JPH0797680B2 - Narrow band laser device - Google Patents

Narrow band laser device

Info

Publication number
JPH0797680B2
JPH0797680B2 JP1286840A JP28684089A JPH0797680B2 JP H0797680 B2 JPH0797680 B2 JP H0797680B2 JP 1286840 A JP1286840 A JP 1286840A JP 28684089 A JP28684089 A JP 28684089A JP H0797680 B2 JPH0797680 B2 JP H0797680B2
Authority
JP
Japan
Prior art keywords
light
polarization
wavelength
component
laser device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1286840A
Other languages
Japanese (ja)
Other versions
JPH0387084A (en
Inventor
伸昭 古谷
拓弘 小野
直也 堀内
圭一郎 山中
威男 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1286840A priority Critical patent/JPH0797680B2/en
Priority to DE69031884T priority patent/DE69031884T2/en
Priority to EP90103985A priority patent/EP0402570B1/en
Priority to US07/487,080 priority patent/US4985898A/en
Priority to CA002011361A priority patent/CA2011361C/en
Priority to KR1019900003141A priority patent/KR930002821B1/en
Priority to US07/626,145 priority patent/US5150370A/en
Publication of JPH0387084A publication Critical patent/JPH0387084A/en
Publication of JPH0797680B2 publication Critical patent/JPH0797680B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08004Construction or shape of optical resonators or components thereof incorporating a dispersive element, e.g. a prism for wavelength selection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/081Construction or shape of optical resonators or components thereof comprising three or more reflectors
    • H01S3/0811Construction or shape of optical resonators or components thereof comprising three or more reflectors incorporating a dispersive element, e.g. a prism for wavelength selection

Description

【発明の詳細な説明】 産業上の利用分野 本発明は半導体集積回路の超微細加工時に用いられる露
光用光源である狭帯域化レーザ装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a narrow band laser device which is a light source for exposure used during ultrafine processing of a semiconductor integrated circuit.

従来の技術 従来より、半導体集積回路の微細パターンの露光用光源
としてエキシマレーザが注目されている。エキシマレー
ザはレーザ媒質としてクリプトン、キセノン等の希ガス
とふっ素、塩素等のハロゲンガスを組み合わせることに
より353nmから193nmの間のいくつかの波長でパターン露
光に十分な出力を有する発振線を得ることができる。
2. Description of the Related Art Excimer lasers have been attracting attention as a light source for exposing fine patterns of semiconductor integrated circuits. The excimer laser can obtain an oscillation line having a sufficient output for pattern exposure at several wavelengths between 353 nm and 193 nm by combining a rare gas such as krypton or xenon with a halogen gas such as fluorine or chlorine as a laser medium. it can.

これらエキシマレーザの利得バンド幅は約1nmと広く、
光共振器と組み合わせて発振させた場合、発振線が0.5n
m程度の帯域幅(半値全幅)を持つ。このように比較的
広い帯域幅を持つレーザ光を露光用光源として用いた場
合、露光光学系に色収差を補正した結像光学系を採用す
る必要がある。ところが、波長が350nm以下の紫外域で
は、結像光学系に用いるレンズの光学材料の選択の幅が
得られ、色収差の補正が困難となる。エキシマレーザを
露光装置に用いる場合、レーザ発振線の帯域幅を0.005n
m程度にまで単色化できれば色収差補正をしない結像光
学系が利用可能となり、露光装置の光学系の簡略化さら
には露光装置全体の小型化、価格の低減を実現できる。
The gain bandwidth of these excimer lasers is as wide as about 1 nm,
When oscillated in combination with an optical resonator, the oscillation line is 0.5n
Has a bandwidth of about m (full width at half maximum). When laser light having a relatively wide bandwidth is used as a light source for exposure as described above, it is necessary to employ an imaging optical system in which chromatic aberration is corrected as an exposure optical system. However, in the ultraviolet region having a wavelength of 350 nm or less, the range of selection of the optical material of the lens used in the imaging optical system is obtained, and it becomes difficult to correct chromatic aberration. When using an excimer laser in an exposure system, the bandwidth of the laser oscillation line is 0.005n.
If monochromatic up to about m, it becomes possible to use an imaging optical system that does not correct chromatic aberration, and it is possible to simplify the optical system of the exposure apparatus, further downsize the exposure apparatus, and reduce the cost.

広い帯域幅を持つレーザ光を単色化するには、狭い透過
帯域を持つ波長選択フィルターを通せば良い。しかしこ
の方法ではレーザ出力が著しく減衰し、露光用光源とし
て実用に供することができない。そこで、波長選択素子
を共振器内に設置し出力を減衰させることなく単色化す
る方法が一般に採用されている。この一例として、例え
ば特開昭63−160287号公報記載の構成が知られている。
To make a laser beam having a wide bandwidth monochromatic, a wavelength selection filter having a narrow transmission band may be used. However, with this method, the laser output is significantly attenuated and cannot be put to practical use as a light source for exposure. Therefore, a method is generally adopted in which a wavelength selection element is installed in a resonator and the output is monochromatic without being attenuated. As an example of this, for example, the configuration described in Japanese Patent Laid-Open No. 63-160287 is known.

以下、簡単にその構成を説明すると、第7図にその構成
を示すように、全反射鏡102、および半透過鏡103からな
る光共振器内に放電管101が置かれ、放電管101には希ガ
スとハロゲンガスを含む媒質ガスが封入されており、放
電励起によってレーザ発振する。光共振器中には波長選
択素子であるファブリペローエタロン104が設置されて
いる。このような構成のエキシマレーザ装置では、ファ
ブリペローエタロン104で選択された特定の波長の光10
6、107、108、109だけが増幅、発振するので、非常に狭
い帯域幅でかつ高い出力の出力光105を得ることができ
る。
The structure will be briefly described below. As shown in FIG. 7, the discharge tube 101 is placed in an optical resonator including a total reflection mirror 102 and a semi-transmission mirror 103, and the discharge tube 101 is A medium gas containing a rare gas and a halogen gas is enclosed, and laser oscillation occurs by discharge excitation. A Fabry-Perot etalon 104, which is a wavelength selection element, is installed in the optical resonator. In the excimer laser device having such a configuration, the light 10 having a specific wavelength selected by the Fabry-Perot etalon 104 is used.
Since only 6, 107, 108 and 109 are amplified and oscillated, the output light 105 having a very narrow bandwidth and high output can be obtained.

発明が解決しようとする課題 しかし、従来の狭帯域化レーザ装置では、光共振器内に
定在する高いエネルギーの光が波長選択素子を通過する
ため、波長選択素子の変形や劣化を招き選択波長の変動
や、出力の低下が発生し、その結果、露光装置の光源と
して用いた場合、製品に不良を生じるなどの課題があっ
た。本発明はこのような課題を解決するためなされたも
ので、波長選択素子の変形、劣化による波長変動や出力
の低下がない狭帯域化レーザ装置を提供することを目的
とする。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention However, in the conventional band-narrowing laser device, since the light of high energy which is standing in the optical resonator passes through the wavelength selection element, the wavelength selection element is deformed or deteriorated to cause the selection wavelength. And a decrease in output occur, and as a result, when used as a light source of an exposure apparatus, there is a problem that a product is defective. The present invention has been made to solve such a problem, and an object of the present invention is to provide a narrow band laser device in which there is no wavelength fluctuation or output reduction due to deformation or deterioration of the wavelength selection element.

課題を解決するための手段 上記目的を達成するため、本発明は、第1及び第2の反
射器を含む光共振手段と、前記光共振手段の共振光路中
に設けられたレーザ媒質部分と、前記レーザ媒質部分を
励起し前記共振光路の方向に光を発生するための励起手
段と、前記共振光路中に設けられて前記光の所定波長成
分の光を選択する波長選択手段と、前記共振光路中に設
けられて前記光の偏光状態を変換する偏光変換手段と、
前記共振光路中に設けられて前記光の第1の偏光成分と
前記光の第2の偏光成分とを分離する偏光分離手段とを
有し、前記波長選択手段は、前記共振光路中であって前
記レーザ媒質と前記偏光分離手段との間以外に設けら
れ、かつ前記第1の偏光成分及び前記第2の偏光成分の
一方の所定波長成分光を選択し、前記波長選択手段で選
択された所定波長成分光は、前記偏光変換手段により前
記第1の偏光成分及び前記第2の偏光成分の他方の偏光
状態を有する偏光成分に変換された後、前記偏光分離手
段によって分離され、波長が狭帯域化されたレーザ出力
光として出射される狭帯域化レーザ装置 作用 本発明の上記構成により、レーザ媒質から発した光は光
共振器で発振され、その光の一方の偏光成分の光が、レ
ーザ媒質と偏光分離手段との間以外の光共振光路におか
れた波長選択手段によって狭帯域化された後で、偏光変
換手段によって他方の偏光成分を有する光に変換され
て、偏光分離手段から増幅された狭帯域出力光として出
射される。そのため、波長選択素子を通過する光エネル
ギーはレーザ媒質の増幅率で出力光を割算した程度に低
下するので、波長選択素子の変形、劣化は著しく低減す
るものである。
Means for Solving the Problems In order to achieve the above object, the present invention provides an optical resonator including first and second reflectors, and a laser medium portion provided in a resonant optical path of the optical resonator. Excitation means for exciting the laser medium portion to generate light in the direction of the resonance optical path; wavelength selection means provided in the resonance optical path for selecting light of a predetermined wavelength component of the light; and the resonance optical path. Polarization conversion means provided inside for converting the polarization state of the light,
A polarization separation unit that is provided in the resonance optical path and separates a first polarization component of the light and a second polarization component of the light, and the wavelength selection unit is in the resonance optical path. A predetermined wavelength component light which is provided other than between the laser medium and the polarization separation means, selects one of the first polarization component and the predetermined polarization component of the second polarization component, and selects the predetermined wavelength component light by the wavelength selection means. The wavelength component light is converted into a polarization component having the other polarization state of the first polarization component and the second polarization component by the polarization conversion means, and then separated by the polarization separation means to have a narrow wavelength band. Narrow band laser device which is emitted as a converted laser output light Action With the above configuration of the present invention, the light emitted from the laser medium is oscillated by the optical resonator, and the light of one polarization component of the light is the laser medium. And the polarization separation means After narrowing the band by the wavelength selecting means placed in the optical resonance optical path other than the above, it is converted into light having the other polarization component by the polarization converting means, and is output as the narrowband output light amplified from the polarization separating means. To be done. Therefore, the optical energy passing through the wavelength selection element is reduced to the extent that the output light is divided by the amplification factor of the laser medium, so that the deformation and deterioration of the wavelength selection element are significantly reduced.

実 施 例 以下、第1図を参照しながら本発明の第1実施例につい
て説明する。
Example Hereinafter, a first example of the present invention will be described with reference to FIG.

第1図は本発明の狭帯域化レーザ装置の構成図である。
第1図において、希ガスとハロゲンの混合気体をレーザ
媒質とする放電管1と全反射鏡2、3からなる光共振器
により、紫外域でレーザ発振する。光共振器の作る共振
器光路中には1/4波長位相器4と偏光分離器5が置か
れ、放電管1のレーザ媒質で増幅された出力光8は偏光
分離器5を通り、出力光7となって出力される。
FIG. 1 is a block diagram of a narrow band laser device according to the present invention.
In FIG. 1, laser oscillation is performed in the ultraviolet region by an optical resonator including a discharge tube 1 using a mixed gas of a rare gas and a halogen as a laser medium and total reflection mirrors 2 and 3. A 1/4 wavelength phase shifter 4 and a polarization separator 5 are placed in the resonator optical path formed by the optical resonator, and the output light 8 amplified by the laser medium of the discharge tube 1 passes through the polarization separator 5 and the output light 7 is output.

上記の出力光7,8が通る出力光路以外の共振器光路中に
波長選択素子であるファブリペローエタロン6が置か
れ、特定の狭い帯域の波長だけが選択的に光共振器で発
振することにより、特定の狭い波長の光だけがレーザ発
振する。
The Fabry-Perot etalon 6 which is a wavelength selection element is placed in the resonator optical path other than the output optical paths through which the output lights 7 and 8 pass, and only the wavelength in a specific narrow band is selectively oscillated by the optical resonator. , Only light of a specific narrow wavelength lases.

以上のような第1図の構成において、以下その動作につ
き説明する。
The operation of the configuration shown in FIG. 1 will be described below.

放電管1のレーザ媒質で増幅された光8は偏光の成分に
より偏光分離器5で伝播方向が分かれ、一方の偏光成分
が出力光7となって出力される。他の一方の偏光成分の
光は偏光分離器5を通過し、光9となってファブリペロ
ーエタン6と全反射鏡2で波長が選択されて反射光10と
なり再び偏光分離器5を通過し、レーザ媒質で増幅され
た光11となって1/4波長位相器4に入る。1/4波長位相器
4と全反射鏡3で光11は1/4波長位相器4を2度通過し
て反射光12となるが、2度の通過で1/2波長位相器の通
過と同等になり、一方向に変更している光11は両方の変
光成分を含む反射光12となる。一般に1/4波長位相器4
を光の通過する軸を中心に回転させる事で反射鏡12の両
方の偏光成分強度比率を任意に設定する事が可能であ
る。次に、放電管1のレーザ媒質により反射光12は増幅
され、出力光8となって偏光分離器5により一方の偏光
成分は出力光7となって出力される。また他の一方の偏
光成分は通過して光9となり発振を継続する。ここで、
1/4波長位相器4は回転して偏光成分比率を変える事
で、出力光7と通過光9の割合を任意に変化させて出力
光のレーザ発振結合率が変えられる。この様な構成にす
る事により、ファプリペローエタロン6に入る発振を継
続する光9に比較して、偏光成分を1/4波長位相器4で
変換された光はレーザ媒質で増幅された後に、偏光分離
器5を通り出力光7となるため、レーザ媒質の増幅率程
度、光9に比較して大きく、相対的に波長選択素子であ
るファブリペローエタロン6の変形、劣化が著しく低減
することとなる。
The light 8 amplified by the laser medium in the discharge tube 1 has its propagation direction divided by the polarization separator 5 depending on the polarization component, and one polarization component is output as the output light 7. The light of the other polarization component passes through the polarization separator 5 and becomes light 9 whose wavelength is selected by the Fabry-Perot ethane 6 and the total reflection mirror 2 to become reflected light 10 which again passes through the polarization separator 5. The light 11 amplified by the laser medium enters the 1/4 wavelength phase shifter 4. In the 1/4 wavelength phase shifter 4 and the total reflection mirror 3, the light 11 passes through the 1/4 wavelength phase shifter 4 twice to become the reflected light 12. The light 11 which is equivalent and changed in one direction becomes the reflected light 12 including both variable components. Generally 1/4 wavelength phase shifter 4
It is possible to arbitrarily set both polarization component intensity ratios of the reflecting mirror 12 by rotating the optical axis about the axis through which light passes. Next, the reflected light 12 is amplified by the laser medium of the discharge tube 1, becomes output light 8, and one polarization component is output as output light 7 by the polarization separator 5. Further, the other polarized component passes and becomes light 9 to continue oscillation. here,
The 1/4 wavelength phase shifter 4 is rotated to change the polarization component ratio, thereby arbitrarily changing the ratio of the output light 7 and the passing light 9 to change the laser oscillation coupling ratio of the output light. With such a configuration, as compared with the light 9 that continues to oscillate into the Fabry-Perot etalon 6, the light whose polarization component is converted by the 1/4 wavelength phase shifter 4 is amplified by the laser medium and then amplified. Since the output light 7 passes through the polarization separator 5, the amplification factor of the laser medium is larger than that of the light 9, and the deformation and deterioration of the Fabry-Perot etalon 6 which is the wavelength selection element is significantly reduced. Becomes

以上、本発明の構成では大幅に波長選択素子の光負荷を
低減させる事ができる事は明確であるが、さらに定量的
に数式を用いて説明する。
As described above, it is clear that the optical load of the wavelength selection element can be significantly reduced with the configuration of the present invention, but a more quantitative description will be given using mathematical expressions.

第1図におい偏光分離器5が例えばP偏波を通過させS
偏波を反射して、偏光分離するとして、光8のP波成分
強度をI8p,S波成分強度をI8sとする。出力光7はS波成
分だけで強度をI7sとし、光9,光10,光11はP波成分だけ
で強度をI9p,I10p,I11pとする。光12は1/4波長位相器で
SP波が混るため両方の成分強度をそれぞれI12s,I12p
する。全反射鏡は100%の反射率とし、ファブリペロー
エタロン6は損失をAEとして、(1−AE)を透過率とす
る。また、放電管より光が出る部分は通常、窓があるた
め、この部分でも光損失を生ずるので、その損失をAと
する。すなわち、(1−A)が窓部分の透過率とする。
また、1/4波長位相器でP波の光11が反射光12となった
時P波で入った光がP波で反射光12となる比率をRpp
し、S波に変換される比率を残りの(1−Rpp)とす
る。レーザ媒質の微小光での単位長当りの増幅率をg0
し、放電管の長さをLとする。
In FIG. 1, the polarization separator 5 passes, for example, P polarized light and passes S
Assuming that the polarized wave is reflected and the polarized wave is separated, the P wave component intensity of the light 8 is I 8p and the S wave component intensity is I 8s . The intensity of the output light 7 is I 7s with only the S wave component, and the intensity of light 9, light 10 and light 11 is I 9p , I 10p , I 11p with only the P wave component. Light 12 is a 1/4 wavelength phaser
Since SP waves are mixed, both component intensities are set to I 12s and I 12p , respectively. The total reflection mirror has a reflectance of 100%, the Fabry-Perot etalon 6 has a loss of A E , and (1-A E ) has a transmittance. Further, since a portion where light is emitted from the discharge tube usually has a window, light loss also occurs in this portion, and therefore the loss is set to A. That is, (1-A) is the transmittance of the window portion.
Also, when the P-wave light 11 becomes the reflected light 12 in the 1/4 wavelength phase shifter, the ratio of the light entering the P-wave to the reflected light 12 as the P-wave is R pp, and is converted to the S-wave. Is the remaining (1-R pp ). The amplification factor per unit length of the laser medium with a small amount of light is g 0, and the length of the discharge tube is L.

ここで、エキシマレーザの様な高い増幅率のレーザを解
析する時によく適合するとされる解析方法として、リグ
ロッドによるサチュレーション・エフェクトイン・ハイ
ゲイン・レーザ,ジャーナル・オブ・アプライド・フィ
ジックス,第36巻,No 8,2487〜2490頁,1965年,(W.W.R
IGROD,“Saturation Effects in High−Gain Lasers",J
ournal of Applied Physics,Vol.36,No 8,P2487〜P249
0,August 1965)に記載された方法がある。
Here, as an analysis method that is often applied when analyzing a laser having a high amplification factor such as an excimer laser, a saturation effect in high gain laser by Rigrod, Journal of Applied Physics, Volume 36, No. 8, 2487-2490, 1965, (WWR
IGROD, "Saturation Effects in High-Gain Lasers", J
ournal of Applied Physics, Vol.36, No 8, P2487 ~ P249
0, August 1965).

次に、上記文献中の式を引用して解析を説明する。上記
文献のレーザ解析式より本実施例に適合すると、次式が
得られる。
Next, the analysis will be described with reference to the formulas in the above documents. If the present embodiment is adapted from the laser analysis formula of the above document, the following formula is obtained.

ここで、β21は文献中に表わされた値で、本実
施例では次の式で与えられる。ただし、Isを飽和光強度
とする。
Here, β 2 , γ 1 , and γ 2 are values represented in the literature and are given by the following equations in this embodiment. However, I s is the saturated light intensity.

β=(I8p+I8s)/{(1−A)IS} ……(2) γ=(1−A)(I12p+I12s)/I11p ……(3) γ=(1−A)2I10p/(I8p+I8s) ……(4) 次に、S偏光とP偏光の増幅率は等しいので、I12pとI
12sの比率はI8pとI8sの比率に等しい。
β 2 = (I 8p + I 8s ) / {(1-A) I S } ... (2) γ 1 = (1-A) 2 (I 12p + I 12s ) / I 11p …… (3) γ 2 = (1-A) 2 I 10p / (I 8p + I 8s ) (4) Next, since the amplification rates of S-polarized light and P-polarized light are equal, I 12p and I
The ratio of 12s is equal to the ratio of I 8p and I 8s .

I12p/I12s=I8p/I8s ……(5) また、比率Rppとエタロン損失AEを考慮すると(6),
(7)式が得られる。
I 12p / I 12s = I 8p / I 8s (5) Also, considering the ratio R pp and the etalon loss A E (6),
Expression (7) is obtained.

I12p=RppI11p,I12s=(1−Rpp)I11p ……(6) I10p=(1−AE2I9p=(1−AE2I8p ……(7) 出力光IoutはI7sでありエタロン負荷光IEはI9pであるか
ら(8)式が成立する。
I 12p = R pp I 11p , I 12s = (1-R pp ) I 11p …… (6) I 10p = (1-A E ) 2 I 9p = (1-A E ) 2 I 8p …… (7 ) Since the output light I out is I 7s and the etalon load light I E is I 9p , the formula (8) is established.

Iout=I7s=I8s,IE=I9p=I8p ……(8) 上記の(1)〜(8)式より出力光強度Ioutおよびエタ
ロン負荷光強度IEを求めると(9),(10)式が求ま
る。
I out = I 7s = I 8s , IE = I 9p = I 8p (8) When the output light intensity I out and the etalon load light intensity I E are calculated from the above equations (1) to (8), (9 ) And (10) are obtained.

第2図に(9),(10)式の計算結果を具体的に示す。
Rppを横軸に飽和光強度Isで規格化した出力光強度Iout/
Isとエタロン負荷光強度IE/ISを計算した結果である。
FIG. 2 specifically shows the calculation results of equations (9) and (10).
Output light intensity I out / R pp normalized by the saturated light intensity I s on the horizontal axis
It is the result of calculating I s and the etalon load light intensity I E / I S.

次に、比較のため第7図で示した従来の構成について同
様の式を作って検討する。半透過鏡103の反射率をRと
し、他は第1図の実施例と同一条件とすると、前記した
方法により、以下の式が求められる。ただし、第7図で
示した従来の構成では偏光はしていないので、各部の光
の強度は光105,106,107,108,109に対抗してI105,I106,I
107,I108とし、エタロンの光損失をAEとし、窓の損失を
Aとする異は実施例と同様である。
Next, for comparison, a similar equation is made for the conventional configuration shown in FIG. 7 and examined. Assuming that the reflectance of the semi-transmissive mirror 103 is R and the other conditions are the same as those of the embodiment of FIG. 1, the following formula is obtained by the above-described method. However, since the conventional configuration shown in FIG. 7 does not polarize, the light intensity of each part is I 105 , I 106 , I against the light 105,106,107,108,109.
107 and I 108 , the optical loss of the etalon is A E, and the loss of the window is A, which is the same as the embodiment.

β=I106/{(1−A)IS} ……(11) γ=(1−A)2I109/I108 ……(12) γ=(1−A)2I107/I106 ……(13) I107=RI106 ……(14) I109=(1−AE2I108 ……(15) Iout=I105=(1−R)106 ……(16) これらの(1)′及び(11)〜(16)式より出力Iout
求めると(17)式が得られる。
β 2 = I 106 / {(1-A) I S } ... (11) γ 1 = (1-A) 2 I 109 / I 108 …… (12) γ 2 = (1-A) 2 I 107 / I 106 …… (13) I 107 = RI 106 …… (14) I 109 = (1-A E ) 2 I 108 …… (15) I out = I 105 = (1-R) 106 …… ( 16) When the output I out is obtained from these equations (1) ′ and (11) to (16), equation (17) is obtained.

次にエタロンの負荷光強度は、前記文献より次の様に求
めることができる。
Next, the load light intensity of the etalon can be obtained from the above document as follows.

次に、エタロン負荷光強度IEとβの関係は(19)式と
なる。
Next, the relationship between the etalon load light intensity I E and β 4 is given by equation (19).

IE=I108=(1−A)β4IS ……(19) (11)〜(19)式より、IEが(20)式と求まる。I E = I 108 = (1-A) β 4 I S (19) From formulas (11) to (19), I E is calculated as formula (20).

第8図に(17),(20)式の計算結果を具体的に示す。
Rを横軸に飽和光強度ISで規格化した出力光強度Iout/I
Sとエタロン負荷光強度IE/ISの計算した結果である。
FIG. 8 shows concretely the calculation results of the equations (17) and (20).
Output light intensity I out / I normalized by saturated light intensity I S on the horizontal axis of R
It is the calculation result of S and the etalon load light intensity I E / I S.

ここで、第2図の本発明の実施例と第8図の従来例とを
比較すると、明白に同一IoutでのIEが本発明の実施例の
方が小さな値が得られる。すなわち、第2図でIout/IS
=0.3の時IE/IS=0.012であるのに対して、第8図にお
いてはIE/IS=0.41と30倍以上の差があり、大幅なファ
ブリペローエタロンの入射光強度の低減がなされてい
る。また注目すべき特徴として、従来例の第8図ではR
の値が0.15で出力の最大値Iout/Is=0.31となり、低い
出力しか得られないが、本発明の実施例ではRpp=0.25
で最大値Iout/Is=0.70が得られ、出力においても2倍
以上の高出力となり、レーザ装置としての効率もすぐれ
ている事を示している。
Here, comparing the embodiment of the present invention shown in FIG. 2 with the conventional example shown in FIG. 8, it is apparent that I E at the same I out is smaller in the embodiment of the present invention. That is, in FIG. 2, I out / I S
When I = 0.3, I E / I S = 0.012, whereas in Fig. 8, I E / I S = 0.41, there is a difference of more than 30 times, and the incident light intensity of the Fabry-Perot etalon is greatly reduced. Has been done. Also, as a noteworthy feature, in FIG.
Is 0.15, the maximum value of the output is I out / I s = 0.31, and only a low output is obtained, but in the embodiment of the present invention, R pp = 0.25.
The maximum value I out / I s = 0.70 was obtained, and the output was twice as high as the output, indicating that the efficiency as a laser device is also excellent.

第3図は本発明の構成における実際の実験結果で、KrF
エキシマレーザの実測値である。使用ガスとしてF2を0.
22%,Krを4.4%,残りがHeガス,全圧1800mbで印加電圧
28KVの条件で放電させて、パルスレーザ発振させた時の
1パルス当りの出力強度Ioutとエタロン負荷IEのグラフ
である。
FIG. 3 shows the actual experimental result of the configuration of the present invention, which is KrF.
It is the measured value of the excimer laser. F 2 is used as a gas.
22%, Kr is 4.4%, the rest is He gas, and the applied voltage at a total pressure of 1800mb
It is a graph of the output intensity I out per pulse and the etalon load I E when the pulse laser oscillation is performed by discharging under the condition of 28 KV.

また第9図は同じ条件での従来構成(第7図)における
出力強度Ioutとエタロン負荷IEの実測値である。
Further, FIG. 9 shows measured values of the output intensity I out and the etalon load I E in the conventional configuration (FIG. 7) under the same conditions.

いずれの結果も、ほぼ論理値と傾向が一致し、本発明の
構成が出力が2倍以上であり、エタロン負荷も大幅に少
し圧倒的に性能が良い事が示されている。
All the results show that the tendency almost agrees with the logical value, the output of the configuration of the present invention is more than double, and the etalon load is significantly overwhelmingly slightly superior in performance.

以上述べた様に本発明においては、波長選択素子を通過
する光エネルギーを大幅に低減すると共に効率でも優れ
た特性を示す狭帯域化レーザ装置が得られる。
As described above, according to the present invention, it is possible to obtain a band-narrowing laser device which significantly reduces light energy passing through the wavelength selection element and exhibits excellent characteristics in efficiency.

以上、実施例では波長選択素子としてファブリペローエ
タロンを用いて説明を行なったが、他の波長選択素子を
用いても本発明を適用できる。これらの構成につき説明
する。
Although the Fabry-Perot etalon is used as the wavelength selection element in the embodiments, the present invention can be applied to other wavelength selection elements. These configurations will be described.

まず、第4図を参照しながら本発明の第2実施例につい
て説明する。第4図において、20はグレーティングであ
り、他の部分は第1実施例と同様である。波長選択素子
として光反射によって波長選択されるグレーティング20
を全反射鏡2,3の作る共振器光路中に設置し、グレーテ
ィング20の回折光によって共振器光路を形成する。他の
部分の機能は第1実施例と同様なため省略する。
First, a second embodiment of the present invention will be described with reference to FIG. In FIG. 4, reference numeral 20 is a grating, and the other parts are the same as in the first embodiment. Grating 20 whose wavelength is selected by light reflection as a wavelength selection element
Is installed in the resonator optical path formed by the total reflection mirrors 2 and 3, and the diffracted light of the grating 20 forms the resonator optical path. The functions of the other parts are the same as those in the first embodiment and will not be described.

次に、第5図を参照しながら本発明の第3実施例につい
て説明する。第5図において、30はプリズムであり他の
部分は第1実施例と同様である。波長選択素子として光
屈折によって波長選択されるプリズム30を全反射鏡2,3
の作る共振器光路中に設置し、プリズム30の屈折光によ
って共振器光路を形成する。他の部分の機能は第1実施
例と同様なため省略する。
Next, a third embodiment of the present invention will be described with reference to FIG. In FIG. 5, reference numeral 30 denotes a prism, and the other parts are the same as in the first embodiment. As a wavelength selection element, a prism 30 whose wavelength is selected by optical refraction is a total reflection mirror 2, 3
The resonator optical path is formed by the light refracted by the prism 30. The functions of the other parts are the same as those in the first embodiment and will not be described.

以上、波長選択素子として、ファプリペローエタロン、
グレーティング、及びプリズムを用いた構成につき説明
したが、ファブリペローエタロンを用いる時は、この光
学素子は2枚の反射面を対向させ、その間の干渉効果に
よって波長を選択しているため対向した反射面の間には
多重反射によって高いエネルギーが閉じ込められた反射
面が損傷しやすいと推定できる。それに比べて、第2,第
3実施例で説明したグレーティング、もしくはプリズム
を用いる方法によれば、光反射、もしくは光屈折によっ
て波長選択がなされるため、波長選択素子の損傷は、前
記したファブリペローエタロンを用いた時に比べて、そ
のしきい値は数倍、高くなり20W以上のレーザ出力を得
ることが可能になる。
Above, as the wavelength selection element, the Fabry-Perot etalon,
Although the configuration using the grating and the prism has been explained, when using the Fabry-Perot etalon, this optical element makes two reflecting surfaces face each other, and the wavelength is selected by the interference effect between the two reflecting surfaces. It can be estimated that the reflective surface in which high energy is confined by multiple reflections is easily damaged. On the other hand, according to the method using the grating or the prism described in the second and third embodiments, the wavelength is selected by the light reflection or the light refraction, and therefore the damage of the wavelength selection element is caused by the above-mentioned Fabry-Perot. The threshold value is several times higher than when an etalon is used, and a laser output of 20 W or more can be obtained.

次に、第6図を参照しながら本発明の第4実施例を説明
する。第6図Aは狭帯域化エキシマレーザ装置の構成図
である。第6図Aにおいて、希ガスとハロゲン混合気体
をレーザ媒質とする放電管1と、全反射鏡2,3からなる
光共振器により紫外域でレーザ発振する。光共振器の作
る共振器光路中にはフェーズリターダーミラー40と偏光
分離器5が置かれ、放電管1のレーザ媒質で増幅された
出力光7は偏向分離器7を通り出力光7となって出力さ
れる。上記の出力光7が通る出力光路以外の共振器光路
中に波長選択素子であるファブリペローエタロン6が置
かれ、特定の狭い帯域の波長だけが選択的に光共振器で
発振することによって特定の狭い波長の光だけがレーザ
発振する。第4実施例においては第1実施例で用いた1/
4波長位相器のかわりにフェーズリターダーミラーを用
いたものであり、この部分につき詳細に説明し、他の部
分は第1実施例と同様であるため省略する。
Next, a fourth embodiment of the present invention will be described with reference to FIG. FIG. 6A is a block diagram of a narrow band excimer laser device. In FIG. 6A, laser oscillation is performed in the ultraviolet region by an optical resonator including a discharge tube 1 using a rare gas and a halogen mixed gas as a laser medium and total reflection mirrors 2 and 3. A phase retarder mirror 40 and a polarization separator 5 are placed in the optical path of the resonator formed by the optical resonator, and the output light 7 amplified by the laser medium of the discharge tube 1 passes through the polarization separator 7 and becomes output light 7. Is output. The Fabry-Perot etalon 6, which is a wavelength selection element, is placed in the resonator optical path other than the output optical path through which the output light 7 passes, and only the wavelength in a specific narrow band is selectively oscillated by the optical resonator to cause a specific Only light with a narrow wavelength lases. In the fourth embodiment, 1 / used in the first embodiment
A phase retarder mirror is used instead of the 4-wavelength phase shifter. This part will be described in detail, and the other parts are omitted since they are the same as in the first embodiment.

フェーズリターダーミラー40は反射鏡の表面に誘電体薄
膜層を設けたもので斜入射光線の反射光のS偏波とP偏
波の位相に90゜の差をもたせたもので1/4波長位相器と
して動作し、全反射鏡2,3の作る共振器光路中に設置さ
れ、偏波面の変換を行なう。偏波面分離器5の分離する
偏波面の方向とフェーズリターダーミラー40と全反射鏡
3の作る方向との角度差θ(第6図B参照)により、前
述の比率Rppが異り、出力光の結合率が変えられる。フ
ェーズリターダーミラーは大口径が容易に作れ、レーザ
パワーにも強く、不用な多重反射光が少いなど、露光用
光源に使用する狭帯域化レーザ用に適した1/4波長位相
器である。尚、波長選択素子は前記した第2,及び第3実
施例で説明したグレーティング、もしくはプリズムを用
いても良い。
The phase retarder mirror 40 is provided with a dielectric thin film layer on the surface of the reflecting mirror, and has a difference of 90 ° in the phase between the S polarized wave and the P polarized wave of the reflected light of the obliquely incident light and is a 1/4 wavelength phase. It operates as a resonator and is installed in the optical path of the resonator formed by the total reflection mirrors 2 and 3, and converts the plane of polarization. Due to the angle difference θ (see FIG. 6B) between the direction of the polarization planes separated by the polarization plane separator 5 and the direction created by the phase retarder mirror 40 and the total reflection mirror 3, the above-mentioned ratio R pp differs, and the output light The binding rate of can be changed. The phase retarder mirror is a quarter-wave phase shifter suitable for a narrow band laser used as a light source for exposure because it has a large aperture that can be easily made, has a strong laser power, and has a small amount of unnecessary multiple reflected light. The wavelength selection element may use the grating or the prism described in the second and third embodiments.

以上、本発明につき実施例を用いて説明したが上記実施
例の1/4波長位相器は他にフレネルの菱形プリズム、3
回全反射超色消1/4波長板等色々あるが、露光用の大口
径ビームを得るには水晶板を使用したフォーストオーダ
ー又はマルチプルオーダーの1/4波長板が良く、1/4波長
位相器は正確に1/4波長の位相器でなくとも偏光の成分
比率を変えることが可能であるものであれば良い。
The present invention has been described above with reference to the embodiment. However, the 1/4 wavelength phase shifter of the above embodiment is not limited to the Fresnel rhombus prism, 3
There are various types such as total internal reflection super-achromatic 1/4 wavelength plate, but for obtaining a large diameter beam for exposure, a 1/4 wavelength plate of fourth order or multiple order using a quartz plate is good, 1/4 wavelength phase The device does not have to be a 1/4 wavelength phase shifter as long as it can change the polarization component ratio.

また、上記実施例の偏光分離器は、多層膜キューブ偏光
器や、プリュースター角度の透明板、ウォラストンプリ
ズム等色々あるが、露光用の大口径ビームを得るには誘
電体多層膜蒸着の偏光分離鏡が良好である。
In addition, there are various types of polarization separators such as a multilayer cube polarizer, a transparent plate with a Brewster angle, and a Wollaston prism as the polarization separator of the above-mentioned embodiment.However, in order to obtain a large-diameter beam for exposure, polarization of a dielectric multilayer film is used. Separation mirror is good.

また、上記実施例では波長選択素子を偏光分離器と全反
射鏡の間に設けたが、この場所以外でも最も強い光であ
る出力光が通るレーザ媒体から偏光分離器に到る出力光
路以外の共振器光路中であれば光強度は弱く波長選択素
子を設けられる。
Further, in the above embodiment, the wavelength selection element is provided between the polarization separator and the total reflection mirror, but other than this location, the output light path from the laser medium through which the output light, which is the strongest light, passes to the polarization separator is In the resonator optical path, the light intensity is weak and a wavelength selection element can be provided.

また、上記実施例では1/4波長位相器と偏光分離器はレ
ーザ媒質の反対側の共振器光路中に設けたが、同一側で
共振器光路中であれば設置可能である。
Further, in the above-mentioned embodiment, the 1/4 wavelength phase shifter and the polarization separator are provided in the resonator optical path on the opposite side of the laser medium, but they can be installed in the resonator optical path on the same side.

また、上記実施例で用いた波長選択素子はファブリペロ
ーエタロン、グレーティング、プリズム等を複数個使用
してもよいし、また組合せても良い。また、波長選択素
子と全反射鏡を一体化した素子、例えばグレーティング
でエシェレ格子やエシェロン格子により直接グレーティ
ングの反射光の波長選択性を使用したり、プリズムの片
面を全反射鏡化して用いても良いし、1/4波長位相器と
全反射鏡を一体化し、水晶位相板の片面を全反射鏡化、
すなわち、前記波長選択素子,全反射鏡,1/4波長位相
器,偏光分離器等はこれらの機能を複合化した素子を使
用して素子数を減しても良い。
Further, the wavelength selection element used in the above embodiments may use a plurality of Fabry-Perot etalons, gratings, prisms, or the like, or may combine them. In addition, an element in which a wavelength selection element and a total reflection mirror are integrated, for example, the wavelength selectivity of reflected light of the grating is directly used by a grating with an Echelle grating or an Echelon grating, or one side of a prism is used as a total reflection mirror. Good, the 1/4 wavelength phase shifter and the total reflection mirror are integrated, and one side of the crystal phase plate is made into a total reflection mirror,
That is, the wavelength selection element, the total reflection mirror, the 1/4 wavelength phase shifter, the polarization separator, etc. may be reduced in the number of elements by using elements having a combination of these functions.

また、上記実施例で用いたフェーズリターダーミラーは
類似の反斜面がフェーズリタード機能を有するフェーズ
リターダープリズムであっても良い。
Further, the phase retarder mirror used in the above embodiment may be a phase retarder prism having a similar anti-slope surface having a phase retard function.

また、上記実施例で用いた全反射鏡は100%の反射率で
ある必要はなく、共振器を構成する反射率であれば良
い。
Further, the total reflection mirror used in the above embodiment does not need to have a reflectance of 100%, and may be any reflectance as long as it constitutes a resonator.

発明の効果 以上説明したように、本発明は共振器内に波長選択素
子、1/4波長位相器、偏光分離器を設け、狭帯域に発振
した弱い発振光を1/4波長位相器で偏光を変換し、レー
ザ媒質で増幅して偏光分離器より増幅された狭帯域化レ
ーザ光として出力することにより、波長選択素子を通過
する光エネルギーを小さくすることによって、選択波長
の変動や、出力の低下がなく、露光用光源に最適な狭帯
域化レーザ装置を提供できるものである。
As described above, the present invention provides a wavelength selection element, a 1/4 wavelength phase shifter, and a polarization splitter in the resonator, and polarizes weak oscillation light oscillated in a narrow band with the 1/4 wavelength shifter. Is converted into a narrow band laser light which is amplified by a laser medium and amplified by a polarization separator to reduce the light energy passing through the wavelength selection element. It is possible to provide a narrow-band laser device that is optimal for an exposure light source without any decrease.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の第1実施例における狭帯域レーザ装置
の構成図、第2図は同第1実施例の偏光比率Rppに対す
る出力光強度Iout及びファブリペローエタロン入射光強
度IEの計算結果を示す特性図、第3図は同第1実施例に
おける実際に測定したRppに対するIout、及びIEの関係
を示す特性図、第4図は本発明の第2実施例における狭
帯域レーザ装置の構成図、第5図は本発明の第3実施例
における狭帯域レーザ装置の構成図、第6図は本発明の
第4実施例における狭帯域レーザ装置の構成図、第7図
は従来の狭帯域レーザ装置の構成図、第8図は従来の狭
帯域レーザ装置における半透過鏡反射率Rに対するIout
とIEの計算結果を示す特性図、第9図は従来の狭帯域レ
ーザ装置における実際に測定したRに対するIout、及び
IEの関係を示す特性図である。 1,101……放電管、2,3,102……全反射鏡、4……1/4波
長位相器、5……偏光分離器、6,20,30……波長選択素
子、7,105……出力光。
FIG. 1 is a block diagram of a narrow band laser device according to the first embodiment of the present invention, and FIG. 2 is a diagram showing the output light intensity I out and the Fabry-Perot etalon incident light intensity I E with respect to the polarization ratio R pp of the first embodiment. FIG. 3 is a characteristic diagram showing the calculation result, FIG. 3 is a characteristic diagram showing the relation between I out and I E with respect to the actually measured R pp in the first embodiment, and FIG. 4 is a narrow diagram in the second embodiment of the present invention. FIG. 5 is a block diagram of a band-band laser device, FIG. 5 is a block diagram of a narrow-band laser device in a third embodiment of the present invention, and FIG. 6 is a block diagram of a narrow-band laser device in a fourth embodiment of the present invention. Is a configuration diagram of a conventional narrow band laser device, and FIG. 8 is I out with respect to a semitransparent mirror reflectance R in the conventional narrow band laser device
And FIG. 9 is a characteristic diagram showing calculation results of I E and I E , and I out with respect to R actually measured in the conventional narrow-band laser device, and
It is a characteristic view which shows the relationship of IE . 1,101 …… Discharge tube, 2,3,102 …… Total reflection mirror, 4 …… 1/4 wavelength phase shifter, 5 …… Polarization separator, 6,20,30 …… Wavelength selector, 7,105 …… Output light.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山中 圭一郎 神奈川県川崎市多摩区東三田3丁目10番1 号 松下技研株式会社内 (72)発明者 宮田 威男 神奈川県川崎市多摩区東三田3丁目10番1 号 松下技研株式会社内 (56)参考文献 特開 昭62−293791(JP,A) 特開 昭64−27773(JP,A) 特公 昭57−40671(JP,B2) ─────────────────────────────────────────────────── ─── Continuation of front page (72) Keiichiro Yamanaka 3-10-1 Higashisanda, Tama-ku, Kawasaki City, Kanagawa Prefecture Matsushita Giken Co., Ltd. (72) Takeo Miyata 3 Higashisanda, Tama-ku, Kawasaki City, Kanagawa Matsushita Giken Co., Ltd. (56) References JP-A-62-293791 (JP, A) JP-A-64-27773 (JP, A) JP-B-57-40671 (JP, B2)

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】第1及び第2の反射器を含む光共振手段
と、前記光共振手段の共振光路中に設けられたレーザ媒
質部分と、前記レーザ媒質部分を励起し前記共振光路の
方向に光を発生するための励起手段と、前記共振光路中
に設けられて前記光の所定波長成分の光を選択する波長
選択手段と、前記共振光路中に設けられて前記光の偏光
状態を変換する偏光変換手段と、前記共振光路中に設け
られて前記光の第1の偏光成分と前記光の第2の偏光成
分とを分離する偏光分離手段とを有し、前記波長選択手
段は、前記共振光路中であって前記レーザ媒質と前記偏
光分離手段との間以外に設けられ、かつ前記第1の偏光
成分及び前記第2の偏光成分の一方の所定波長成分光を
選択し、前記波長選択手段で選択された所定波長成分光
は、前記偏光変換手段により前記第1の偏光成分及び前
記第2の偏光成分の他方の偏光状態を有する偏光成分に
変換された後、前記偏光分離手段によって分離され、波
長が狭帯域化されたレーザ出力光として出射される狭帯
域化レーザ装置。
1. An optical resonance means including first and second reflectors, a laser medium portion provided in a resonance optical path of the optical resonance means, and a laser medium portion which is excited in a direction of the resonance optical path. Excitation means for generating light, wavelength selection means provided in the resonant optical path for selecting light of a predetermined wavelength component of the light, and provided in the resonant optical path for converting the polarization state of the light. Polarization conversion means and polarization separation means provided in the resonant optical path for separating a first polarization component of the light and a second polarization component of the light, the wavelength selection means, the wavelength selection means The wavelength selecting means is provided in the optical path other than between the laser medium and the polarization separating means, and selects one predetermined wavelength component light of the first polarization component and the second polarization component. The predetermined wavelength component light selected in Is converted into a polarized light component having the other polarization state of the first polarized light component and the second polarized light component, and then separated by the polarized light separating means and emitted as laser output light having a narrowed wavelength band. Narrow band laser device.
【請求項2】第1及び第2の反射器、波長選択手段、偏
光変換手段、及び偏光分離手段の機能の少なくとも一部
は互いに複合化されている請求項1記載の狭帯域化レー
ザ装置。
2. The band narrowing laser device according to claim 1, wherein at least some of the functions of the first and second reflectors, the wavelength selecting means, the polarization converting means, and the polarization separating means are combined with each other.
【請求項3】波長選択手段は、少なくとも1つのファブ
リペローエタロン、グレーティング、又はプリズムであ
る請求項1又は2記載の狭帯域化レーザ装置。
3. The band narrowing laser device according to claim 1, wherein the wavelength selecting means is at least one Fabry-Perot etalon, grating, or prism.
【請求項4】偏光変換手段は、波長板、フェーズリター
ダーミラー、又はフェーズリターダープリズムである請
求項1から3のいずれか記載の狭帯域化レーザ装置。
4. The band-narrowing laser device according to claim 1, wherein the polarization conversion means is a wave plate, a phase retarder mirror, or a phase retarder prism.
【請求項5】偏光分離手段は、偏光分離鏡である請求項
1から4のいずれか記載の狭帯域化レーザ装置。
5. The band-narrowing laser device according to claim 1, wherein the polarization splitting means is a polarization splitting mirror.
【請求項6】レーザ媒質が、希ガスとハロゲンガスの組
合せにより得られたエキシマを用いる請求項1から5の
いずれか記載の狭帯域化レーザ装置。
6. The band-narrowing laser device according to claim 1, wherein the laser medium uses an excimer obtained by combining a rare gas and a halogen gas.
【請求項7】請求項1から6のいずれか記載の狭帯域化
レーザ装置を露光用光源に用いた露光用光源装置。
7. An exposure light source device using the narrow band laser device according to claim 1 as an exposure light source.
JP1286840A 1989-06-14 1989-11-01 Narrow band laser device Expired - Lifetime JPH0797680B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP1286840A JPH0797680B2 (en) 1989-06-14 1989-11-01 Narrow band laser device
DE69031884T DE69031884T2 (en) 1989-06-14 1990-03-01 Narrow band laser device
EP90103985A EP0402570B1 (en) 1989-06-14 1990-03-01 Narrow-band laser apparatus
US07/487,080 US4985898A (en) 1989-06-14 1990-03-01 Narrow-band laser apparatus
CA002011361A CA2011361C (en) 1989-06-14 1990-03-02 Narrow-band laser apparatus
KR1019900003141A KR930002821B1 (en) 1989-06-14 1990-03-09 Narrow band laser apparatus
US07/626,145 US5150370A (en) 1989-06-14 1990-12-12 Narrow-band laser apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP1-151789 1989-06-14
JP15178989 1989-06-14
JP1286840A JPH0797680B2 (en) 1989-06-14 1989-11-01 Narrow band laser device

Publications (2)

Publication Number Publication Date
JPH0387084A JPH0387084A (en) 1991-04-11
JPH0797680B2 true JPH0797680B2 (en) 1995-10-18

Family

ID=26480917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1286840A Expired - Lifetime JPH0797680B2 (en) 1989-06-14 1989-11-01 Narrow band laser device

Country Status (1)

Country Link
JP (1) JPH0797680B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0797671B2 (en) * 1989-11-08 1995-10-18 株式会社東芝 Narrow band laser device
KR100425593B1 (en) * 2001-12-22 2004-04-01 재단법인 포항산업과학연구원 High power OPO laser
DE102012002470A1 (en) * 2012-02-03 2013-08-08 Iai Industrial Systems B.V. CO2 laser with fast power control
EP2999064A1 (en) * 2014-09-19 2016-03-23 DirectPhotonics Industries GmbH Diode laser
JP7329241B2 (en) * 2019-10-01 2023-08-18 スペクトラ・クエスト・ラボ株式会社 Fabry-Perot Etalon, Wavelength Variation Detector Using Same, and Wavelength Meter

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5740671A (en) * 1980-08-22 1982-03-06 Seiko Instr & Electronics Ltd Electronic watch
FR2599733B1 (en) * 1986-06-10 1988-08-26 Centre Nat Rech Scient MIXED LANTHANIDE-MAGNESIUM GALLATES, LASER USING SINGLE CRYSTALS OF THESE GALLATES
JP2617320B2 (en) * 1987-08-28 1997-06-04 株式会社小松製作所 Laser wavelength controller

Also Published As

Publication number Publication date
JPH0387084A (en) 1991-04-11

Similar Documents

Publication Publication Date Title
US5150370A (en) Narrow-band laser apparatus
US4985898A (en) Narrow-band laser apparatus
US5559816A (en) Narrow-band laser apparatus
US5917849A (en) Line narrowing device with double duty grating
WO1996031929A1 (en) Narrow-band laser
US6590921B2 (en) Narrow beam ArF excimer laser device
JP2002198588A (en) Fluorine molecular element
JP4907865B2 (en) Multistage amplification laser system
JPH0797680B2 (en) Narrow band laser device
JPH08228038A (en) Narrow-band laser generator
JP5393725B2 (en) Multistage amplification laser system
JP2715608B2 (en) Narrow band laser device
US5050174A (en) Laser device
JPH05152666A (en) Narrowed-band laser
JP2006179600A (en) Multistage amplification type laser system
JP2715610B2 (en) Narrow band laser device
JP2715609B2 (en) Narrow band laser device
CA2032054C (en) Narrow-band laser apparatus
JP2001291921A (en) Ultranarrow band width laser device
JP2000138410A (en) Narrow-band electric discharge pumping laser device
JPH0480981A (en) Narrow bandwidth oscillation laser device
KR940011104B1 (en) Narrow band laser apparatus
JPH0472782A (en) Narrow band laser oscillation method
JPH03214680A (en) Excimer laser device
JP2688991B2 (en) Narrow-band oscillation excimer laser

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081018

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091018

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091018

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101018

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101018

Year of fee payment: 15