.
【請求項2】 請求項1の方法で製造してなる酸化物強
誘電薄膜。
2. An oxide ferroelectric thin film produced by the method of claim 1.
JP30512591A 1991-11-20 1991-11-20 Production of oxide ferroelectric thin film Withdrawn JPH05139892A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30512591A JPH05139892A (en) 1991-11-20 1991-11-20 Production of oxide ferroelectric thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30512591A JPH05139892A (en) 1991-11-20 1991-11-20 Production of oxide ferroelectric thin film

Publications (1)

Publication Number Publication Date
JPH05139892A true JPH05139892A (en) 1993-06-08

Family

ID=17941400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30512591A Withdrawn JPH05139892A (en) 1991-11-20 1991-11-20 Production of oxide ferroelectric thin film

Country Status (1)

Country Link
JP (1) JPH05139892A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008516459A (en) * 2004-10-13 2008-05-15 コミツサリア タ レネルジー アトミーク MgO-based coating on electrically insulating semiconductor substrate and method for manufacturing the same
WO2011086645A1 (en) 2010-01-12 2011-07-21 コニカミノルタホールディングス株式会社 Method for manufacturing piezoelectric element, and piezoelectric element manufactured by the method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008516459A (en) * 2004-10-13 2008-05-15 コミツサリア タ レネルジー アトミーク MgO-based coating on electrically insulating semiconductor substrate and method for manufacturing the same
WO2011086645A1 (en) 2010-01-12 2011-07-21 コニカミノルタホールディングス株式会社 Method for manufacturing piezoelectric element, and piezoelectric element manufactured by the method
US9157378B2 (en) 2010-01-12 2015-10-13 Konica Minolta Holdings, Inc. Method for manufacturing piezoelectric element and piezoelectric element manufactured using same

Similar Documents

Publication Publication Date Title
JP3133922B2 (en) Ferroelectric thin film coated substrate, method of manufacturing the same, and capacitor structure element
JP3476932B2 (en) Ferroelectric thin film, substrate coated with ferroelectric thin film, and method of manufacturing ferroelectric thin film
WO1993018202A1 (en) Ferroelectric thin films made by metalorganic chemical vapor deposition
JPH07202295A (en) Ferrodielectric crystalline thin film coated substrate, its manufacture and ferrodielectric thin film device using the substrate
JP2000067650A (en) Ferroelectrics thin film element and its manufacture
JP3891603B2 (en) Ferroelectric thin film coated substrate, capacitor structure element, and method for manufacturing ferroelectric thin film coated substrate
JPH10182291A (en) Production of ferroelectric thin film, ferroelectric thin film coated substrate and capacitor
JP2000169297A (en) Production of thin ferroelectric oxide film, thin ferroelectric oxide film and thin ferroelectric oxide film element
Vetrone et al. Growth, microstructure, and resistivity of RuO2 thin films grown by metal-organic chemical vapor deposition
US7008801B2 (en) Method of forming ferroelectric thin films on a high-k layer
JP2916116B2 (en) Platinum thin film forming method, substrate manufactured by the method, electronic device using the substrate, and method of manufacturing the electronic device
JP2001107238A (en) Single phase perovskite ferroelectric film on platinum electrode, and method of its formation
JP3586870B2 (en) Oriented thin film forming substrate and method for producing the same
JPH05139892A (en) Production of oxide ferroelectric thin film
JP2834355B2 (en) Method of manufacturing ferroelectric thin film construct
JP3013418B2 (en) Dielectric thin film, thin film device, and method for producing them
CN1453832A (en) Gas phase growth method of oxidative dielectric thin film
US6998661B2 (en) Integrated circuit structure including electrodes with PGO ferroelectric thin film thereon
JP3545850B2 (en) Ferroelectric thin film element
JP2000223662A (en) Ferroelectric body capacitor and its manufacturing method
JP3277097B2 (en) Manufacturing method of ferroelectric thin film
US6921671B1 (en) Buffer layers to enhance the C-axis growth of Bi4Ti3O12 thin film on high temperature iridium-composite electrode
JPH088403A (en) Substrate covered with ferroelectric crystal thin film ferroelectric thin film element including the same, and method of manufacturing the ferroelectric thin film element
JP2003318369A (en) Semiconductor device and method of manufacturing the same
US7101720B2 (en) Mixed noble metal/noble metal oxide bottom electrode for enhanced PGO c-axis nucleation and growth

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990204