JPH05136376A - Semiconductor nonvolatile storage device and its writing-in method - Google Patents

Semiconductor nonvolatile storage device and its writing-in method

Info

Publication number
JPH05136376A
JPH05136376A JP31957191A JP31957191A JPH05136376A JP H05136376 A JPH05136376 A JP H05136376A JP 31957191 A JP31957191 A JP 31957191A JP 31957191 A JP31957191 A JP 31957191A JP H05136376 A JPH05136376 A JP H05136376A
Authority
JP
Japan
Prior art keywords
nonvolatile memory
diffusion layer
impurity diffusion
semiconductor
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31957191A
Other languages
Japanese (ja)
Inventor
Tatsuo Tsuchiya
達男 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Watch Co Ltd
Original Assignee
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co Ltd filed Critical Citizen Watch Co Ltd
Priority to JP31957191A priority Critical patent/JPH05136376A/en
Publication of JPH05136376A publication Critical patent/JPH05136376A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To achieve high integration by making a memory cell a single of MONOS-type nonvolatile storage element, and connecting all source lines in common. CONSTITUTION:A memory array comprises memory cells 11, 12, 13, and 14 consisting of MONOS-type nonvolatile storage elements connected to word lines 15 and 16, a source line, and bit lines 17 and 18. The writing into the memory cell 11 is performed by implanting electrons from a substrate to the gate insulating film of a MONOS-type nonvolatile storage element 10. The erasure is performed by discharging the electrons accumulated in the gate insulating film of the MONOS-type nonvolatile storage element to the substrate. Hereby, the MOS element for address, which was required in the past, becomes needless. Accordingly, high integration can be achieved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電気的に書き換え可能な
半導体不揮発性記憶装置とその書き込み方法とに関し、
とくに半導体不揮発性記憶装置の高集積化に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrically rewritable semiconductor nonvolatile memory device and its writing method,
In particular, it relates to high integration of semiconductor nonvolatile memory devices.

【0002】[0002]

【従来の技術】電気的に書き換え可能な半導体不揮発性
記憶素子として、従来は、MNOS(Metal−Ni
tride−Oxide−Semiconducto
r)型の不揮発性記憶素子や、たとえば、特開平2−1
03966号公報に記載されている、MONOS(Me
tal−Oxide−Nitride−Oxide−S
emiconductor)型の不揮発性記憶素子が知
られている。
2. Description of the Related Art Conventionally, as an electrically rewritable semiconductor nonvolatile memory element, MNOS (Metal-Ni) has been used.
tride-Oxide-Semiconductor
r) type non-volatile memory element, for example, Japanese Patent Laid-Open No. 2-1
MONOS (Me
tal-Oxide-Nitride-Oxide-S
A known non-volatile memory element is an "emulator" type.

【0003】このMONOS型の不揮発性記憶素子は、
MNOS型の不揮発性記憶素子の第2層のゲート絶縁膜
であるシリコン窒化膜の表面を熱酸化して、酸化シリコ
ン膜を形成し、ゲート電極側からのキャリアの注入を防
ぐのに充分なバリア高さを持つ、第3層のゲート絶縁膜
を有する。
This MONOS type non-volatile memory element is
A barrier sufficient to prevent carrier injection from the gate electrode side by thermally oxidizing the surface of the silicon nitride film that is the second layer gate insulating film of the MNOS type nonvolatile memory element to form a silicon oxide film. It has a third-layer gate insulating film having a height.

【0004】従来技術における半導体不揮発性記憶装置
は、上記のMONOS型やMNOS型の不揮発性記憶素
子と、アドレス選択用のMOS(Metal−Oxid
e−Semiconductor)素子とからなるメモ
リセルを、複数個マトリクス状に配列したメモリアレイ
を有している。
A semiconductor non-volatile memory device in the prior art includes a MONOS type or MNOS type non-volatile memory element and a MOS (Metal-Oxid) for address selection.
It has a memory array in which a plurality of memory cells each including an e-Semiconductor element are arranged in a matrix.

【0005】従来の半導体不揮発性記憶装置のメモリア
レイにおける回路構成を、図3の回路図を用いて説明す
る。
A circuit configuration of a memory array of a conventional semiconductor nonvolatile memory device will be described with reference to the circuit diagram of FIG.

【0006】メモリアレイは、図3に示すように、書き
込みワード線33、34に接続されたMNOS型、ある
いはMONOS型の不揮発性記憶素子31と、選択ワー
ド線35、36に接続されたアドレス用のMOS素子3
2とからなるメモリセル30と、ソース線39、40
と、ビット線37、38とを有している。
As shown in FIG. 3, the memory array has a nonvolatile memory element 31 of MNOS type or MONOS type connected to write word lines 33 and 34, and an address connected to selected word lines 35 and 36. MOS element 3
2 and memory cells 30 and source lines 39, 40
And bit lines 37 and 38.

【0007】図3に示す半導体不揮発性記憶装置の回路
構成におけるメモリアレイの平面図を図4に示す。
FIG. 4 is a plan view of the memory array in the circuit configuration of the semiconductor nonvolatile memory device shown in FIG.

【0008】図4において、メモリアレイは書き込みワ
ード線43、44と、選択ワード線45、46と、コン
タクトホール42でソース52と接続されたソース線4
9、50と、コンタクトホール41でドレイン51と接
続されたビット線47、48と、素子分離領域53とか
らなる。
In FIG. 4, the memory array has write word lines 43 and 44, selected word lines 45 and 46, and a source line 4 connected to a source 52 through a contact hole 42.
9 and 50, bit lines 47 and 48 connected to the drain 51 through the contact hole 41, and an element isolation region 53.

【0009】[0009]

【発明が解決しようとする課題】図4において、書き込
みワード線43、44方向に隣接するメモリセルは、ソ
ース52をそれぞれ別々にソース線49、50で配線
し、ドレイン51もそれぞれ別々にビット線47、48
で配線している。
In FIG. 4, the memory cells adjacent in the direction of the write word lines 43 and 44 have their sources 52 individually wired by source lines 49 and 50, and their drains 51 are also individually bit lines. 47, 48
Is wired in.

【0010】したがって、従来のメモリセルをマトリク
ス状に配列したメモリアレイは、ビット線47、48
と、ソース線49、50とを素子分離領域53に配線す
る必要がある。このため素子分離領域53の占有面積が
大きくなり、半導体不揮発性記憶装置の高集積化に不利
である。
Therefore, the conventional memory array in which the memory cells are arranged in a matrix form has bit lines 47 and 48.
And the source lines 49 and 50 need to be connected to the element isolation region 53. Therefore, the occupied area of the element isolation region 53 becomes large, which is disadvantageous for high integration of the semiconductor nonvolatile memory device.

【0011】さらに、メモリセルは、書き込みワード線
と選択ワード線との2本のワード線が必要なため、メモ
リセルが大きくなり半導体不揮発性記憶装置の高集積化
に不利である。
Further, since the memory cell requires two word lines, a write word line and a selected word line, the memory cell becomes large, which is disadvantageous for high integration of the semiconductor nonvolatile memory device.

【0012】本発明の目的は、前述のような課題を除去
し、高集積度を有する半導体不揮発性記憶装置、および
その書き込み方法を提供するものである。
An object of the present invention is to eliminate the above-mentioned problems and provide a semiconductor nonvolatile memory device having a high degree of integration and a writing method thereof.

【0013】[0013]

【課題を解決するための手段】本発明においては、上記
の目的を達成するために、次のような半導体不揮発性記
憶装置、およびその書き込み方法を採用する。
In order to achieve the above object, the present invention employs the following semiconductor nonvolatile memory device and its writing method.

【0014】本発明の半導体不揮発性記憶装置は、一導
電型の半導体基板の表面領域に、この半導体基板と逆導
電型の第1の不純物拡散層と、MONOS型の不揮発性
記憶素子と、半導体基板と逆導電型の第2の不純物拡散
層とを順次直列に接続して設けてなるメモリセルを複数
個マトリクス状に配列してなり、第1の不純物拡散層を
ドレインとしビット線に接続し、第2の不純物拡散層を
ソースとしソース線に接続し、このソース線はすべての
メモリセルを接続してなる。
The semiconductor non-volatile memory device of the present invention comprises a first conductivity type semiconductor substrate, a first impurity diffusion layer of a conductivity type opposite to that of the semiconductor substrate, a MONOS type non-volatile memory element, and a semiconductor. A plurality of memory cells each having a substrate and a second impurity diffusion layer of opposite conductivity type sequentially connected in series are arranged in a matrix, and the first impurity diffusion layer is used as a drain and connected to a bit line. , The second impurity diffusion layer is used as a source and is connected to a source line, and this source line is connected to all memory cells.

【0015】本発明の半導体不揮発性記憶装置の書き込
み方法は、一導電型の半導体基板の表面領域に、この半
導体基板と逆導電型の第1の不純物拡散層と、MONO
S型の不揮発性記憶素子と、半導体基板と逆導電型の第
2の不純物拡散層とを順次直列に接続して設けてなるメ
モリセルを複数個マトリクス状に配列してなり、第1の
不純物拡散層をドレインとしビット線に接続し、第2の
不純物拡散層をソースとしソース線に接続し、このソー
ス線はすべてのメモリセルを接続してなり、ソース線電
位よりビット線電位を低くして行なう。
According to the method for writing to a semiconductor nonvolatile memory device of the present invention, a semiconductor substrate of one conductivity type is provided with a first impurity diffusion layer of a conductivity type opposite to that of the semiconductor substrate, and a MONO.
A plurality of memory cells, each of which is formed by sequentially connecting an S-type non-volatile memory element and a semiconductor substrate and a second impurity diffusion layer of an opposite conductivity type in series, are arranged in a matrix. The diffusion layer is connected to the bit line as the drain, the second impurity diffusion layer is connected to the source line as the source, and this source line is connected to all the memory cells. The bit line potential is lower than the source line potential. Do it.

【0016】[0016]

【作用】本発明における半導体不揮発性記憶装置は、メ
モリセルが1個のMONOS型の不揮発性記憶素子だけ
からなり、かつソース線をすべて共通接続することによ
り、高集積化を達成できるようにしている。
In the semiconductor nonvolatile memory device of the present invention, the memory cell is composed of only one MONOS type nonvolatile memory element, and the source lines are all connected in common to achieve high integration. There is.

【0017】[0017]

【実施例】以下図面を用いて本発明の実施例を説明す
る。図1は本発明における半導体不揮発性記憶装置のメ
モリアレイの回路構成の一実施例を示す回路図であり、
図2は本発明における半導体不揮発性記憶装置のメモリ
アレイの一実施例を示す平面図である。なお以下の説明
では、2×2の最小メモリアレイ構造を用いて説明を行
なうが、本発明は大規模なメモリアレイ構造にまで拡張
できることは以下の説明から明白である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a circuit diagram showing an embodiment of the circuit configuration of a memory array of a semiconductor nonvolatile memory device according to the present invention.
FIG. 2 is a plan view showing an embodiment of the memory array of the semiconductor nonvolatile memory device according to the present invention. In the following description, a 2 × 2 minimum memory array structure is used for explanation, but it is apparent from the following description that the present invention can be extended to a large-scale memory array structure.

【0018】まず本発明の半導体不揮発性記憶装置の構
成を、図1を用いて説明する。
First, the structure of the semiconductor nonvolatile memory device of the present invention will be described with reference to FIG.

【0019】図1に示すように、メモリアレイはワード
線15、16に接続したMONOS型の不揮発性記憶素
子10からなるメモリセル11、12、13、14と、
ソース線19と、ビット線17、18とからなる。この
ソース線19は、すべてのメモリセル11、12、1
3、14を接続している。
As shown in FIG. 1, the memory array includes memory cells 11, 12, 13, and 14 each including a MONOS type nonvolatile memory element 10 connected to word lines 15 and 16.
The source line 19 and the bit lines 17 and 18 are included. This source line 19 is used for all memory cells 11, 12, 1
3 and 14 are connected.

【0020】次に、本発明の半導体不揮発性記憶装置の
書き込み方法を、図1を用いて説明する。
Next, a writing method of the semiconductor nonvolatile memory device of the present invention will be described with reference to FIG.

【0021】メモリセル11の書き込みは、ワード線1
5とソース線19にプログラム電圧(以下Vppと記載
する)を印加し、ビット線17に0VまたはVppより
低い電圧を印加し、MONOS型の不揮発性記憶素子1
0のゲート絶縁膜へ基板から電子を注入することにより
行なう。
Writing to the memory cell 11 is performed by the word line 1
5 and the source line 19 are applied with a program voltage (hereinafter referred to as Vpp), and the bit line 17 is applied with a voltage of 0 V or lower than Vpp, and the MONOS type nonvolatile memory element 1 is applied.
This is performed by injecting electrons from the substrate into the 0 gate insulating film.

【0022】メモリセル11と同一のワード線15に接
続するメモリセル12は、ビット線18にVppを印加
することにより、MONOS型の不揮発性記憶素子10
のゲートとドレインとソースとが、すべて同一電位のV
ppとなるため、書き込みが禁止される。
In the memory cell 12 connected to the same word line 15 as the memory cell 11, by applying Vpp to the bit line 18, the MONOS type nonvolatile memory element 10 is formed.
The gate, drain and source of V are all at the same potential
Since it becomes pp, writing is prohibited.

【0023】さらに、この状態でワード線16を0V、
すなわち基板と同電位にすると、基板からMONOS型
の不揮発性記憶素子10のゲート絶縁膜へ電子が注入し
ないため、メモリセル13、14は書き込みが禁止され
る。
Further, in this state, the word line 16 is set to 0V,
That is, when the potential is the same as that of the substrate, electrons are not injected from the substrate into the gate insulating film of the MONOS type nonvolatile memory element 10, so that writing is prohibited in the memory cells 13 and 14.

【0024】以上の本発明の書き込み方法により、メモ
リセル11だけ選択的に書き込みすることが可能であ
る。
By the above-described writing method of the present invention, it is possible to selectively write only the memory cell 11.

【0025】図1において、消去方法は、ワード線1
5、16を0V、基板をVppとし、MONOS型の不
揮発性記憶素子10のゲート絶縁膜に蓄積している電子
を基板へ放出することにより行なう。
In FIG. 1, the erase method is word line 1
5 and 16 are set to 0 V, the substrate is set to Vpp, and the electrons accumulated in the gate insulating film of the MONOS type nonvolatile memory element 10 are discharged to the substrate.

【0026】メモリセル11の読み出しは、ワード線1
5を0V、ワード線16を不揮発性記憶素子が書き込み
消去のいかなる状態でも導通状態にならず、かつ書き込
み消去が起こらない電位とし、ソース線19に読み出し
電圧を印加し、ビット線17に電流が流れるかどうかを
判定することにより行なう。
The reading of the memory cell 11 is performed by the word line 1
5 is set to 0 V, the word line 16 is set to a potential at which the nonvolatile memory element does not become conductive in any state of writing and erasing, and writing and erasing does not occur, a read voltage is applied to the source line 19, and a current is applied to the bit line 17. It is performed by determining whether or not it flows.

【0027】以上のように、本発明では、従来必要であ
ったアドレス用のMOS素子が不要となる。
As described above, according to the present invention, the MOS element for address, which has been conventionally required, becomes unnecessary.

【0028】本発明の書き込み方法は、不揮発性記憶素
子としてMONOS型の不揮発性記憶素子を用いた場合
に、半導体不揮発性記憶装置の高集積化の効果が大き
い。この理由を以下に記載する。
According to the writing method of the present invention, when a MONOS type non-volatile storage element is used as the non-volatile storage element, the semiconductor non-volatile storage device is highly integrated. The reason for this is described below.

【0029】MONOS型の不揮発性記憶素子は、ゲー
ト電極側からのキャリアの注入を防ぐのに充分なバリア
高さを持つ第3層のゲート絶縁膜を有するため、ゲート
絶縁膜を10nm以下に薄膜化することが可能であり、
10V以下のプログラム電圧で書き込みが可能である。
Since the MONOS type non-volatile memory element has a third layer gate insulating film having a barrier height sufficient to prevent carrier injection from the gate electrode side, the gate insulating film is thinned to 10 nm or less. Is possible,
Writing is possible with a program voltage of 10 V or less.

【0030】本発明の書き込み方法を用いると、不揮発
性記憶素子のドレインと基板間の電位差がプログラム電
圧と同値になるため、プログラム電圧の高い不揮発性記
憶素子ではドレインを高耐圧構造にする必要がある。M
ONOS型の不揮発性記憶素子は、プログラム電圧が低
いためドレインを高耐圧構造にする必要がなく、高集積
化に有利である。
When the writing method of the present invention is used, the potential difference between the drain of the nonvolatile memory element and the substrate has the same value as the program voltage. Therefore, in the nonvolatile memory element having a high program voltage, the drain needs to have a high breakdown voltage structure. is there. M
Since the ONOS type non-volatile memory element has a low program voltage, the drain does not need to have a high breakdown voltage structure, which is advantageous for high integration.

【0031】図2は本発明における半導体不揮発性記憶
装置のメモリアレイの平面図の一例である。
FIG. 2 is an example of a plan view of a memory array of a semiconductor nonvolatile memory device according to the present invention.

【0032】図2に示すように、メモリアレイはワード
線25、26と、コンタクトホール21で第2の不純物
拡散層によりすべてのメモリセルのソースを接続したソ
ース24と接続するソース線29と、コンタクトホール
20で第1の不純物拡散層であるドレイン23と接続し
たビット線27、28と、素子分離領域22とからな
る。
As shown in FIG. 2, the memory array includes word lines 25 and 26, a source line 29 connected to a source 24 in which the sources of all the memory cells are connected by a second impurity diffusion layer in the contact hole 21. Bit lines 27 and 28 connected to the drain 23 that is the first impurity diffusion layer through the contact hole 20 and the element isolation region 22.

【0033】なお、ワード線25、26がMONOS型
の不揮発性記憶素子のゲート電極となり、このゲート電
極の下に、酸化シリコン膜−シリコン窒化膜−酸化シリ
コン膜からなる3層のゲート絶縁膜を備える。
The word lines 25 and 26 serve as the gate electrodes of the MONOS type nonvolatile memory element, and a three-layer gate insulating film composed of a silicon oxide film-a silicon nitride film-a silicon oxide film is formed under the gate electrodes. Prepare

【0034】本発明の半導体不揮発性記憶装置は、従来
と比較して、ソース線の配線数が減少し、ビット線2
7、28を素子分離領域22以外の領域に配線できる。
このため素子分離領域22の占有面積が縮小し、そのう
えワード線の配線数が減少するため、メモリアレイの面
積を縮小することが可能である。したがって、高集積度
を有する半導体不揮発性記憶装置が得られる。
In the semiconductor nonvolatile memory device of the present invention, the number of source lines is reduced as compared with the conventional one, and the bit line 2
It is possible to wire 7 and 28 to regions other than the element isolation region 22.
Therefore, the area occupied by the element isolation region 22 is reduced and the number of wirings of the word lines is reduced, so that the area of the memory array can be reduced. Therefore, a semiconductor nonvolatile memory device having a high degree of integration can be obtained.

【0035】[0035]

【発明の効果】以上の説明で明らかなように、本発明に
おいては従来に比較して、半導体不揮発性記憶装置にお
けるソース線の配線領域とワード線の配線領域と素子分
離領域とを減少することが可能となる。さらに、本発明
の書き込み方法により、すべてのメモリセルのソースを
接続し、かつメモリセルにアドレス選択用のMOS素子
がない半導体不揮発性記憶装置において、メモリセルの
選択的な書き込みが可能となる。すなわち、高集積度を
有する半導体不揮発性記憶装置と、その書き込み方法と
が実現できる。
As is apparent from the above description, in the present invention, the wiring region of the source line, the wiring region of the word line, and the element isolation region in the semiconductor nonvolatile memory device are reduced as compared with the prior art. Is possible. Furthermore, according to the writing method of the present invention, it is possible to selectively write the memory cells in the semiconductor nonvolatile memory device in which the sources of all the memory cells are connected and the memory cells do not have MOS elements for address selection. That is, the semiconductor nonvolatile memory device having a high degree of integration and the writing method thereof can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例における半導体不揮発性記憶
装置のメモリアレイを示す回路図である。
FIG. 1 is a circuit diagram showing a memory array of a semiconductor nonvolatile memory device according to an embodiment of the present invention.

【図2】本発明の一実施例における半導体不揮発性記憶
装置のメモリアレイを示す平面図である。
FIG. 2 is a plan view showing a memory array of a semiconductor nonvolatile memory device according to an embodiment of the present invention.

【図3】従来例における半導体不揮発性記憶装置のメモ
リアレイを示す回路図である。
FIG. 3 is a circuit diagram showing a memory array of a semiconductor nonvolatile memory device in a conventional example.

【図4】従来例における半導体不揮発性記憶装置のメモ
リアレイを示す平面図である。
FIG. 4 is a plan view showing a memory array of a semiconductor nonvolatile memory device in a conventional example.

【符号の説明】[Explanation of symbols]

10 MONOS型の不揮発性記憶素子 11 メモリセル 15 ワード線 17 ビット線 19 ソース線 23 ドレイン 24 ソース 10 MONOS type non-volatile memory element 11 memory cell 15 word line 17 bit line 19 source line 23 drain 24 source

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 一導電型の半導体基板の表面領域に該半
導体基板と逆導電型の第1の不純物拡散層と、MONO
S型の不揮発性記憶素子と、前記半導体基板と逆導電型
の第2の不純物拡散層とを順次直列に接続して設けてな
るメモリセルを複数個マトリクス状に配列し、前記第1
の不純物拡散層をドレインとしビット線に接続し、前記
第2の不純物拡散層をソースとしソース線に接続し、該
ソース線はすべての前記メモリセルを接続してなること
を特徴とする半導体不揮発性記憶装置。
1. A first impurity diffusion layer having a conductivity type opposite to that of the semiconductor substrate in a surface region of the conductivity substrate, and a MONO.
A plurality of memory cells each of which is formed by sequentially connecting the S-type nonvolatile memory element and the semiconductor substrate and a second impurity diffusion layer of an opposite conductivity type in series are arranged in a matrix,
The impurity diffusion layer is connected to a bit line as a drain, the second impurity diffusion layer is connected to a source line as a source, and the source line is connected to all the memory cells. Sex memory device.
【請求項2】 一導電型の半導体基板の表面領域に該半
導体基板と逆導電型の第1の不純物拡散層と、MONO
S型の不揮発性記憶素子と、前記半導体基板と逆導電型
の第2の不純物拡散層とを順次直列に接続して設けてな
るメモリセルを複数個マトリクス状に配列し、前記第1
の不純物拡散層をドレインとしビット線に接続し、前記
第2の不純物拡散層をソースとしソース線に接続し、該
ソース線はすべての前記メモリセルを接続してなる半導
体不揮発性記憶装置において、書き込みはソース線電位
よりビット線電位を低くして行なうことを特徴とする半
導体不揮発性記憶装置の書き込み方法。
2. A surface region of a semiconductor substrate of one conductivity type, a first impurity diffusion layer of a conductivity type opposite to that of the semiconductor substrate, and a MONO.
A plurality of memory cells each of which is formed by sequentially connecting the S-type nonvolatile memory element and the semiconductor substrate and a second impurity diffusion layer of an opposite conductivity type in series are arranged in a matrix,
In the semiconductor nonvolatile memory device, the impurity diffusion layer is connected to a bit line as a drain, the second impurity diffusion layer is connected to a source line as a source, and the source line is connected to all the memory cells, A writing method for a semiconductor non-volatile memory device, characterized in that writing is performed with a bit line potential lower than a source line potential.
JP31957191A 1991-11-08 1991-11-08 Semiconductor nonvolatile storage device and its writing-in method Pending JPH05136376A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31957191A JPH05136376A (en) 1991-11-08 1991-11-08 Semiconductor nonvolatile storage device and its writing-in method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31957191A JPH05136376A (en) 1991-11-08 1991-11-08 Semiconductor nonvolatile storage device and its writing-in method

Publications (1)

Publication Number Publication Date
JPH05136376A true JPH05136376A (en) 1993-06-01

Family

ID=18111753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31957191A Pending JPH05136376A (en) 1991-11-08 1991-11-08 Semiconductor nonvolatile storage device and its writing-in method

Country Status (1)

Country Link
JP (1) JPH05136376A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10051483A1 (en) * 2000-10-17 2002-05-02 Infineon Technologies Ag Non-volatile semiconductor memory cell arrangement and method for the production thereof
US6778439B2 (en) 2002-10-01 2004-08-17 Renesas Technology Corp. Nonvolatile semiconductor memory device with MONOS type memory cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10051483A1 (en) * 2000-10-17 2002-05-02 Infineon Technologies Ag Non-volatile semiconductor memory cell arrangement and method for the production thereof
US6778439B2 (en) 2002-10-01 2004-08-17 Renesas Technology Corp. Nonvolatile semiconductor memory device with MONOS type memory cell

Similar Documents

Publication Publication Date Title
KR0167874B1 (en) Semiconductor memory device
US20110169070A1 (en) Semiconductor device
KR100255893B1 (en) Field effect transistor and non-volatile memory device
JPH05211338A (en) Non-volatile semiconductor device
JP2005501403A (en) Nonvolatile semiconductor memory and method of operating the same
JPH1032269A (en) Semiconductor device
JP2007335718A (en) Non-volatile memory and manufacturing method thereof
US7671399B2 (en) Semiconductor storage device
US20030020123A1 (en) Non-volatile semiconductor memory device
US6031771A (en) Memory redundancy circuit using single polysilicon floating gate transistors as redundancy elements
KR100373670B1 (en) Nonvolatile semiconductor memory device
JP4223859B2 (en) Nonvolatile semiconductor memory device
US6654282B2 (en) Nonvolatile semiconductor memory device
JP2007335717A (en) Non-volatile memory and manufacturing method thereof
JPH0878643A (en) Non-volatile semiconductor storage device
JPH0581069B2 (en)
JP3920550B2 (en) Nonvolatile semiconductor memory device
JP2001511308A (en) Memory redundancy circuit using single polysilicon floating gate transistor as redundancy element
JPH05136376A (en) Semiconductor nonvolatile storage device and its writing-in method
JP2960377B2 (en) Memory cell array
JP3228996B2 (en) Nonvolatile semiconductor memory device
JP2809802B2 (en) Nonvolatile semiconductor memory device
JP3143180B2 (en) Semiconductor nonvolatile memory device and writing method thereof
JPS62265768A (en) Nonvolatile semiconductor memory device
JP3540881B2 (en) Writing method for nonvolatile semiconductor memory device