JPH0513890A - Dye laser oscillator - Google Patents

Dye laser oscillator

Info

Publication number
JPH0513890A
JPH0513890A JP16799491A JP16799491A JPH0513890A JP H0513890 A JPH0513890 A JP H0513890A JP 16799491 A JP16799491 A JP 16799491A JP 16799491 A JP16799491 A JP 16799491A JP H0513890 A JPH0513890 A JP H0513890A
Authority
JP
Japan
Prior art keywords
prism
light
wavelength
mirror
dye laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16799491A
Other languages
Japanese (ja)
Inventor
Hidetomo Nishimura
秀知 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP16799491A priority Critical patent/JPH0513890A/en
Publication of JPH0513890A publication Critical patent/JPH0513890A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a dye laser oscillator having a high efficiency and a narrow band by using a prism as a coupler so as to produce a laser output, operating a transmitted light of the prism at a diffraction grating or an etalon as a wavelength selecting element, and producing a reflected light as a laser output. CONSTITUTION:An optical amplifier is formed of a dye cell 1, a reflecting element for constituting a resonator is formed of a diffraction grating 3, other reflecting element is formed of a totally reflecting mirror 4, a prism 5 for producing a laser light, and an etalon 9 having an operation for narrowing a wavelength width. Since a reflected light on the surface of a prism is used, which was heretofore a larger loss as a beam width is increased more in prior art, its efficiency is enhanced more as compared with that of the prior art, and since an absolute amount of an operating light 7 which contributes to narrowing in the band, is increased, it can be narrowed more as compared with that of the prior art. Thus, higher efficiency than that of the prior art can be obtained, and narrower wavelength width can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は狭帯域の色素レーザ装置
に係り、特に、ウランの同位体元素分離に使用するに好
適な色素レーザ発振装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a narrow band dye laser device, and more particularly to a dye laser oscillator suitable for use in uranium isotope separation.

【0002】[0002]

【従来の技術】一般に、色素セル内の色素溶液に光を照
射しレーザ発振をさせる装置に関しては、色素レーザ発
振装置として知られている。発振波長域が広いことや狭
帯域化が可能な特長を利用して多くの応用が図られてい
るが、その中にウラン等の同位体元素分離(仏国特許第
2,311,432号公報,特開平1−220878号公報等)がある。
これは同位体元素間の分光学的スペクトルの差を利用し
て、選択的に一つの同位体元素をイオン化し、それに電
界あるいは磁界を印加して、中性状態の他の同位体元素
と選別する方法である。例えば、ウラン235とウラン
238では、それらのスペクトル差約8Åを利用する。
この場合、分離用の色素レーザの波長幅は数Å以下に狭
める必要がある。色素レーザの波長幅を狭める代表的な
構成には図2に示すヘンシュ型が知られている。これは
色素セル1の両端に半透過鏡10と回折格子3とを設け
て構成した一種のファブリペロー共振器内に、プリズム
5やエタロン9等の波長選択素子を挿入して波長の狭帯
域化を図るものである。レーザ出力は半透過鏡10を介
して外部に取り出される。
2. Description of the Related Art Generally, a device for irradiating a dye solution in a dye cell with light to cause laser oscillation is known as a dye laser oscillator. Many applications are being made by utilizing the characteristics that the oscillation wavelength range is wide and the band can be narrowed. Among them, isotope separation of uranium and the like (French Patent No.
2,311,432 and JP-A-1-220878).
This utilizes the difference in the spectroscopic spectrum between isotopes to selectively ionize one isotope and apply an electric field or magnetic field to it to separate it from other isotopes in the neutral state. Is the way to do it. For example, uranium 235 and uranium 238 utilize their spectral difference of about 8Å.
In this case, the wavelength width of the separation dye laser needs to be narrowed to a few Å or less. As a typical structure for narrowing the wavelength width of the dye laser, the Hensch type shown in FIG. 2 is known. This is to narrow the wavelength band by inserting a wavelength selection element such as a prism 5 or an etalon 9 into a kind of Fabry-Perot resonator configured by providing a semitransparent mirror 10 and a diffraction grating 3 at both ends of a dye cell 1. Is intended. The laser output is taken out through the semi-transparent mirror 10.

【0003】[0003]

【発明が解決しようとする課題】レーザ出力の狭帯域化
を図るにはビーム幅を拡げて波長選択素子である回折格
子やエタロンなどに作用させる必要がある。しかし、こ
のような従来の構成では、ビーム幅を拡げるほど損失に
なるプリズム表面での反射が増すので、効率の低下は避
けられなかった。
In order to narrow the band of the laser output, it is necessary to widen the beam width to act on the diffraction grating or the etalon which is the wavelength selection element. However, in such a conventional configuration, since the reflection on the prism surface, which is lost as the beam width is expanded, increases, it is inevitable that the efficiency is lowered.

【0004】本発明の目的は、以上の欠点を排し、高効
率な狭帯域の色素レーザ発振装置を提供することにあ
る。
An object of the present invention is to eliminate the above drawbacks and to provide a highly efficient narrow band dye laser oscillation device.

【0005】また従来は、半透過鏡で共振器から外部に
取り出す光量と内部に戻す光量との比(結合比)を調整
していたが、これには予め用意しておいた透過率の異な
る複数の半透過鏡の中から適当なものを選び、調整の度
にそれらを交換する必要があり、精密な調節を行うには
多数の半透過鏡を用意しなければならない煩わしさがあ
った。
Conventionally, the ratio (coupling ratio) of the amount of light extracted from the resonator to the outside and the amount of light returned to the inside has been adjusted by a semi-transmissive mirror. However, this has different transmittances prepared in advance. It is necessary to select an appropriate one from a plurality of semi-transmissive mirrors and replace them each time adjustment is performed, which is troublesome to prepare a large number of semi-transmissive mirrors for precise adjustment.

【0006】本発明の第二の目的は、以上の欠点を排
し、一つの光学素子で結合比の値を連続的に変えること
ができ、調整が容易な色素レーザ発振装置を提供するこ
とにある。
A second object of the present invention is to provide a dye laser oscillating device which eliminates the above drawbacks and which can continuously change the value of the coupling ratio with one optical element and which can be easily adjusted. is there.

【0007】本発明の第三の目的は、結合器にプリズム
を用いた場合に、高効率な色素レーザ発振装置を提供す
ることにある。
A third object of the present invention is to provide a highly efficient dye laser oscillation device when a prism is used for the coupler.

【0008】本発明の第四の目的は、結合器にプリズム
を用いた場合に、狭帯域の色素レーザ発振装置を提供す
ることにある。
A fourth object of the present invention is to provide a narrow band dye laser oscillation device when a prism is used for the coupler.

【0009】本発明の第五の目的は、結合器にプリズム
を用いた場合に、動作時に発振波長や波長幅などの監視
が容易な色素レーザ発振装置を提供することにある。
A fifth object of the present invention is to provide a dye laser oscillating device in which, when a prism is used as a coupler, it is easy to monitor the oscillation wavelength and wavelength width during operation.

【0010】本発明の第六の目的は、結合器にプリズム
を用いた場合に、レーザ出力に含まれるASE(Amplif
ied Spontaneous Emission)分の少ない色素レーザ発
振装置を提供することにある。
A sixth object of the present invention is to use an ASE (Amplif) included in the laser output when a prism is used for the coupler.
An object of the present invention is to provide a dye laser oscillating device having a small amount of ied spontaneous emission.

【0011】本発明の第七の目的は、結合器に回転自在
なプリズムを用いた場合に、プリズムを回転することに
より変化した光軸を補正し、常に一定の光軸を保ち得る
色素レーザ発振装置を提供することにある。
A seventh object of the present invention is, when a rotatable prism is used for the coupler, a dye laser oscillation which can correct an optical axis changed by rotating the prism and can always maintain a constant optical axis. To provide a device.

【0012】[0012]

【課題を解決するための手段】レーザ出力の取り出しに
プリズムを結合器として用い、プリズムの透過光を波長
選択素子である回折格子やエタロンなどに作用させ、反
射光をレーザ出力として取り出す。
A prism is used as a coupler for extracting a laser output, and light transmitted through the prism is caused to act on a diffraction grating, an etalon, or the like, which is a wavelength selection element, and reflected light is extracted as a laser output.

【0013】この手段で、プリズムを回転自在とする。By this means, the prism can be rotated.

【0014】プリズムを結合器として用いた場合、共振
器を構成する他方の反射素子を、全反射鏡または回折格
子または半透過鏡または狭帯域反射鏡とする。
When the prism is used as a coupler, the other reflecting element constituting the resonator is a total reflection mirror, a diffraction grating, a semi-transmission mirror or a narrow band reflection mirror.

【0015】回転自在なプリズムを結合器として用いた
場合、プリズム面上での反射光(取出光)をさらに反射
させる一対の折返し反射鏡を設ける。
When a rotatable prism is used as the coupler, a pair of folding reflecting mirrors are provided to further reflect the reflected light (extracted light) on the prism surface.

【0016】[0016]

【作用】本発明では、プリズム面に入射した光の一部が
反射し残りは透過する性質を利用してプリズムを従来の
半透過鏡の替わりの結合器にしている。従来は捨ててい
たプリズム面上での反射光をここでは利用するので、高
効率化が図れる。
In the present invention, the prism is used as a coupler instead of the conventional semi-transmissive mirror by utilizing the property that a part of the light incident on the prism surface is reflected and the rest is transmitted. Since the reflected light on the prism surface, which was conventionally discarded, is used here, high efficiency can be achieved.

【0017】また、プリズムを回転自在とすれば、プリ
ズム面上での光に対する入射角を変えることで透過光と
反射光との比(結合比)を連続的に変化させ得るので、
調整が容易である。
If the prism is rotatable, the ratio of the transmitted light and the reflected light (coupling ratio) can be continuously changed by changing the incident angle of the light on the prism surface.
Easy to adjust.

【0018】また、プリズムを結合器として用いた本発
明で、共振器を構成する他方の反射素子を全反射鏡とす
ることで共振器内の光損失が最小になるので、高い効率
が得られる。
Further, in the present invention in which the prism is used as the coupler, the other reflection element constituting the resonator is a total reflection mirror, so that the optical loss in the resonator is minimized, so that high efficiency can be obtained. .

【0019】また、本発明で、共振器を構成する他方の
反射素子を回折格子とすることで一対の回折格子で共振
器を構成することができ、この場合、共振器内の光が二
倍の頻度で回折格子と作用するので、狭い波長幅が得ら
れる。
Further, in the present invention, the other reflecting element constituting the resonator is a diffraction grating, so that the resonator can be constituted by a pair of diffraction gratings. In this case, the light in the resonator is doubled. Since it interacts with the diffraction grating at a frequency of, a narrow wavelength width can be obtained.

【0020】また、本発明で、共振器を構成する他方の
反射素子を半透過鏡とすることで共振器内の光の一部を
光軸一定の条件で外部に取り出せる。そのため位置固定
のモニタ装置で波長や波長幅を動作中も、随時、監視で
きる。
Further, in the present invention, the other reflecting element constituting the resonator is a semi-transmissive mirror, whereby a part of the light in the resonator can be extracted to the outside under the condition that the optical axis is constant. Therefore, it is possible to monitor the wavelength and the wavelength width with a fixed-position monitor device at any time even during operation.

【0021】また、本発明で、共振器を構成する他方の
反射素子を狭帯域反射鏡とすれば、狭帯域反射鏡は発振
波長近くの波長域でのみ全反射鏡として作用するから発
振波長から外れた波長を持つASE分はこの端より外部
に抜ける。そのため他端のプリズムから外部に取り出さ
れるレーザ出力中に含まれるASE分は減少する。
Further, in the present invention, if the other reflecting element constituting the resonator is a narrow band reflecting mirror, the narrow band reflecting mirror acts as a total reflecting mirror only in a wavelength region near the oscillation wavelength, and therefore, from the oscillation wavelength. The ASE component with the deviated wavelength escapes from this end to the outside. Therefore, the amount of ASE contained in the laser output taken out from the prism at the other end is reduced.

【0022】また、回転自在なプリズムを結合器として
用いた本発明で、結合器であるプリズムを回転したため
変化する光軸の補正も必要になる。そのため一対の折返
し反射鏡を設け、一つは回転及び平行移動可能な支持具
に他方は回転可能な支持具に固定する。取出光が前者の
折返し反射鏡の回転軸上に照射されるよう平行移動し、
その反射光が後者の折返し反射鏡の回転軸上に照射され
るよう前者の折返し反射鏡の回転を調節する。後者の折
返し反射鏡は位置固定であり、常に回転軸上に取出光が
照射されるから、回転を調節することで、一定の光軸を
保つことができる。
Further, in the present invention in which the rotatable prism is used as the coupler, it is necessary to correct the optical axis which changes due to the rotation of the prism which is the coupler. Therefore, a pair of folding reflecting mirrors are provided, one is fixed to a support that can be rotated and translated, and the other is fixed to a support that is rotatable. Translated so that the extracted light is irradiated on the rotation axis of the former reflection mirror,
The rotation of the former folding reflecting mirror is adjusted so that the reflected light is irradiated onto the rotation axis of the latter folding reflecting mirror. The latter reflecting mirror has a fixed position, and the extracted light is always radiated on the rotation axis, so that a constant optical axis can be maintained by adjusting the rotation.

【0023】[0023]

【実施例】本発明を図1により説明する。光増幅部とし
て色素セル1,共振器を構成するための反射素子を回折
格子3,他方の反射素子を全反射鏡4,レーザ出力の取
り出しのためのプリズム5,波長幅を狭くする働きを持
つエタロン9から構成する。励起光2を色素セル1に照
射し往復光6を発生させる。往復光6をプリズム5で操
作光7と取出光8とに分割し、取出光8をレーザ出力と
する。
The present invention will be described with reference to FIG. As a light amplification part, a dye cell 1, a reflection element for forming a resonator, a diffraction grating 3, another reflection element for a total reflection mirror 4, a prism 5 for extracting a laser output, and a function for narrowing the wavelength width. Composed of etalon 9. Excitation light 2 is applied to the dye cell 1 to generate reciprocating light 6. The reciprocating light 6 is split by the prism 5 into operation light 7 and extraction light 8, and the extraction light 8 is used as a laser output.

【0024】ここで用いた構成材の仕様は以下の様であ
る。
The specifications of the constituent materials used here are as follows.

【0025】 色素セル1 … 溶融石英ガラス 回折格子3 … 格子線密度 600本/mm 全反射鏡4 … 反射率 99.9% プリズム5 … 溶融石英ガラス エタロン9 … フリースペクトルレンジ 10GH
z, フィネス 20次に動作を述べる。ローダミン6
G色素を1リットル当たり0.4 ミリ分子モルの割合で
純度90%以上のエタノールに溶かした溶液を色素セル
1に流し、励起光2(波長510ナノメートル,出力1
1.8 ワットの銅蒸気レーザ)を横から照射した。この
場合、ローダミン6G色素が励起され、回折格子3と全
反射鏡4とで作られた共振器内に往復光6が生じた。た
だし、往復光6はP偏光しており、プリズム5で操作光
7と取出光8とに分けられる。その割合はプリズム面の
法線に対する角度をθとすれば、光学の法則により以下
のように表せる。
Dye cell 1 Fused silica glass diffraction grating 3 Lattice line density 600 lines / mm Total reflection mirror 4 Reflectivity 99.9% Prism 5 Fused silica glass etalon 9 Free spectrum range 10GH
z, finesse 20 Next, the operation will be described. Rhodamine 6
A solution in which the G dye was dissolved in ethanol having a purity of 90% or more at a ratio of 0.4 millimoles per liter was passed through the dye cell 1, and the excitation light 2 (wavelength 510 nm, output 1
A 1.8 watt copper vapor laser) was irradiated from the side. In this case, the Rhodamine 6G dye was excited, and the round-trip light 6 was generated in the resonator formed by the diffraction grating 3 and the total reflection mirror 4. However, the reciprocating light 6 is P-polarized and is divided into the operation light 7 and the extracted light 8 by the prism 5. The ratio can be expressed as follows according to the law of optics, where θ is the angle with respect to the normal to the prism surface.

【0026】[0026]

【数1】 [取出光8の割合]=[(cosθ・sinθ−cosα・sinα)/(cosθ・sinθ +cosα・sinα)]2 [操作光7の割合]=1−[取出光8の強度] {ここで、α=arcsin[(sinθ)/n]、nはプリズム
5の溶融石英ガラスの屈折率}往復光6に対するプリズ
ム5を角度調整機構を持つ光学素子支持具で固定し、そ
の角度を変化させて取出光8の割合の増減と波長幅との
関係を調べた。その結果、波長幅を最小とする最適な割
合があることを見出した。すなわち、取出光8の割合を
増せば、効率は高くなるが波長選択素子である回折格子
3やエタロン9に作用する光量が減るため、波長幅は大
きくなる。逆に、取出光8の割合を減せば、取出光量が
減り(一方、ASEの大きさは、常にほぼ一定であるか
ら)、ASEの影響が強くなり、やはり波長幅は大きく
なる。実験では、角度θが約85度の場合に、最小波長
幅0.75GHzを得た。この場合、上述の法則から取
出光8の割合は約50%(半透過鏡の透過率と同じ物理
的意味を持つ)と算定できる。なお、この時のレーザ出
力(取出光8)は450ミリワット(効率;0.45/
11.8=3.8%)、絶対波長は593ナノメートルで
あった。
[Equation 1] [Ratio of extracted light 8] = [(cos θ · sin θ−cos α · sin α) / (cos θ · sin θ + cos α · sin α)] 2 [Ratio of operation light 7] = 1- [strength of extracted light 8] {where α = arcsin [(sin θ) / n], n is the refractive index of the fused silica glass of the prism 5} The prism 5 for the round trip light 6 Was fixed by an optical element support having an angle adjusting mechanism, and the angle was changed to examine the relationship between the increase and decrease in the ratio of the extracted light 8 and the wavelength width. As a result, they have found that there is an optimum ratio that minimizes the wavelength width. That is, if the ratio of the extracted light 8 is increased, the efficiency is increased, but the amount of light acting on the diffraction grating 3 or the etalon 9 which is the wavelength selection element is decreased, so that the wavelength width is increased. On the contrary, if the ratio of the extracted light 8 is reduced, the amount of the extracted light decreases (on the other hand, the size of ASE is always almost constant), the influence of ASE becomes strong, and the wavelength width also becomes large. In the experiment, the minimum wavelength width of 0.75 GHz was obtained when the angle θ was about 85 degrees. In this case, the ratio of the extracted light 8 can be calculated to be about 50% (having the same physical meaning as the transmissivity of the semitransparent mirror) from the above-mentioned law. The laser output (extracted light 8) at this time was 450 milliwatts (efficiency: 0.45 /
11.8 = 3.8%), and the absolute wavelength was 593 nanometers.

【0027】さらに従来方式との比較のため、全反射鏡
4を透過率96%の半透過鏡に置き換え、図2の構成で
発振させた。その結果、波長幅5.5GHz ,レーザ出
力(取出光8)96ミリワット(効率;0.096/1
1.8=0.8%) という値を得た。なお半透過鏡の透過
率96%は、レーザ出力(取出光8)が最大となるよう
実験的に選んだものである。
Further, for comparison with the conventional system, the total reflection mirror 4 was replaced with a semi-transmission mirror having a transmittance of 96%, and oscillation was made with the configuration of FIG. As a result, the wavelength width is 5.5 GHz, the laser output (extracted light 8) is 96 mW (efficiency: 0.096 / 1).
The value was 1.8 = 0.8%). The transmissivity of 96% of the semi-transmissive mirror was experimentally selected so that the laser output (extracted light 8) was maximized.

【0028】本発明では、従来はビーム幅を拡げるほど
大きな損失となっていたプリズム面上での反射光を利用
するので、従来比4.7 倍の高効率化が図れ、また、狭
帯域化に寄与する操作光7の光の絶対量も大きくなるの
で、従来の約1/7の波長幅に狭帯域化出来た。
In the present invention, since the reflected light on the prism surface, which has been a large loss as the beam width is widened in the past, is used, the efficiency can be improved by 4.7 times compared with the conventional one, and the band narrowing can be achieved. Since the absolute amount of the operation light 7 that contributes to the increase becomes large, the band can be narrowed to about 1/7 of the conventional wavelength width.

【0029】ところで、従来の構成で半透過鏡の透過率
を50%に設定しても、本発明で得られたような最小波
長幅は得られない。理由は、プリズム5での反射を損失
光11として失っているから往復光6の強度が本発明の
それとは違うからである。この透過率の最適値は、一般
に励起光2の強度によっても変わる。従来の構成では、
その都度、最適な透過率の半透過鏡を再選定し交換する
必要があったが、本発明ではプリズム5を固定した光学
素子支持具の角度を再調整すれば、上述の法則からも明
らかなように、操作光7と取出光8との比(結合比)を
連続的に変えることが出来る。この作業は角度調整ねじ
の操作だけで済み、従来必要だった半透過鏡の交換作業
に比べれば容易である。
By the way, even if the transmissivity of the semi-transmissive mirror is set to 50% in the conventional structure, the minimum wavelength width obtained in the present invention cannot be obtained. The reason is that the intensity of the reciprocating light 6 is different from that of the present invention because the reflection at the prism 5 is lost as the lost light 11. The optimum value of this transmittance generally changes depending on the intensity of the excitation light 2. In the conventional configuration,
Each time, it was necessary to reselect and replace a semi-transmissive mirror having an optimum transmittance, but in the present invention, if the angle of the optical element supporting member to which the prism 5 is fixed is readjusted, it is clear from the above law. Thus, the ratio (coupling ratio) between the operation light 7 and the extracted light 8 can be continuously changed. This operation only requires the operation of the angle adjusting screw, and is easier than the work of replacing the semi-transparent mirror, which was necessary in the past.

【0030】本発明の第二の実施例を図3に示す。共振
器を構成する他方の反射素子を回折格子12とし、一対
の回折格子で共振器を構成したものである。光軸を一旦
合わせた後は、共振器内の光は両端で回折格子3,12
と作用するので、さらに狭い波長幅が得られる。図1に
おける全反射鏡4を格子線密600本/mmの回折格子1
2に置き換え、上述の実験条件で発振させた結果、波長
幅0.55GHz ,レーザ出力(取出光8)6ミリワッ
トを得た。
A second embodiment of the present invention is shown in FIG. The other reflecting element forming the resonator is the diffraction grating 12, and the resonator is formed by a pair of diffraction gratings. Once the optical axes are aligned, the light inside the resonator is diffracted at both ends by the diffraction gratings 3, 12
Therefore, a narrower wavelength width can be obtained. The total reflection mirror 4 in FIG.
As a result of oscillating under the above-mentioned experimental conditions by substituting it with 2, a wavelength width of 0.55 GHz and a laser output (extracted light 8) of 6 milliwatts were obtained.

【0031】本発明の第三の実施例を図4に示す。共振
器を構成する他方の反射素子を半透過鏡13としたもの
である。このため、共振器内の光の一部を監視光14と
して光軸一定の条件で外部に取り出せる。図1における
全反射鏡4を透過率0.2 %の半透過鏡13に置き換
え、位置固定のモニタ装置15で波長や波長幅を動作中
も随時監視した。この場合、レーザ出力や波長幅の観測
値には全反射鏡4を半透過鏡13に交換した影響は観測
されなかった。
A third embodiment of the present invention is shown in FIG. The other reflective element constituting the resonator is a semi-transmissive mirror 13. Therefore, a part of the light inside the resonator can be extracted as the monitoring light 14 under the condition that the optical axis is constant. The total reflection mirror 4 in FIG. 1 was replaced with a semi-transmission mirror 13 having a transmittance of 0.2%, and the wavelength and wavelength width were constantly monitored by the position-fixed monitor device 15 during operation. In this case, the effect of replacing the total reflection mirror 4 with the semi-transmission mirror 13 was not observed in the observation values of the laser output and the wavelength width.

【0032】本発明の第四の実施例を図5に示す。共振
器を構成する他方の反射素子を狭帯域反射鏡16とした
ものである。発振波長近傍の波長域1000GHzにわ
たり反射率が約80%、それ以外の波長域では反射率が
5−10%の狭帯域反射鏡16を図1における全反射鏡
4に置き換え、上述の実験条件で発振させた結果、29
ミリワットのASE光17が狭帯域反射鏡16から抜け
るのが観測された。そのため、レーザ出力(取出光8)
の波長幅は変らなかったものの、その中に含まれるAS
E分はおよそ30%減少した。
A fourth embodiment of the present invention is shown in FIG. The other reflection element constituting the resonator is a narrow band reflection mirror 16. The reflectance is about 80% over the wavelength range of 1000 GHz near the oscillation wavelength, and the narrowband reflector 16 having a reflectance of 5-10% in other wavelength ranges is replaced with the total reflection mirror 4 in FIG. As a result of oscillating, 29
It was observed that milliwatts of ASE light 17 exited the narrow band reflector 16. Therefore, laser output (extracted light 8)
Of the AS included in the wavelength width of the
E minutes were reduced by approximately 30%.

【0033】本発明の第五の実施例を図6に示す。回転
自在なプリズム5を結合器として用いているため、プリ
ズム5を回転する場合にはその都度変化する光軸の補正
も必要になる。このため、一対の折返し反射鏡18,1
9を設け、折返し反射鏡18は回転及び平行移動可能な
支持具に、折返し反射鏡19は回転可能な支持具に固定
する。補正の手順は、第一に取出光8が折返し反射鏡1
8の回転軸上に照射されるようこれを平行移動し、第二
に反射光20が折返し反射鏡19の回転軸上に照射され
るよう折返し反射鏡18の回転を調節する。第三に折返
し反射鏡19の回転を調節する。折返し反射鏡回転19
は位置固定にでき、常に、この回転軸上に反射光20を
照射できるから、その回転角度を調節することでレーザ
出力(照射光21)の光軸を一定に保つことができる。
なお、この調整は手動やあるいはプリズム5と折返し反
射鏡18,19とを連動させたコンピュータによって行
える。
The fifth embodiment of the present invention is shown in FIG. Since the rotatable prism 5 is used as a coupler, when the prism 5 is rotated, it is necessary to correct the optical axis that changes each time. Therefore, the pair of folding reflecting mirrors 18, 1
9, the folding reflecting mirror 18 is fixed to a support that can be rotated and translated, and the folding reflecting mirror 19 is fixed to a rotatable support. The correction procedure is as follows. First, the extracted light 8 is reflected by the reflecting mirror 1.
It is moved in parallel so that it is irradiated onto the rotation axis of 8, and secondly, the rotation of the reflection mirror 18 is adjusted so that the reflected light 20 is irradiated onto the rotation axis of the reflection mirror 19. Thirdly, the rotation of the folding reflecting mirror 19 is adjusted. Folding mirror rotation 19
Can be fixed in position, and the reflected light 20 can be always radiated onto this rotation axis, so that the optical axis of the laser output (irradiation light 21) can be kept constant by adjusting the rotation angle.
Note that this adjustment can be performed manually or by a computer in which the prism 5 and the folding reflecting mirrors 18 and 19 are linked.

【0034】これまで、プリズム5は一個の場合で説明
したが、複数個の組合せであっても同様である。またエ
タロン9は波長の狭帯域化のためには極めて有効ではあ
るが、本発明における必須の構成要素ではなく、状況に
応じて省略が可能である。
Up to this point, the case where the number of the prism 5 is one has been described, but the same applies to a combination of a plurality of prisms. Although the etalon 9 is extremely effective for narrowing the wavelength band, it is not an essential component of the present invention and can be omitted depending on the situation.

【0035】[0035]

【発明の効果】本発明によれば、従来はビーム幅を拡げ
るほど大きな損失となっていたプリズム面上での反射光
を逆に利用するので、従来に比べて高い効率が得られ
る。
According to the present invention, since the reflected light on the prism surface, which has been a large loss as the beam width is widened in the past, is used in reverse, a higher efficiency can be obtained as compared with the conventional one.

【0036】また、プリズム5を固定した光学素子支持
具の角度調整で結合比の値を連続的に変えることがで
き、調整が容易になる。
Further, the value of the coupling ratio can be continuously changed by adjusting the angle of the optical element supporting member to which the prism 5 is fixed, which facilitates the adjustment.

【0037】また、共振器を構成する他方の反射素子を
全反射鏡とすることで共振器内の光損失を最小にできる
ので、高い効率が得られる。
Further, since the other reflection element constituting the resonator is a total reflection mirror, the optical loss in the resonator can be minimized, so that high efficiency can be obtained.

【0038】また、共振器を構成する他方の反射素子を
回折格子とすることで、共振器内の光が二倍の頻度で回
折格子と作用するので、狭い波長幅が得られる。
Further, since the other reflection element forming the resonator is a diffraction grating, the light in the resonator acts on the diffraction grating twice as often, so that a narrow wavelength width can be obtained.

【0039】また、共振器を構成する他方の反射素子を
半透過鏡とすることで、共振器内の光の一部を取り出
し、モニタ装置で波長や波長幅の動作中の随時モニタも
可能になる。
Further, by using a semi-transmissive mirror as the other reflecting element constituting the resonator, a part of the light in the resonator can be taken out and the monitor device can monitor the wavelength and the wavelength width at any time during operation. Become.

【0040】また、共振器を構成する他方の反射素子を
狭帯域反射鏡とすれば、発振波長から外れた波長を持つ
ASE分はこの端より外部に抜けるから、レーザ出力中
に含まれるASE分は減少する。
If the other reflection element constituting the resonator is a narrow band reflector, the ASE component having a wavelength outside the oscillation wavelength will escape to the outside from this end, so the ASE component contained in the laser output. Decreases.

【0041】また一対の折返し反射鏡を設け、それらの
相対位置を調節することで、一定の光軸を保つことがで
きる。
A fixed optical axis can be maintained by providing a pair of folding reflecting mirrors and adjusting their relative positions.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す側面図。FIG. 1 is a side view showing an embodiment of the present invention.

【図2】従来例を示す側面図。FIG. 2 is a side view showing a conventional example.

【図3】本発明の第二の実施例を示す側面図。FIG. 3 is a side view showing a second embodiment of the present invention.

【図4】本発明の第三の実施例を示す側面図。FIG. 4 is a side view showing a third embodiment of the present invention.

【図5】本発明の第四の実施例を示す側面図。FIG. 5 is a side view showing a fourth embodiment of the present invention.

【図6】本発明の第五の実施例を示す側面図。FIG. 6 is a side view showing a fifth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…色素セル、2…励起光、3…回折格子、4…全反射
鏡、5…プリズム、6…往復光、7…操作光、8…取出
光、9…エタロン。
1 ... Dye cell, 2 ... Excitation light, 3 ... Diffraction grating, 4 ... Total reflection mirror, 5 ... Prism, 6 ... Reciprocating light, 7 ... Operation light, 8 ... Extracted light, 9 ... Etalon.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】色素セルと反射素子とプリズムと回折格子
とエタロンとから構成する色素レーザ発振装置におい
て、前記プリズムの反射光を共振器の外に取り出すこと
を特徴とする色素レーザ発振装置。
1. A dye laser oscillating device comprising a dye cell, a reflecting element, a prism, a diffraction grating and an etalon, wherein reflected light of the prism is taken out of a resonator.
【請求項2】請求項1において、前記プリズムを回転自
在とし、それを回転することで操作光と取出光との比を
連続的に変える色素レーザ発振装置。
2. The dye laser oscillating device according to claim 1, wherein the prism is rotatable, and the ratio between the operation light and the extracted light is continuously changed by rotating the prism.
【請求項3】請求項1において、前記反射素子を全反射
鏡とした色素レーザ発振装置。
3. The dye laser oscillator according to claim 1, wherein the reflecting element is a total reflection mirror.
【請求項4】請求項1において、前記反射素子を回折格
子とした色素レーザ発振装置。
4. The dye laser oscillator according to claim 1, wherein the reflective element is a diffraction grating.
【請求項5】請求項1において、前記反射素子を半透過
鏡とした色素レーザ発振装置。
5. The dye laser oscillator according to claim 1, wherein the reflective element is a semitransparent mirror.
【請求項6】請求項1において、前記反射素子を狭帯域
反射鏡とした色素レーザ発振装置。
6. The dye laser oscillator according to claim 1, wherein the reflecting element is a narrow band reflecting mirror.
【請求項7】請求項2において、取出光を反射させる一
対の折返し反射鏡を設けた色素レーザ発振装置。
7. The dye laser oscillator according to claim 2, wherein a pair of folding reflecting mirrors for reflecting the extracted light are provided.
JP16799491A 1991-07-09 1991-07-09 Dye laser oscillator Pending JPH0513890A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16799491A JPH0513890A (en) 1991-07-09 1991-07-09 Dye laser oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16799491A JPH0513890A (en) 1991-07-09 1991-07-09 Dye laser oscillator

Publications (1)

Publication Number Publication Date
JPH0513890A true JPH0513890A (en) 1993-01-22

Family

ID=15859832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16799491A Pending JPH0513890A (en) 1991-07-09 1991-07-09 Dye laser oscillator

Country Status (1)

Country Link
JP (1) JPH0513890A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017183210A1 (en) * 2016-04-22 2017-10-26 ギガフォトン株式会社 Laser device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017183210A1 (en) * 2016-04-22 2017-10-26 ギガフォトン株式会社 Laser device
CN108780979A (en) * 2016-04-22 2018-11-09 极光先进雷射株式会社 Laser aid
JPWO2017183210A1 (en) * 2016-04-22 2019-02-28 ギガフォトン株式会社 Laser equipment
US10522966B2 (en) 2016-04-22 2019-12-31 Gigaphoton Inc. Laser apparatus

Similar Documents

Publication Publication Date Title
US4229710A (en) Wavelength selector for tunable laser
US5150370A (en) Narrow-band laser apparatus
US4985898A (en) Narrow-band laser apparatus
US6240110B1 (en) Line narrowed F2 laser with etalon based output coupler
KR20010023805A (en) Line narrowing device with double duty grating
US20100265973A1 (en) External cavity tunable laser with an air gap etalon comprising wedges
JPH09258284A (en) Narrow bright line width bbo optical parametric oscillator utilizing abnormal resonance
US4490021A (en) Optical filtering element and a spectral refining device including the same
JPH11132848A (en) Multi-path spectrometer
US3739295A (en) Laser with means for suppressing back-ground fluorescence in the output
Gorris-Neveux et al. A two-wavelength, passively self-injection locked, CW Ti/sup 3+: Al/sub 2/O/sub 3/laser
JP5196459B2 (en) Broadband tunable laser beam generator
JPH0513890A (en) Dye laser oscillator
JPH08228038A (en) Narrow-band laser generator
EP0163613B1 (en) Optical interferometer with dispersion deviator
US20090034576A1 (en) Linewidth-narrowed excimer laser cavity
US20100027579A1 (en) Linewidth-narrowed excimer laser cavity
JPH05152666A (en) Narrowed-band laser
JP2715608B2 (en) Narrow band laser device
JPH0797680B2 (en) Narrow band laser device
RU2427062C2 (en) Tunable frequency selector
CA2032054C (en) Narrow-band laser apparatus
CN116982225A (en) Intracavity holographic laser mode converter
JP2001223422A (en) Ultranarrow-band mode laser device and narrow-band mode laser device
Moser et al. A novel tunable diode laser using volume holographic gratings