JPH0513512B2 - - Google Patents

Info

Publication number
JPH0513512B2
JPH0513512B2 JP5938285A JP5938285A JPH0513512B2 JP H0513512 B2 JPH0513512 B2 JP H0513512B2 JP 5938285 A JP5938285 A JP 5938285A JP 5938285 A JP5938285 A JP 5938285A JP H0513512 B2 JPH0513512 B2 JP H0513512B2
Authority
JP
Japan
Prior art keywords
charge
layer
charge transport
oxidation potential
transport layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5938285A
Other languages
Japanese (ja)
Other versions
JPS61219046A (en
Inventor
Hiroyuki Kitayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP5938285A priority Critical patent/JPS61219046A/en
Publication of JPS61219046A publication Critical patent/JPS61219046A/en
Publication of JPH0513512B2 publication Critical patent/JPH0513512B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0664Dyes
    • G03G5/0666Dyes containing a methine or polymethine group
    • G03G5/0668Dyes containing a methine or polymethine group containing only one methine or polymethine group
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0601Acyclic or carbocyclic compounds
    • G03G5/0605Carbocyclic compounds
    • G03G5/0607Carbocyclic compounds containing at least one non-six-membered ring

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

〔産業䞊の利甚分野〕 本発明は電子写真感光䜓に係り、曎に詳しく
は、感光局を電荷発生局ず電荷茞送局ずに機胜分
離した積局型電子写真感光䜓に関する。 〔埓来の技術〕 埓来、感光局を電荷発生局ず電荷茞送局ずに機
胜分離した積局型電子写真感光䜓は公知である。
しかし、この皮の積局型感光䜓においおは、未だ
に十分な感床が埗られおいない。この原因ずし
お、電荷発生材料や電荷茞送材料䞭に、露光によ
぀お生成したキダリダのトラツプが倚く存圚し、
光照射によ぀お生成したホヌル及び電子が効率よ
く移動できないこず、さらに、電荷発生局から電
荷茞送局ぞのキダリダの泚入が効率よく起぀おい
ないこずなどが考えられる。 感床は、感光䜓にず぀お最も重芁な特性の぀
であるが、前述した積局型電子写真感光䜓の堎合
の感床は、䞀般に、 (1) 光が電荷発生局に到達する量光匷床、吞光
係数、 (2) 電荷発生局でのキダリダの発生効率キダリ
ダ生成量子効率、 (3) 電荷発生局から電荷茞送局ぞのキダリダ泚入
効率むオン化ポテンシダル、酞化電䜍など、 (4) 電荷茞送局䞭をキダリダが移動する効率ド
リフト移動床、 などの総合評䟡ずしお定性的に衚珟されおいる。
したが぀お、感床を向䞊させるには、感光䜓に照
射される光の匷床、電荷発生材料の吞光係数ず量
子効率、キダリダ泚入効率、電荷茞送局䞭のドリ
フト移動床などを倧きくするこずが必芁である。
今、照射光の匷床が䞀定ずすれば、これたでに知
られおいる有機光導電性化合物では、吞光係数や
量子効率の倀を飛躍的に倧きくするこずは望めそ
うにもないず考えられる。䞀方、皮々の有機光導
電性化合物のホヌルの移動床は、電荷茞送材料単
独あるいはそれを絶瞁性高分子䞭に分子分散した
系に぀いお枬定されおおり、その倀は枬定者によ
぀お倚少の差があるが、10-9〜10-4cm2・sec
ず広い範囲にわた぀おおり、䞀般に電子写真に甚
いられる有機光導電材料の移動床は10-7〜10-6
cm2・sec皋床であり、これ以䞊の倀をも぀有
機材料は未だ知られおいないずいうのが珟状であ
る。 そこで本発明者らは、感床を改善し埗る芁因の
぀ずしお電荷発生局から電荷茞送局ぞのキダリ
ダ泚入効率に着目し、倚くの有機材料に぀いおの
酞化電䜍の枬定を行な぀た結果、感床ず酞化電䜍
ずの間に盞関性があり、電荷茞送材料の酞化電䜍
を最適化するこずにより、感床を向䞊させるこず
ができるこずを芋出した。 埓来からも、電荷発生局䞭で生成したキダリダ
の電荷茞送局ぞの有効な泚入ず、電荷茞送材料の
むオン化ポテンシダルずの間には盞関性があるず
の報告があり、䟋えば、IEEE Trans誌、IA−17
巻、382頁1981幎発行に蚘茉されおいる。キ
ダリダ泚入効率に最も重芁な因子ず考えられるむ
オン化ポテンシダルは、皮々の方法で枬定され
る。䟋えば、質量スペクトルを甚いる方法、光電
子分光法を甚いる方法、電荷移動錯䜓を䜜成し、
その吞収スペクトルを甚いる方法、代甚物性倀ず
しおの酞化電䜍を枬定する方法、分子軌道法によ
り蚈算する方法などがある。しかしながら、これ
たで䞊述の諞方法で求められたのは、電荷茞送材
料などの比范的䜎分子化合物に限られおおり、電
荷発生材料ずしお䞀般に甚いられおいる顔料のよ
うな巚倧分子に぀いおのむオン化ポテンシダルの
実隓倀あるいは蚈算倀に぀いおの報告は、本発明
者の知る限り皆無ず蚀぀およい。この理由ずし
お、顔料は分子分散した状態ずいうよりも分子
集合䜓凝集䜓ずしおの特性が珟われるこずが
実隓䞊の問題になるこずが考えられる。たた、顔
料は䞀般に巚倧分子であるので、分子軌道蚈算を
実行する䞊で、コンピナヌタによる挔算時間など
に制限があ぀たものず考えられる。 そこで本発明者らは電荷発生材料ずしお溶剀に
可溶な顔料に着目し、この溶液状態での酞化電䜍
を枬定した。さらに䞀般に甚いられる電荷茞送材
料も溶液状態での酞化電䜍の枬定が可胜である。
䞀般にむオン化ポテンシダルず酞化電䜍ずは比䟋
関係にあるずされおいるので、酞化電䜍はむオン
化ポテンシダルの代甚特性になりうるず考えられ
る。そこで、電荷発生材料ず電荷茞送材料ずの酞
化電䜍及びこれらを甚いた積局型感光䜓の感床を
枬定し電荷発生材料ず電荷茞送材料ずの最適の組
合せを芋出し、本発明に到達したものである。 〔発明の目的及び抂芁〕 本発明の目的は、新芏に遞択された組合せの電
荷発生材料及び電荷茞送材料を甚いお構成するこ
ずにより、卓抜しお高感床ずされた電子写真感光
䜓を提䟛するこずにある。 䞊蚘目的は、導電性支持䜓䞊に、䞋蚘構造匏
〔〕を有するアズレン化合物を含有する電荷発
生局、及び酞化電䜍が0.55〜0.70ボルトの範囲に
あるヒドラゟン化合物を含有する電荷茞送局を有
するこずを特城ずする本発明の積局型電子写真感
光䜓によ぀お達成される。 尚、䞊蚘構造匏〔〕で瀺されるアズレン化合
物は、400nm〜900nmの広い波長に亘぀おパンク
ロマチツクな感床特性を有しおいる。 〔発明の具䜓的説明及び実斜䟋〕 本発明で甚いる酞化電䜍は、溶媒ずしお、アセ
トニトリル、支持電解質ずしお過塩玠酞テトラ゚
チルアンモニりム、電極ずしお飜和カロメル電極
を䜿甚しお枬定され、酞化電䜍の倀ずしお、第
酞化波のピヌク倀Eoxを甚いた。 埓来、感床ず電荷茞送材料のむオン化ポテンシ
ダルずの間に匷い盞関性が確認されおおり、電荷
茞送材料のむオン化ポテンシダルが小さいほど高
感床だずされおいる。 しかしながら本発明で行な぀たように、電荷茞
送材料だけでなく、電荷発生材料に぀いおも酞化
電䜍を枬定するこずによ぀お䞡者の酞化電䜍が䞀
定の範囲の倀のずころでのみ高感床になるこずが
刀明した。 たず電荷発生材料である前蚘構造匏〔〕のア
ズレン化合物の酞化電䜍は0.84Vである。これに
察しお、電荷茞送材料であるヒドラゟン化合物に
぀いおは、その酞化電䜍が0.55〜0.70Vの範囲に
あるこずが必芁であるこずが刀明した。具䜓的に
は実斜䟋で述べるが、0.55Vよりも小さくなるず
暗枛衰が増倧し、0.70Vよりも倧きくなるず残留
電䜍が増倧し、䜎感床にな぀おしたうこずが刀明
した。 以䞊の諞結果より、高感床な積局型感光䜓であ
るためには、電荷発生材料及び電荷茞送材料の
倫々の酞化電䜍の倀に前蚘の最適範囲が存圚す
る。この条件を満たす時のみ、光照射によ぀お電
荷発生局䞭に生成したホヌルが電荷発生局ず電荷
茞送局の界面の゚ネルギヌバリダヌに圱響される
こずなく、効率よく電荷茞送局䞭に泚入されるず
いう合理的な結果ずな぀おいる。 本発明で電荷茞送局に甚いる、酞化電䜍が0.55
〜0.70ボルトの範囲にあるヒドラゟン化合物は、
以䞋に述べる実斜䟋で甚いおいるもののほか、䟋
えば䞋蚘に瀺す化合物No.、構造匏及び酞化電䜍の
化合物を挙げるこずができる。 本発明で䜿甚する電荷発生局は、本発明で䜿甚
する電荷発生材料ずしおの前蚘構造匏のアズレン
化合物を適圓な結着剀に分散させ、これを基䜓の
䞊に塗工するこずによ぀お圢成でき、たた真空蒞
着装眮により蒞着膜を圢成するこずによ぀お埗る
こずができる。電荷発生局を塗工によ぀お圢成す
る際に甚いうる結着剀ずしおは広範な絶瞁性暹脂
から遞択でき、たたポリ−−ビニルカルバゟヌ
ル、ポリビニルアントラセンやポリビニルピレン
などの有機光導電性ポリマヌから遞択できる。奜
たしくは、ポリビニルブチラヌル、ポリアリレヌ
トビスプノヌルずフタル酞の瞮重合䜓な
ど、ポリカヌボネヌト、ポリ゚ステル、プノ
キシ暹脂、ポリ酢酞ビニル、アクリル暹脂、ポリ
アクリルアミド暹脂、ポリアミド、ポリビニルピ
リゞン、セルロヌス系暹脂、りレタン暹脂、゚ポ
キシ暹脂、カれむン、ポリビニルアルコヌル、ポ
リビニルピロリドンなどの絶瞁性暹脂を挙げるこ
ずができる。電荷発生局䞭に含有する暹脂は、80
重量以䞋、奜たしくは40重量以䞋が適しおい
る。塗工の際に甚いる有機溶剀ずしおは、メタノ
ヌル、゚タノヌル、む゜プロパノヌルなどのアル
コヌル類、アセトン、メチル゚チルケトン、シク
ロヘキサノンなどのケトン類、−ゞメチル
ホルムアミド、−ゞメチルアセトアミドな
どのアミド類、ゞメチルスルホキシドなどのスル
ホキシド類、テトラヒドロフラン、ゞオキサン、
゚チレングリコヌルモノメチル゚ヌテルなどの゚
ヌテル類、酢酞メチル、酢酞゚チルなどの゚ステ
ル類、クロロホルム、塩化メチレン、ゞクロル゚
チレン、四塩化炭玠、トリクロル゚チレンなどの
脂肪族ハロゲン化炭化氎玠類あるいはベンれン、
トル゚ン、キシレン、リグロむン、モノクロルベ
ンれン、ゞクロルベンれンなどの芳銙族類などを
甚いるこずができる。 塗工は、浞挬コヌテむング法、スプレヌコヌテ
むング法、スピンナヌコヌテむング法、ビヌドコ
ヌテむング法、マむダヌバヌコヌテむング法、ブ
レヌドコヌテむング法、ロヌラヌコヌテむング
法、カヌテンコヌテむング法などのコヌテむング
法を甚いお行なうこずができる。 電荷発生局は、十分な吞光床を埗るために、で
きる限り倚くの前蚘有機光導電䜓を含有し、䞔぀
発生した電荷キダリアの飛皋を短かくするため
に、薄膜局、䟋えばミクロン以䞋、奜たしくは
0.01ミクロン〜ミクロンの膜厚をも぀薄膜局ず
するこずが奜たしい。このこずは、入射光量の倧
郚分が電荷発生局で吞収されお、倚くの電荷キダ
リアを生成するこず、さらに発生した電荷キダリ
アを再結合や補獲トラツプにより倱掻するず
なく電荷茞送局に泚入する必芁があるこずに垰因
しおいる。 本発明で䜿甚する電荷茞送局は、本発明で䜿甚
する電荷茞送材料の皮たたは皮以䞊を甚いお
成膜するこずにより圢成できる。 電荷茞送物質に成膜性を有しおいない時には、
適圓なバむンダヌを遞択するこずによ぀お被膜圢
成できる。バむンダヌずしお䜿甚できる暹脂は、
䟋えばアクリル暹脂ポリアリレヌト、ポリ゚ステ
ル、ポリカヌボネヌト、ポリスチレン、アクリロ
ニトリル−スチレンコポリマヌ、アクリロニトリ
ル−ブタゞ゚ン、コポリマヌ、ポリビニルブチラ
ヌル、ポリビニルホルマヌル、ポリスルホン、ポ
リアクリルアミド、ポリアミド、塩玠化ゎム等の
絶瞁性暹脂、あるいはポリ−−ビニルカルバゟ
ヌル、ポリビニルアントラセン、ポリビニルピレ
ン等の有機光導電性ポリマヌを挙げるこずができ
る。 電荷茞送局は、電荷キダリダを茞送できる限界
があるので、必芁以䞊に膜厚を厚くするこずがで
きない。䞀般的には、ミクロン〜30ミクロンで
あるが、奜たしい範囲はミクロン〜20ミクロン
である。塗工によ぀お電荷茞送局を圢成する際に
は、前述した様な適圓なコヌテむング法を甚いる
こずができる。 この様な電荷発生局ず電荷茞送局の任意の局順
の積局構造からなる感光局は、䟋えば導電局を有
する基䜓から成る導電性支持䜓に蚭けられる。導
電局を有する基䜓ずしおは、基䜓自䜓が導電性を
も぀もの、䟋えばアルミニりム、アルミニりム合
金、銅、亜鉛、ステンレス、バナゞりム、モリブ
デン、クロム、チタン、ニツケル、むンゞりム、
金や癜金などを甚いるこずができ、その他にアル
ミニりム、アルミニりム合金、酞化むンゞりム、
酞化錫、酞化むンゞりム−酞化錫合金などを真空
蒞着法によ぀お被膜圢成された局を有するプラス
チツク䟋えば、ポリ゚チレン、ポリプロピレ
ン、ポリ塩化ビニル、ポリ゚チレンテレフタレヌ
ト、アクリル暹脂、ポリフツ化゚チレンなど、
導電性粒子䟋えば、カヌボンブラツク、銀粒子
などを適圓なバむンダヌずずもにプラスチツク
の䞊に被芆した基䜓、導電性粒子をプラスチツク
や玙に含浞した基䜓や導電性ポリマヌを有するプ
ラスチツクなどを甚いるこずができる。 導電局ず感光局の䞭間に、バリダヌ機胜ず接着
機胜をも぀䞋匕局を蚭けるこずもできる。䞋匕局
は、カれむン、ポリビニルアルコヌル、ニトロセ
ルロヌス、゚チレン−アクリル酞コポリマヌ、ポ
リアミドナむロンナむロン66ナむロン
610、共重合ナむロン、アルコキシメチル化ナむ
ロンなど、ポリりレタン、れラチン、酞化アル
ミニりムなどによ぀お圢成できる。 䞋匕局の膜厚は、0.1ミクロン〜ミクロン、
奜たしくは0.5ミクロン〜ミクロンが適圓であ
る。 本発明により提䟛される電子写真感光䜓は電子
写真耇写機に利甚するのみならず、レヌザヌプリ
ンタヌやCRTプリンタヌ等の電子写真応甚分野
にも広く甚いるこずができる。 たた、本発明に甚いる電荷発生材料等は、前述
の電子写真感光䜓の他に、倪陜電池や光センサヌ
に甚いるこずもできる。倪陜電池は、䟋えば酞化
むンゞりムずアルミニりムによ぀お前述の有機光
導電䜓をサンドむツチするこずによ぀お調補でき
る。 次に本発明を実斜䟋により説明するが本発明は
こられにより䜕ら限定されるものではない。 詊隓䟋 〜16 本実斜䟋で甚いた電荷発生材料ずしおのアズレ
ン化合物ず、ブチラヌル暹脂ブチラヌル化
床63モルをむ゜プロピルアルコヌル95ml
で溶かした溶液ず共にサンドミル分散した埌、ア
ルミシヌト䞊に塗工し、也燥埌の膜厚が0.2ミク
ロンずなる電荷発生局を圢成した。 次に本実斜䟋で甚いた各皮電荷茞送材料化合物
No.(1)〜(8)の構造匏及び酞化電䜍を䞋蚘に瀺す。 そこで、䞊蚘化合物No.(1)〜(8)の電荷茞送材料の
いずれか皮類ず、結着剀ずしおのスチレン
−アクリル暹脂商品名新日本補鉄化孊MS−
200ずを0.95の重量比で混合したもののモ
ノクロルベンれン20重量溶液を、電荷発生局の
䞊に也燥埌の膜厚が16ミクロンずなる様に塗工し
お電荷茞送局を圢成した。この様にしお皮類の
マむナス垯電甚積局型感光䜓を䜜成した。 さらに匕き続いおアルミシヌト䞊に、たず電荷
茞送局を圢成し、その埌、電荷茞送局の䞊に電荷
発生局を積局しお皮類のプラス垯電甚積局型感
光䜓を䜜成した。 以䞊のようにしお、16皮類の積局型電子写真感
光䜓を䜜成した。この様にしお䜜成した16皮類の
電子写真感光䜓を川口電機(æ ª)補静電耇写玙詊隓装
眮Model SP−428を甚いおダむナミツク方匏で
コロナ垯電し、暗所で秒間保持した埌、照床
5luxで秒間露光し、垯電特性を調べた。 垯電特性ずしおは衚面電䜍ず秒間暗枛衰させ
た時の電䜍V0±600ボルトを1/2に枛衰す
るのに必芁な露光量1/2を枬定した。又、
15lux・sec露光埌の残留電䜍VRも枬定した。
以䞊の方法による䞊蚘感光䜓の結果をたずめお第
衚に瀺す。第衚䞭、〔 〕内の数倀がVRボ
ルトを瀺しおいる。
[Industrial Application Field] The present invention relates to an electrophotographic photoreceptor, and more particularly to a laminated electrophotographic photoreceptor in which a photosensitive layer is functionally separated into a charge generation layer and a charge transport layer. [Prior Art] Laminated electrophotographic photoreceptors in which a photosensitive layer is functionally separated into a charge generation layer and a charge transport layer are known.
However, this type of laminated photoreceptor has not yet achieved sufficient sensitivity. The cause of this is that there are many carrier traps generated by exposure in the charge generating material and charge transporting material.
Possible reasons include that holes and electrons generated by light irradiation cannot move efficiently, and that carriers are not efficiently injected from the charge generation layer to the charge transport layer. Sensitivity is one of the most important characteristics of a photoreceptor, but in the case of the aforementioned laminated electrophotographic photoreceptor, the sensitivity is generally determined by: (1) the amount of light that reaches the charge generation layer (light intensity); , extinction coefficient), (2) Carrier generation efficiency in the charge generation layer (carrier generation quantum efficiency), (3) Carrier injection efficiency from the charge generation layer to the charge transport layer (ionization potential, oxidation potential, etc.), (4 ) It is qualitatively expressed as a comprehensive evaluation of the efficiency of carrier movement in the charge transport layer (drift mobility).
Therefore, in order to improve sensitivity, it is necessary to increase the intensity of light irradiated to the photoreceptor, the extinction coefficient and quantum efficiency of the charge generating material, the carrier injection efficiency, the drift mobility in the charge transport layer, etc. It is.
Assuming that the intensity of irradiated light is constant, it is unlikely that organic photoconductive compounds known so far can be expected to dramatically increase the extinction coefficient or quantum efficiency. On the other hand, the hole mobility of various organic photoconductive compounds has been measured using a charge transporting material alone or a system in which it is molecularly dispersed in an insulating polymer, and the values vary depending on the measurer. However, 10 -9 to 10 -4 cm 2 /V・sec
The mobility of organic photoconductive materials generally used in electrophotography is 10 -7 to 10 -6.
The current value is approximately cm 2 /V·sec, and no organic material with a value higher than this is known yet. Therefore, the present inventors focused on the carrier injection efficiency from the charge generation layer to the charge transport layer as one of the factors that can improve the sensitivity, and as a result of measuring the oxidation potential of many organic materials, the sensitivity It was discovered that there is a correlation between the charge transport material and the oxidation potential, and that sensitivity can be improved by optimizing the oxidation potential of the charge transport material. It has been reported that there is a correlation between the effective injection of carriers generated in the charge generation layer into the charge transport layer and the ionization potential of the charge transport material. For example, IEEE Trans. IA-17
Volume, page 382 (published in 1981). Ionization potential, considered the most important factor in carrier injection efficiency, is measured in a variety of ways. For example, methods using mass spectroscopy, methods using photoelectron spectroscopy, creating charge transfer complexes,
There are methods that use the absorption spectrum, methods that measure the oxidation potential as a substitute physical property value, and methods that calculate using the molecular orbital method. However, the methods described above have so far only been able to determine the ionization potential of relatively low-molecular compounds such as charge-transporting materials, and the ionization potential of macromolecules such as pigments that are commonly used as charge-generating materials has not been determined. As far as the inventors know, there are no reports on experimental or calculated values of . The reason for this is thought to be that the pigment exhibits characteristics as a molecular assembly (aggregate) rather than as a single molecule dispersed state, which poses an experimental problem. Furthermore, since pigments are generally large molecules, it is thought that there is a limit to the computational time required by a computer when performing molecular orbital calculations. Therefore, the present inventors focused on a pigment soluble in a solvent as a charge-generating material, and measured the oxidation potential in the solution state. Furthermore, the oxidation potential of commonly used charge transport materials can also be measured in a solution state.
Since ionization potential and oxidation potential are generally considered to be in a proportional relationship, it is thought that oxidation potential can be a substitute characteristic for ionization potential. Therefore, the present invention was achieved by measuring the oxidation potential of the charge-generating material and the charge-transporting material and the sensitivity of a laminated photoreceptor using them, and finding the optimal combination of the charge-generating material and the charge-transporting material. . [Objective and Summary of the Invention] An object of the present invention is to provide an electrophotographic photoreceptor with outstandingly high sensitivity by using a newly selected combination of a charge-generating material and a charge-transporting material. There is a particular thing. The above object is to have a charge generation layer containing an azulene compound having the following structural formula [] and a charge transport layer containing a hydrazone compound having an oxidation potential in the range of 0.55 to 0.70 volts on a conductive support. This is achieved by the laminated electrophotographic photoreceptor of the present invention, which is characterized by the following. The azulene compound represented by the above structural formula [] has panchromatic sensitivity characteristics over a wide wavelength range of 400 nm to 900 nm. [Specific Description and Examples of the Invention] The oxidation potential used in the present invention is measured using acetonitrile as a solvent, tetraethylammonium perchlorate as a supporting electrolyte, and a saturated calomel electrode as an electrode. 1st
The peak value of the oxidation wave (E ox ) was used. Conventionally, it has been confirmed that there is a strong correlation between sensitivity and the ionization potential of the charge transport material, and it is believed that the smaller the ionization potential of the charge transport material, the higher the sensitivity. However, by measuring the oxidation potential of not only the charge-transporting material but also the charge-generating material, as was done in the present invention, it is possible to obtain high sensitivity only when the oxidation potential of both materials falls within a certain range of values. found. First, the oxidation potential of the azulene compound of the structural formula [], which is a charge-generating material, is 0.84V. On the other hand, it has been found that the oxidation potential of the hydrazone compound, which is a charge transporting material, must be in the range of 0.55 to 0.70V. As will be specifically described in Examples, it has been found that when the voltage is smaller than 0.55V, the dark decay increases, and when the voltage is larger than 0.70V, the residual potential increases, resulting in low sensitivity. From the above results, in order to obtain a highly sensitive laminated photoreceptor, the above-mentioned optimum range exists for the oxidation potential values of the charge generating material and the charge transporting material. Only when this condition is met, holes generated in the charge generation layer by light irradiation can be efficiently injected into the charge transport layer without being affected by the energy barrier at the interface between the charge generation layer and the charge transport layer. This is a reasonable result. The oxidation potential used in the charge transport layer in the present invention is 0.55.
Hydrazone compounds in the range of ~0.70 volts are
In addition to those used in the Examples described below, examples include compounds having the compound numbers, structural formulas, and oxidation potentials shown below. The charge generation layer used in the present invention is formed by dispersing the azulene compound having the above structural formula as the charge generation material used in the present invention in a suitable binder, and coating this on a substrate. It can also be obtained by forming a vapor deposited film using a vacuum evaporation apparatus. Binders that can be used to form the charge generating layer by coating can be selected from a wide range of insulating resins, and organic photoconductive polymers such as poly-N-vinylcarbazole, polyvinylanthracene, and polyvinylpyrene. You can choose. Preferably, polyvinyl butyral, polyarylate (condensation polymer of bisphenol A and phthalic acid, etc.), polycarbonate, polyester, phenoxy resin, polyvinyl acetate, acrylic resin, polyacrylamide resin, polyamide, polyvinylpyridine, cellulose resin, urethane Examples include insulating resins such as resin, epoxy resin, casein, polyvinyl alcohol, and polyvinylpyrrolidone. The resin contained in the charge generation layer is 80
Weight % or less, preferably 40 weight % or less is suitable. Organic solvents used during coating include alcohols such as methanol, ethanol and isopropanol, ketones such as acetone, methyl ethyl ketone and cyclohexanone, amides such as N,N-dimethylformamide and N,N-dimethylacetamide, dimethyl Sulfoxides such as sulfoxide, tetrahydrofuran, dioxane,
Ethers such as ethylene glycol monomethyl ether, esters such as methyl acetate and ethyl acetate, aliphatic halogenated hydrocarbons such as chloroform, methylene chloride, dichloroethylene, carbon tetrachloride, trichlorethylene, or benzene,
Aromatics such as toluene, xylene, ligroin, monochlorobenzene, dichlorobenzene, etc. can be used. Coating can be carried out using coating methods such as dip coating, spray coating, spinner coating, bead coating, Meyer bar coating, blade coating, roller coating, and curtain coating. The charge generation layer contains as much of the organic photoconductor as possible in order to obtain sufficient absorbance and is preferably a thin film layer, for example less than 5 microns, in order to shorten the range of the generated charge carriers. teeth
A thin film layer having a thickness of 0.01 micron to 1 micron is preferable. This means that most of the incident light is absorbed by the charge generation layer, generating many charge carriers, and that the generated charge carriers are not deactivated by recombination or trapping, but are transferred to the charge transport layer. This is due to the need for injection. The charge transport layer used in the present invention can be formed by forming a film using one or more of the charge transport materials used in the present invention. When the charge transport material does not have film-forming properties,
A film can be formed by selecting an appropriate binder. Resins that can be used as binders are:
For example, insulating resins such as acrylic resin polyarylate, polyester, polycarbonate, polystyrene, acrylonitrile-styrene copolymer, acrylonitrile-butadiene, copolymer, polyvinyl butyral, polyvinyl formal, polysulfone, polyacrylamide, polyamide, chlorinated rubber, or poly-N- Organic photoconductive polymers such as vinylcarbazole, polyvinylanthracene, polyvinylpyrene and the like may be mentioned. Since the charge transport layer has a limit in its ability to transport charge carriers, it cannot be made thicker than necessary. Typically it is between 5 microns and 30 microns, with a preferred range between 8 microns and 20 microns. When forming the charge transport layer by coating, an appropriate coating method as described above can be used. A photosensitive layer having such a laminated structure of a charge generation layer and a charge transport layer in an arbitrary layer order is provided on a conductive support comprising, for example, a base having a conductive layer. Examples of the substrate having a conductive layer include those whose substrate itself is conductive, such as aluminum, aluminum alloy, copper, zinc, stainless steel, vanadium, molybdenum, chromium, titanium, nickel, indium,
Gold, platinum, etc. can be used, as well as aluminum, aluminum alloy, indium oxide,
Plastics (e.g., polyethylene, polypropylene, polyvinyl chloride, polyethylene terephthalate, acrylic resin, polyethylene fluoride, etc.) having a layer formed by vacuum evaporation of tin oxide, indium oxide-tin oxide alloy, etc.
A substrate in which conductive particles (e.g., carbon black, silver particles, etc.) are coated on plastic together with a suitable binder, a substrate in which plastic or paper is impregnated with conductive particles, a plastic containing a conductive polymer, etc. can be used. . A subbing layer having barrier and adhesive functions can also be provided between the conductive layer and the photosensitive layer. The undercoat layer is made of casein, polyvinyl alcohol, nitrocellulose, ethylene-acrylic acid copolymer, polyamide (nylon 6, nylon 66, nylon
610, copolymerized nylon, alkoxymethylated nylon, etc.), polyurethane, gelatin, aluminum oxide, etc. The thickness of the undercoat layer is 0.1 micron to 5 micron.
Preferably, 0.5 micron to 3 micron is appropriate. The electrophotographic photoreceptor provided by the present invention can be used not only in electrophotographic copying machines, but also in a wide range of electrophotographic applications such as laser printers and CRT printers. Further, the charge generating material used in the present invention can also be used in solar cells and optical sensors in addition to the above-mentioned electrophotographic photoreceptor. Solar cells can be prepared, for example, by sandwiching the aforementioned organic photoconductors with indium oxide and aluminum. Next, the present invention will be explained with reference to Examples, but the present invention is not limited thereto in any way. Test Examples 1 to 16 5 g of the azulene compound as the charge generating material used in this example and 2 g of butyral resin (degree of butyralization 63 mol%) were mixed with 95 ml of isopropyl alcohol.
After dispersing it in a sand mill with a solution dissolved in , it was coated on an aluminum sheet to form a charge generation layer with a dry film thickness of 0.2 microns. Next, various charge transport material compounds used in this example
The structural formulas and oxidation potentials of Nos. (1) to (8) are shown below. Therefore, 5 g of any one of the charge transport materials of Compounds Nos. (1) to (8) above and a styrene-acrylic resin (trade name: Nippon Steel Chemical MS-
A charge transport layer was formed by coating a 20% by weight solution of monochlorobenzene (200) in a weight ratio of 0.95:1 on the charge generation layer so that the film thickness after drying was 16 microns. . In this way, eight types of negatively charged laminated photoreceptors were created. Subsequently, a charge transport layer was first formed on the aluminum sheet, and then a charge generation layer was laminated on the charge transport layer to produce eight types of positive charging laminated photoreceptors. In the manner described above, 16 types of laminated electrophotographic photoreceptors were produced. The 16 types of electrophotographic photoreceptors prepared in this way were dynamically corona charged using an electrostatic copying paper testing device Model SP-428 manufactured by Kawaguchi Electric Co., Ltd., and after being held in a dark place for 1 second, the illuminance was
It was exposed to light at 5 lux for 4 seconds and its charging characteristics were examined. As for the charging characteristics, the surface potential and the exposure amount (E1/2) required to attenuate the potential (V 0 =±600 volts) to 1/2 when dark decayed for 1 second were measured. or,
The residual potential (V R ) after 15 lux·sec exposure was also measured.
The results of the photoreceptor obtained by the above method are summarized in Table 1. In Table 1, the numbers in brackets indicate V R (volts).

【衚】 尚この衚で、倪枠〓〓で囲繞された範囲が本発
明の積局型電子写真感光䜓の特性であり、〓は暗
枛衰が倧きい200V以䞊こずを衚わしおいる。
この結果より、電荷茞送材料のヒドラゟン化合物
の酞化電䜍が0.55〜0.70Vの範囲にある本発明の
積局型電子写真感光䜓が暗枛衰も少なく、高感床
であるこずが刀明した。さらに、このこずは正、
負どちらの積局型感光䜓に぀いおもあおはたるこ
ずがわかる。 〔発明の効果〕 本発明によれば、電荷発生材料ず電荷茞送材料
ずの組合せを最適化するこずにより、積局型感光
䜓においおも、より高感床の電子写真感光䜓を提
䟛するこずができる。
[Table] In this table, the range surrounded by a thick frame 〓〓 is the characteristic of the laminated electrophotographic photoreceptor of the present invention, and 〓 indicates that the dark decay is large (200 V or more).
The results revealed that the multilayer electrophotographic photoreceptor of the present invention, in which the oxidation potential of the hydrazone compound of the charge transport material is in the range of 0.55 to 0.70 V, has low dark decay and high sensitivity. Moreover, this is true;
It can be seen that this applies to both negative and laminated photoreceptors. [Effects of the Invention] According to the present invention, by optimizing the combination of a charge generating material and a charge transporting material, an electrophotographic photoreceptor with higher sensitivity can be provided even in a laminated type photoreceptor.

Claims (1)

【特蚱請求の範囲】  導電性支持䜓䞊に、䞋蚘構造匏〔〕を有す
るアズレン化合物を含有する電荷発生局、及び酞
化電䜍が0.55〜0.70ボルトの範囲にあるヒドラゟ
ン化合物を含有する電荷茞送局を有するこずを特
城ずする積局型電子写真感光䜓。
[Claims] 1. A charge generation layer containing an azulene compound having the following structural formula [] on a conductive support, and a charge transport layer containing a hydrazone compound having an oxidation potential in the range of 0.55 to 0.70 volts. A laminated electrophotographic photoreceptor comprising:
JP5938285A 1985-03-26 1985-03-26 Laminated type electrophotographic sensitive body Granted JPS61219046A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5938285A JPS61219046A (en) 1985-03-26 1985-03-26 Laminated type electrophotographic sensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5938285A JPS61219046A (en) 1985-03-26 1985-03-26 Laminated type electrophotographic sensitive body

Publications (2)

Publication Number Publication Date
JPS61219046A JPS61219046A (en) 1986-09-29
JPH0513512B2 true JPH0513512B2 (en) 1993-02-22

Family

ID=13111672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5938285A Granted JPS61219046A (en) 1985-03-26 1985-03-26 Laminated type electrophotographic sensitive body

Country Status (1)

Country Link
JP (1) JPS61219046A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3258163B2 (en) * 1994-02-23 2002-02-18 富士電機株匏䌚瀟 Electrophotographic photoreceptor

Also Published As

Publication number Publication date
JPS61219046A (en) 1986-09-29

Similar Documents

Publication Publication Date Title
JPH0513509B2 (en)
JPH01230053A (en) Electrophotographic sensitive body containing compound having hindered phenol structure
JPH0513512B2 (en)
JPH0513510B2 (en)
JP2898685B2 (en) Electrophotographic photoreceptor
JPH01230052A (en) Electrophotographic sensitive body containing compound having hindered phenol structure
JP2568679B2 (en) Electrophotographic photoreceptor and resin composition for electrophotographic photoreceptor
JPS60177346A (en) Lamination type electrophotographic sensitive body
JPS627056A (en) Electrophotographic sensitive body
JPS61179453A (en) Electrophotographic sensitive body
JPS60177358A (en) Laminated type electrophotographic sensitive body and electrophotography
JPS61126553A (en) Electrophotographic sensitive body
JPS6214656A (en) Electrophotographic sensitive body
JPS61173256A (en) Electrophotographic sensitive body
JPS627054A (en) Electrophotographic sensitive body
JPS61173257A (en) Electrophotographic sensitive body
JPS61182049A (en) Electrophotographic sensitive body
JPS61189547A (en) Electrophotographic sensitive body
JPH036569A (en) Electrophotographic sensitive body
JPS61294447A (en) Electrophotographic sensitive body
JPS61189554A (en) Electrophotographic sensitive body
JPS61184550A (en) Electrophotographic sensitive body
JPS61184549A (en) Electrophotographic sensitive body
JPS61292148A (en) Electrophotographic sensitive body
JPS61294448A (en) Electrophotographic sensitive body