JPH0513509B2 - - Google Patents

Info

Publication number
JPH0513509B2
JPH0513509B2 JP3667685A JP3667685A JPH0513509B2 JP H0513509 B2 JPH0513509 B2 JP H0513509B2 JP 3667685 A JP3667685 A JP 3667685A JP 3667685 A JP3667685 A JP 3667685A JP H0513509 B2 JPH0513509 B2 JP H0513509B2
Authority
JP
Japan
Prior art keywords
charge
layer
charge transport
oxidation potential
charge generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3667685A
Other languages
Japanese (ja)
Other versions
JPS61198160A (en
Inventor
Hiroyuki Kitayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP3667685A priority Critical patent/JPS61198160A/en
Publication of JPS61198160A publication Critical patent/JPS61198160A/en
Publication of JPH0513509B2 publication Critical patent/JPH0513509B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0664Dyes
    • G03G5/0666Dyes containing a methine or polymethine group
    • G03G5/0668Dyes containing a methine or polymethine group containing only one methine or polymethine group
    • G03G5/067Dyes containing a methine or polymethine group containing only one methine or polymethine group containing hetero rings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0622Heterocyclic compounds
    • G03G5/0624Heterocyclic compounds containing one hetero ring
    • G03G5/0627Heterocyclic compounds containing one hetero ring being five-membered
    • G03G5/0629Heterocyclic compounds containing one hetero ring being five-membered containing one hetero atom

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は電子写真感光体に関する。 〔従来の技術〕 従来、感光層を電荷発生層と電荷輸送層とに機
能分離させた積層型の電子写真感光体(以下、積
層型感光体ということがある)は種々知られてい
る。しかし、この種の感光体においては未だに十
分な感度が得られていない。即ち、積層型感光体
の感度が向上しない原因として、電荷発生材料や
電荷輸送材料中に、露光によつて生成したキヤリ
ヤのトラツプが多く存在し、光照射によつて生成
したホール及び電子が効率よく移動できないこ
と、及び、電荷発生層から電荷輸送層へのキヤリ
ヤの注入が効率よく行なわれないことなどが考え
られている。 感度は、感光体にとつて最も重要な特性の1つ
であるが機能分離型感光体の場合の感度は、一般
に、 (1) 光が電荷発生層に到達する量(光強度、吸光
係数)、 (2) 電荷発生層でのキヤリヤの発生効率(キヤリ
ヤ生成量子効率)、 (3) 電荷発生層から電荷輸送層へのキヤリヤ注入
効率(イオン化ポテンシヤル、酸化電位など)、 (4) 電荷輸送層中をキヤリヤが移動する効率(ド
リフト移動度)、 などの総合評価として、定性的に表現されてい
る。したがつて、感度を向上させるには、感光体
に照射する光の強度、電荷発生材料の吸光係数と
量子効率、キヤリヤ注入効率、電荷輸送層中のド
リフト移動度などを大きくすることが必要であ
る。今、照射光の強度が一定とすれば、これまで
に知られている有機光導電性化合物では、吸光係
数や量子効率の値を飛躍的に大きくすることは望
めそうにもないと考えられている。一方、種々の
有機光導電性化合物のホールの移動度は、電荷輸
送材料単独あるいはそれを絶縁性高分子中に分子
分散した系について測定されており、その値は測
定者によつて多少の差があるが10-9〜10-4cm2
V・secと広い範囲にわたつており、一般に電子
写真に用いられる有機光導電材料の移動度は10-7
〜10-6cm2/V・sec程度であり、これ以上の値を
もつ有機光導電性材料は未だ見出されていないの
が現状である。 そこで本発明者らは、電荷発生層から電荷輸送
層へのキヤリヤ注入効率が感度を左右する重要な
因子であることに着目し多くの有機材料について
の酸化電位の測定を行なつた結果、感度と酸化電
位との間に相関性があることを見出した。 ところで、電荷発生層中で生成したキヤリヤの
電荷輸送層への有効な注入と、電荷輸送材料のイ
オン化ポテンシヤルとの間には相関性があるとの
報告が、例えば、IEEE Trans誌、IA−17巻、
382頁(1981年発行)に記載されている。キヤリ
ヤ注入効率に最も重要な因子と考えられるイオン
化ポテンシヤルは種々の方法で測定される。例え
ば、質量スペクトルを用いる方法、光電子分光法
を用いる方法、電荷移動錯体を作成し、その吸収
スペクトルを用いる方法、代用物性値としての酸
化電位を測定する方法、分子軌道法により計算す
る方法などがある。しかしながら、これまで上述
の諸方法で求められたのは、電荷輸送材料などの
比較的低分子化合物に限られており、電荷発生材
料として一般に用いられている顔料のような巨大
分子についてのイオン化ポテンシヤルの実験値、
あるいは計算値についての報告は本発明の知る限
り皆無と言つてよい。この理由として、顔料は1
分子分散した状態というよりも分子集合体(凝集
体)としても特性が現われることが実験上の問題
になることが考えられる。また、顔料は一般に巨
大分子であるので、分子軌道計算を実行する上
で、コンピユータによる演算時間などの制限があ
つたものと考えられる。 そこで本発明者は、電荷発生材料としての銀塩
の増感剤として用いられている各種シアニン色素
に着目した。色素は顔料と異なり、溶剤に可溶な
ので、溶液状態での酸化電位の測定が可能となつ
た。さらに、一般に用いられる電荷輸送材料も溶
液状態での酸化電位の測定が可能である。一般に
イオン化ポテンシヤルと酸化電位とは比例関係に
あるとされているので酸化電位はイオン化ポテン
シヤルの代用特性になりうると考えられる。そこ
で、電荷発生材料であるシアニン色素と電荷輸送
材料の酸化電位と積層型感光体の感度を測定し、
これにより電荷発生材料と電荷輸送材料との最適
の組合せを見出し、本発明に到達したものであ
る。 〔発明の目的及び概要〕 本発明の目的は、新規に選択された組合せの電
荷発生材料及び電荷輸送材料を用いて構成するこ
とにより、卓抜して高感度とされた電子写真感光
体を提供することにある。 上記目的は、導電性支持体上に電荷発生層及び
電荷輸送層を有する電子写真感光体において、前
記電荷発生層が電荷発生材料として0.35〜0.50ボ
ルトの酸化電位を有するシアニン色素を含む層か
ら成り、前記電荷輸送層が0.70ボルト以下の酸化
電位を有する電荷輸送材料を含む層から成ること
を特徴とする本発明の電子写真感光体によつて達
成される。 〔発明の具体的説明及び実施例〕 本発明で用いる酸化電位は、溶媒としてアセト
ニトリル、支持電解質として過塩素酸テトラエチ
ルアンモニウム、電極として飽和カロメル電極を
使用して測定され、酸化電位の値として、第1酸
化波のピーク値(EOX)を用いた。 従来、感度と電荷輸送材料のイオン化ポテンシ
ヤルとの間に強い相関性が確認されており、電荷
輸送材料のイオン化ポテンシヤルが小さいほど高
感度だとされている。 しかしながら本発明で行なつたように電荷輸送
材料だけでなく電荷発生材料についても酸化電位
を測定することによつて両者の酸化電位が一定の
範囲の値のところでのみ高感度になることが判明
した。 まず電荷発生材料であるシアニン色素について
は、酸化電位が0.35〜0.50ボルトの範囲にあるこ
とが必要であることが判明した。酸化電位が0.35
ボルトよりも小さくなると電荷輸送材料の種類に
よらず積層型感光体の暗減衰が大きくなつてしま
う。さらにシアニン色素の酸化電位で0.50ボルト
を超えると、電荷輸送材料の種類によらず、積層
型感光体の感度が大きく低下してしまうことが判
明した。シアニン色素の酸化電位で大きくなる
と、色素自身の吸収が紫外領域となり、可視部に
もはや感度を有しなくなるためであると考えられ
る。 一方電荷輸送材料については、酸化電位が0.70
ボルト以下の範囲にあることが必要であることが
判明した。酸化電位が、0.70ボルトよりも大きく
なると、電荷発生材料のシアニン色素の種類によ
らず、積層型感光体の感度が大幅に悪くなつてし
まうことが判明した。 以上の諸結果より、高感度な積層型感光体であ
るためには、電荷発生材料及び電荷輸送材料の夫
夫の酸化電位の値に、上述のような最適範囲が存
在することがわかつた。この条件を満たす時の
み、光照射によつて電荷発生層中に生成したホー
ルが電荷発生層と電荷輸送層の界面のエネルギー
バリヤーに影響されることなく、効率よく電荷輸
送層中に注入されるという合理的な結果となつて
いる。 以上の実験結果と考察により本発明によつては
じめて電荷発生材料と電荷輸送材料の組み合わせ
と、感度との間の相関性が明らかになつた。 本発明で電荷発生層に用いる、酸化電位が0.35
〜0.50ボルトの範囲にあるシアニン色素は、例え
ば下記に示す化合物No.、構造式及び酸化電位の化
合物を挙げることができる。 次に本発明で電荷輸送層に用いる酸化電位が
0.70V以下の範囲にある電荷輸送材料としては、
例えば下記に示す化合物を挙げることができる。 本発明で使用する電荷発生層は、本発明で使用
する電荷発生物質としてのシアニン色素1種又は
2種以上を適当な結着剤に分散させ、これを塗工
することによつて形成でき、また真空蒸着装置に
より蒸着膜を形成することによつて得ることがで
きる。電荷発生層を塗工によつて形成する際に用
いうる結着剤としては、広範な絶縁性樹脂から選
択でき、またポリ−N−ビニルカルバゾール、ポ
リビニルアントラセンやポリビニルピレンなどの
有機光導電性ポリマーから選択できる。好ましく
は、ポリビニルブチラール、ポリアリレート(ビ
スフエノールAとフタル酸の縮重合体など)、ポ
リカーボネート、ポリエステル、フエノキシ樹
脂、ポリ酢酸ビニル、アクリル樹脂、ポリアクリ
ルアミド樹脂、ポリアミド、ポリビニルピリジ
ン、セルロース系樹脂、ウレタン樹脂、エポキシ
樹脂、カゼイン、ポリビニルアルコール、ポリビ
ニルピロリドンなどの絶縁性樹脂を挙げることが
できる。電荷発生層中に含有する樹脂は、80重量
%以下、好ましくは40重量%以下が適している。
塗工の際に用いる有機溶剤としては、メタノー
ル、エタノール、イソプロパノールなどのアルコ
ール類、アセトン、メチルエチルケトン、シクロ
エキサノンなどのケトン類、N,N−ジメチルホ
ルムアミド、N,N−ジメチルアセトアミドなど
のアミド類、ジメチルスルホキシドなどのスルホ
キシド類、テトラヒドロフラン、ジオキサン、エ
チレングリコールモノメチルエーテルなどのエー
テル類、酢酸メチル、酢酸エチルなどのエステル
類、クロロホルム、塩化メチレン、ジクロルエチ
レン、四塩化炭素、トリクロルエチレンなどの脂
肪族ハロゲン化炭化水素類あるいはベンゼン、ト
ルエン、キシレン、リグロイン、モノクロルベン
ゼン、ジクロルベンゼンなどの芳香族類などを用
いることができる。 塗工は、浸漬コーテイング法、スプレーコーテ
イング法、スピンナーコーテイング法、ビードコ
ーテイング法、マイヤーバーコーテイング法、ブ
レードコーテイング法、ローラーコーテイング
法、カーテンコーテイング法などのコーテイング
法を用いて行なうことができる。 電荷発生層は、十分な吸光度を得るために、で
きる限り多くの前記有機光導電体を含有し、且つ
発生した電荷キヤリアの飛程を短かくするため
に、薄膜層、例えば5ミクロン以下、好ましくは
0.01ミクロン〜1ミクロンの膜厚をもつ薄膜層と
することが好ましい。このことは、入射光量の大
部分が電荷発生層で吸収されて、多くの電荷キヤ
リアを生成すること、さらに発生した電荷キヤリ
アを再結合や補獲(トラツプ)により失活するこ
となく電荷輸送層に注入する必要があることに帰
因している。 本発明で使用する電荷輸送層は、本発明で使用
する電荷輸送物質の1種または2種以上を用いて
成膜することにより形成できる。 電荷輸送物質に成膜性を有していない時には、
適当なバインダーを選択することによつて被膜形
成できる。バインダーとして使用できる樹脂は、
例えばアクリル樹脂ポリアリレート、ポリエステ
ル、ポリカーボネート、ポリスチレン、アクリロ
ニトリル−スチレンコポリマー、アクリロニトリ
ル−ブタジエン、コポリマー、ポリビニルブチラ
ール、ポリビニルホルマール、ポリスルホン、ポ
リアクリルアミド、ポリアミド、塩素化ゴム等の
絶縁性樹脂、あるいはポリ−N−ビニルカルバゾ
ール、ポリビニルアントラセン、ポリビニルピレ
ン等の有機光導電性ポリマーを挙げることができ
る。 電荷輸送層は、電荷キヤリアを輸送できる限界
があるので、必要以上に膜厚を厚くすることがで
きない。一般的には、5ミクロン〜30ミクロンで
あるが、好ましい範囲は8ミクロン〜20ミクロン
である。塗工によつて電荷輸送層を形成する際に
は、前述した様な適当なコーテイング法を用いる
ことができる。 この様な電荷発生層と電荷輸送層の任意の層順
の積層構造からなる感光層は、例えば導電層を有
する基体から成る導電性支持体上に設けられる。
導電層を有する基体としては、基体自体が導電性
をもつもの、例えばアルミニウム、アルミニウム
合金、銅、亜鉛、ステンレス、パナジウム、モリ
ブデン、クロム、チタン、ニツケル、インジウ
ム、金や白金などを用いることができ、その他に
アルミニウム、アルミニウム合金、酸化インジウ
ム、酸化錫、酸化インジウム−酸化錫合金などを
真空蒸着法によつて被膜形成された層を有するプ
ラスチツク(例えば、ポリエチレン、ポリプロピ
レン、ポリ塩化ビニル、ポリエチレンテレフタレ
ート、アクリル樹脂、ポリフツ化エチレンなど)、
導電性粒子(例えば、カーボンブラツク、銀粒子
など)を適当なバインダーとともにプラスチツク
の上に被覆した基体、導電性粒子をプラスチツク
や紙に含浸した基体や導電性ポリマーを有するプ
ラスチツクなどを用いることができる。 導電層と感光層の中間に、バリヤー機能と接着
機能をもつ下引層を設けることもできる。下引層
は、カゼイン、ポリビニルアルコール、ニトロセ
ルロース、エチレン−アクリル酸コポリマー、ポ
リアミド(ナイロン6、ナイロン66、ナイロン
610、共重合ナイロン、アルコキシメチル化ナイ
ロンなど)、ポリウレタン、ゼラチン、酸化アル
ミニウムなどによつて形成できる。 下引層の膜厚は、0.1ミクロン〜5ミクロン、
好ましくは0.5ミクロン〜3ミクロンが適当であ
る。 本発明により提供される電子写真感光体は電子
写真複写機に利用するのみならず、レーザープリ
ンターやCRTプリンター等の電子写真応用分野
にも広く用いることができる。 また、本発明で使用する電荷発生材料及び電荷
輸送材料は、前述の電子写真感光体の他に、太陽
電池や光センサーに用いることもできる。太陽電
池は、例えば酸化インジウムとアルミニウムによ
つて前述の有機光導電体をサンドイツチすること
によつて調製できる。 次に本発明を実施例により説明するが、本発明
はこれらにより何ら限定されるものではない。 実施例 1〜64 前記例示した本発明に係る電荷発生材料として
のシアニン色素の8種と本発明に係る電荷輸送材
料の8種とをそれぞれ全ての種類に亘つて互いに
組合せて使用し、64種の電子写真感光体を作製し
た。 即ち、まず前記例示した化合物No.(1)乃至(8)のそ
れぞれのシアニン色素5gと、ブチラール樹脂
(ブチラール化度63モル%)2gをイソプロピル
アルコール95mlで溶かした溶液と共にサンドミル
分散した後、アルミシート上に塗工し、乾燥後の
膜厚が0.1ミクロンとなる電荷発生層を形成した。 次いで、前記例示した化合物No.(18)乃至(25)のそ
れぞれの電荷輸送材料5gと結着剤としてのスチ
レン−アクリル樹脂(商品名新日本製鉄化学MS
−200)とを0.95:1の重量比で混合したものの
モノクロルベンゼン20重量%溶液を、電荷発生層
の上に乾燥後の膜厚が16ミクロンとなる様に塗工
して電荷輸送層を形成した。 この様にして作成した64種類の電子写真感光体
を川口電機(株)製静電複写紙試験装置Model SP−
428を用いて、ダイナミツク方式でマイナスコロ
ナ帯電し、暗所で1秒間保持した後、照度5
luxで4秒間露光し、帯電特性を調べた。 帯電特性としては表面置位と1秒間暗減衰させ
た時の電位(VO=600ボルト)を1/2に減衰する
のに必要な露光量(E1/2)(lux・sec)を測定し
た。又、1.5lux・sec露光後の残留電位(VR)も
測定した。以上の方法による上記感光体の結果を
まとめて第1表に示す。第1表中〔 〕内の数値
がVR(ボルト)を示している。
[Industrial Field of Application] The present invention relates to an electrophotographic photoreceptor. [Prior Art] Various laminated electrophotographic photoreceptors (hereinafter sometimes referred to as laminated photoreceptors) in which a photosensitive layer is functionally separated into a charge generation layer and a charge transport layer are known. However, sufficient sensitivity has not yet been obtained in this type of photoreceptor. In other words, the reason why the sensitivity of the laminated photoreceptor does not improve is that there are many carrier traps generated by exposure in the charge generation material and charge transport material, and the holes and electrons generated by light irradiation are not efficiently used. It is believed that carriers cannot move well and that carriers are not efficiently injected from the charge generation layer to the charge transport layer. Sensitivity is one of the most important characteristics of a photoreceptor, but in the case of a functionally separated photoreceptor, the sensitivity is generally determined by: (1) the amount of light that reaches the charge generation layer (light intensity, extinction coefficient); , (2) Carrier generation efficiency in the charge generation layer (carrier generation quantum efficiency), (3) Carrier injection efficiency from the charge generation layer to the charge transport layer (ionization potential, oxidation potential, etc.), (4) Charge transport layer It is qualitatively expressed as a comprehensive evaluation of the efficiency with which the carrier moves through the vehicle (drift mobility). Therefore, in order to improve sensitivity, it is necessary to increase the intensity of the light irradiated to the photoreceptor, the absorption coefficient and quantum efficiency of the charge generating material, the carrier injection efficiency, the drift mobility in the charge transport layer, etc. be. Now, if the intensity of irradiated light is constant, it is unlikely that the organic photoconductive compounds known so far will be able to dramatically increase the extinction coefficient or quantum efficiency. There is. On the other hand, the hole mobility of various organic photoconductive compounds has been measured using a charge transporting material alone or a system in which it is molecularly dispersed in an insulating polymer, and the values vary depending on the measurer. There is a range of 10 -9 to 10 -4 cm 2 /
The mobility of organic photoconductive materials generally used in electrophotography is 10 -7 .
~10 -6 cm 2 /V·sec, and at present no organic photoconductive material with a value higher than this has yet been found. Therefore, the present inventors focused on the fact that the efficiency of carrier injection from the charge generation layer to the charge transport layer is an important factor that affects sensitivity, and as a result of measuring the oxidation potential of many organic materials, the sensitivity It was found that there is a correlation between the oxidation potential and the oxidation potential. By the way, there is a report that there is a correlation between the effective injection of carriers generated in the charge generation layer into the charge transport layer and the ionization potential of the charge transport material, for example, in IEEE Trans magazine, IA-17. roll,
It is described on page 382 (published in 1981). Ionization potential, considered the most important factor in carrier injection efficiency, is measured in a variety of ways. For example, there are methods using mass spectra, methods using photoelectron spectroscopy, methods that create charge transfer complexes and use their absorption spectra, methods that measure oxidation potential as a substitute physical property value, and methods that calculate using molecular orbital method. be. However, the methods described above have so far only been able to determine the ionization potential of relatively low-molecular compounds such as charge-transporting materials, and the ionization potential of macromolecules such as pigments that are commonly used as charge-generating materials has not been determined. The experimental value of
Alternatively, it can be said that, as far as the present invention is aware, there are no reports regarding calculated values. The reason for this is that the pigment is 1
It is conceivable that the fact that properties appear as a molecular assembly (aggregate) rather than in a molecularly dispersed state may be an experimental problem. Furthermore, since pigments are generally large molecules, it is thought that there are limitations such as computational time on the computer when performing molecular orbital calculations. Therefore, the present inventors focused on various cyanine dyes that are used as sensitizers for silver salts as charge-generating materials. Unlike pigments, dyes are soluble in solvents, making it possible to measure oxidation potential in a solution state. Furthermore, the oxidation potential of commonly used charge transport materials can also be measured in a solution state. Since ionization potential and oxidation potential are generally considered to be in a proportional relationship, it is thought that oxidation potential can be a substitute characteristic for ionization potential. Therefore, we measured the oxidation potential of the cyanine dye, which is a charge-generating material, and the charge-transporting material, and the sensitivity of the laminated photoreceptor.
As a result, the optimum combination of a charge generating material and a charge transporting material was found, and the present invention was achieved. [Objective and Summary of the Invention] An object of the present invention is to provide an electrophotographic photoreceptor with outstandingly high sensitivity by using a newly selected combination of a charge-generating material and a charge-transporting material. There is a particular thing. The above object is an electrophotographic photoreceptor having a charge generation layer and a charge transport layer on a conductive support, wherein the charge generation layer comprises a layer containing a cyanine dye having an oxidation potential of 0.35 to 0.50 volts as a charge generation material. is achieved by the electrophotographic photoreceptor of the present invention, wherein the charge transport layer comprises a layer containing a charge transport material having an oxidation potential of 0.70 volts or less. [Specific Description and Examples of the Invention] The oxidation potential used in the present invention is measured using acetonitrile as a solvent, tetraethylammonium perchlorate as a supporting electrolyte, and a saturated calomel electrode as an electrode. The peak value of 1-oxidation wave (E OX ) was used. Conventionally, it has been confirmed that there is a strong correlation between sensitivity and the ionization potential of the charge transport material, and it is believed that the smaller the ionization potential of the charge transport material, the higher the sensitivity. However, by measuring the oxidation potential of not only the charge transporting material but also the charge generating material, as was done in the present invention, it was found that the sensitivity is high only when the oxidation potential of both materials falls within a certain range of values. . First, it was found that the oxidation potential of cyanine dye, which is a charge-generating material, must be in the range of 0.35 to 0.50 volts. Oxidation potential is 0.35
If it is smaller than volt, the dark decay of the laminated photoreceptor will increase regardless of the type of charge transport material. Furthermore, it was found that when the oxidation potential of the cyanine dye exceeds 0.50 volts, the sensitivity of the laminated photoreceptor decreases significantly, regardless of the type of charge transport material. This is thought to be because when the oxidation potential of the cyanine dye increases, the dye itself absorbs in the ultraviolet region and no longer has sensitivity in the visible region. On the other hand, for charge transport materials, the oxidation potential is 0.70
It turns out that it needs to be in the range below volts. It has been found that when the oxidation potential is greater than 0.70 volts, the sensitivity of the laminated photoreceptor deteriorates significantly, regardless of the type of cyanine dye used as the charge-generating material. From the above results, it was found that in order to obtain a highly sensitive multilayer photoreceptor, there is an optimum range for the oxidation potential values of the charge generating material and the charge transporting material as described above. Only when this condition is met, holes generated in the charge generation layer by light irradiation can be efficiently injected into the charge transport layer without being affected by the energy barrier at the interface between the charge generation layer and the charge transport layer. This is a reasonable result. Based on the above experimental results and considerations, the present invention has revealed for the first time a correlation between the combination of a charge generating material and a charge transporting material and sensitivity. The oxidation potential used for the charge generation layer in the present invention is 0.35.
Examples of cyanine dyes in the range of ~0.50 volt include compounds having the following compound numbers, structural formulas, and oxidation potentials. Next, in the present invention, the oxidation potential used for the charge transport layer is
Charge transport materials in the range below 0.70V include:
For example, the compounds shown below can be mentioned. The charge generation layer used in the present invention can be formed by dispersing one or more cyanine dyes as the charge generation substance used in the present invention in a suitable binder and coating the mixture. It can also be obtained by forming a vapor deposited film using a vacuum evaporation device. Binders that can be used to form the charge generating layer by coating can be selected from a wide range of insulating resins, as well as organic photoconductive polymers such as poly-N-vinylcarbazole, polyvinylanthracene, and polyvinylpyrene. You can choose from. Preferably, polyvinyl butyral, polyarylate (condensation polymer of bisphenol A and phthalic acid, etc.), polycarbonate, polyester, phenoxy resin, polyvinyl acetate, acrylic resin, polyacrylamide resin, polyamide, polyvinylpyridine, cellulose resin, urethane Examples include insulating resins such as resin, epoxy resin, casein, polyvinyl alcohol, and polyvinylpyrrolidone. The resin contained in the charge generation layer is suitably 80% by weight or less, preferably 40% by weight or less.
Organic solvents used during coating include alcohols such as methanol, ethanol, and isopropanol, ketones such as acetone, methyl ethyl ketone, and cycloexanone, and amides such as N,N-dimethylformamide and N,N-dimethylacetamide. , sulfoxides such as dimethyl sulfoxide, ethers such as tetrahydrofuran, dioxane, and ethylene glycol monomethyl ether, esters such as methyl acetate and ethyl acetate, and aliphatics such as chloroform, methylene chloride, dichloroethylene, carbon tetrachloride, and trichloroethylene. Halogenated hydrocarbons or aromatics such as benzene, toluene, xylene, ligroin, monochlorobenzene, dichlorobenzene, etc. can be used. Coating can be carried out using coating methods such as dip coating, spray coating, spinner coating, bead coating, Meyer bar coating, blade coating, roller coating, and curtain coating. The charge generation layer contains as much of the organic photoconductor as possible in order to obtain sufficient absorbance and is preferably a thin film layer, for example less than 5 microns, in order to shorten the range of the generated charge carriers. teeth
A thin film layer having a thickness of 0.01 micron to 1 micron is preferable. This means that most of the incident light is absorbed by the charge generation layer and generates a large number of charge carriers, and that the generated charge carriers are not deactivated by recombination or trapping, and the charge transport layer This is due to the need to inject. The charge transport layer used in the present invention can be formed by forming a film using one or more of the charge transport substances used in the present invention. When the charge transport material does not have film-forming properties,
A film can be formed by selecting an appropriate binder. Resins that can be used as binders are:
For example, insulating resins such as acrylic resin polyarylate, polyester, polycarbonate, polystyrene, acrylonitrile-styrene copolymer, acrylonitrile-butadiene, copolymer, polyvinyl butyral, polyvinyl formal, polysulfone, polyacrylamide, polyamide, chlorinated rubber, or poly-N- Organic photoconductive polymers such as vinylcarbazole, polyvinylanthracene, polyvinylpyrene and the like may be mentioned. Since the charge transport layer has a limit in its ability to transport charge carriers, it cannot be made thicker than necessary. Typically it is between 5 microns and 30 microns, with a preferred range between 8 microns and 20 microns. When forming the charge transport layer by coating, an appropriate coating method as described above can be used. A photosensitive layer having such a laminated structure of a charge generation layer and a charge transport layer in an arbitrary layer order is provided on a conductive support comprising, for example, a base having a conductive layer.
As the substrate having the conductive layer, materials that are conductive themselves such as aluminum, aluminum alloy, copper, zinc, stainless steel, panadium, molybdenum, chromium, titanium, nickel, indium, gold, and platinum can be used. In addition, plastics (e.g., polyethylene, polypropylene, polyvinyl chloride, polyethylene terephthalate, (acrylic resin, polyethylene fluoride, etc.)
A substrate in which conductive particles (e.g., carbon black, silver particles, etc.) are coated on plastic together with a suitable binder, a substrate in which plastic or paper is impregnated with conductive particles, a plastic containing a conductive polymer, etc. can be used. . A subbing layer having barrier and adhesive functions can also be provided between the conductive layer and the photosensitive layer. The subbing layer is made of casein, polyvinyl alcohol, nitrocellulose, ethylene-acrylic acid copolymer, polyamide (nylon 6, nylon 66, nylon
610, copolymerized nylon, alkoxymethylated nylon, etc.), polyurethane, gelatin, aluminum oxide, etc. The thickness of the undercoat layer is 0.1 micron to 5 micron.
Preferably, 0.5 micron to 3 micron is appropriate. The electrophotographic photoreceptor provided by the present invention can be used not only in electrophotographic copying machines, but also in a wide range of electrophotographic applications such as laser printers and CRT printers. Further, the charge generating material and the charge transporting material used in the present invention can be used not only in the above-mentioned electrophotographic photoreceptor but also in solar cells and optical sensors. Solar cells can be prepared, for example, by sandwiching the aforementioned organic photoconductors with indium oxide and aluminum. EXAMPLES Next, the present invention will be explained with reference to Examples, but the present invention is not limited to these in any way. Examples 1 to 64 Eight types of cyanine dyes as charge generating materials according to the present invention and eight types of charge transport materials according to the present invention exemplified above were used in combination with each other, and 64 types were obtained. An electrophotographic photoreceptor was fabricated. That is, first, 5 g of each of the cyanine dyes of Compound No. A charge generation layer was formed by coating on a sheet and having a thickness of 0.1 micron after drying. Next, 5 g of each of the charge transport materials of Compounds Nos. (18) to (25) exemplified above and a styrene-acrylic resin (trade name: Nippon Steel Chemical MS) as a binder were added.
-200) at a weight ratio of 0.95:1, and a 20% by weight solution of monochlorobenzene is applied onto the charge generation layer to a dry film thickness of 16 microns to form a charge transport layer. did. The 64 types of electrophotographic photoreceptors created in this way were tested using an electrostatic copying paper tester Model SP- manufactured by Kawaguchi Electric Co., Ltd.
428 using a dynamic method to charge a negative corona, hold it for 1 second in a dark place, and then
It was exposed to light for 4 seconds at lux, and its charging characteristics were examined. As for the charging characteristics, measure the surface position and the exposure amount (E 1/2 ) (lux・sec) required to attenuate the potential (V O = 600 volts) to 1/2 when dark decayed for 1 second. did. The residual potential (V R ) after exposure at 1.5 lux·sec was also measured. The results of the photoreceptor obtained by the above method are summarized in Table 1. The numbers in [ ] in Table 1 indicate V R (volts).

【表】 尚、この表で太枠 で囲繞された部分が本発
明範囲内の電子写真感光体であり、*は暗減衰が
大きい(200ボルト以上)ことを表わし、−は感度
を有しないことを表わしたものである。 第1表の結果より、電荷発生材料のシアニン色
素の酸化電位が0.35〜0.50ボルトの範囲にあり、
電荷輸送材料の酸化電位が0.70ボルトを超える範
囲である、それぞれの化合物を組み合わせて用い
た本発明の電子写真感光体が、残留電位も少な
く、高感度であることがわかる。 実施例 65 本実施例で用いた電荷発生材料は前記例示化合
物No.(4)、電荷輸送材料は、前記例示化合物No.(20)の
組合せで全く実施例1〜64と同様の方法で感光体
を作成した。但し、本実施例では、アルミシート
上に、まず電荷輸送層を形成し、その後、電荷輸
送層の上に電荷発生層を積層して、プラスコロナ
帯電特性を測定した。その結果を第2表に示す。
[Table] In this table, the area surrounded by a thick frame is the electrophotographic photoreceptor within the scope of the present invention, * indicates large dark decay (200 volts or more), and - indicates no sensitivity. It represents. From the results in Table 1, the oxidation potential of the cyanine dye of the charge generating material is in the range of 0.35 to 0.50 volts,
It can be seen that the electrophotographic photoreceptor of the present invention using a combination of the respective compounds in which the oxidation potential of the charge transport material is in a range exceeding 0.70 volts has a low residual potential and high sensitivity. Example 65 The charge-generating material used in this example was the above-mentioned exemplified compound No. (4), and the charge-transporting material was the above-mentioned exemplified compound No. (20), and was photosensitive in the same manner as in Examples 1 to 64. Created a body. However, in this example, a charge transport layer was first formed on an aluminum sheet, and then a charge generation layer was laminated on the charge transport layer, and the positive corona charging characteristics were measured. The results are shown in Table 2.

【表】 第2表には、実施例1〜64で示した同一の材料
の組み合わせの帯電感光体の特性もあわせて示
した。 本実施例の結果により、電荷発生層と電荷輸送
層の積層順序にかかわらず、特許請求の範囲を満
たす材料を組み合わせて用いれば高感度な感光体
を得ることができる。 実施例 66 前記例示化合物No.(9)のシアニン色素5gと、ブ
チラール樹脂(ブチラール化度63モル%)2gを
イソプロピルアルコール95mlで溶かした溶液と共
にサンドミル分散した後アルミシート上に塗工
し、乾燥後の膜厚が0.2ミクロンとなる電荷発生
層を形成した。 次いで、前記例示化合物No.(26)の電荷輸送材料
5gとポリアリレート樹脂(ビスフエノールAと
テレフタル酸−イソフタル酸の縮重合体)5gを
テトラヒドロフラン70mlに溶かした液を電荷発生
層の上に乾燥後の膜厚が15ミクロンとなる様に塗
布し、乾燥して電荷輸送層を形成した。 こうして作成した感光体の帯電特性を実施例1
〜64と同様の方法によつて測定し次の結果を得
た。
[Table] Table 2 also shows the characteristics of the charged photoreceptors made of the same material combinations shown in Examples 1 to 64. The results of this example show that regardless of the order in which the charge generation layer and the charge transport layer are stacked, a highly sensitive photoreceptor can be obtained by using a combination of materials that meet the scope of the claims. Example 66 5 g of the cyanine dye of Exemplified Compound No. (9) and 2 g of butyral resin (degree of butyralization 63 mol%) were dispersed in a sand mill with a solution of 95 ml of isopropyl alcohol, then coated on an aluminum sheet and dried. A charge generation layer with a subsequent thickness of 0.2 microns was formed. Next, a solution prepared by dissolving 5 g of the charge transport material of Exemplary Compound No. (26) and 5 g of polyarylate resin (condensation polymer of bisphenol A and terephthalic acid-isophthalic acid) in 70 ml of tetrahydrofuran was dried on the charge generating layer. It was coated to a final film thickness of 15 microns and dried to form a charge transport layer. Example 1 Charging characteristics of the photoreceptor thus prepared
~64 was measured using the same method as above, and the following results were obtained.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、電荷発生材料と電荷輸送材料
との組合せを最適化することにより、積層型感光
体においても、より高感度の電子写真感光体を提
供することができる。
According to the present invention, by optimizing the combination of a charge generating material and a charge transporting material, an electrophotographic photoreceptor with higher sensitivity can be provided even in a laminated type photoreceptor.

Claims (1)

【特許請求の範囲】[Claims] 1 導電性支持体上に電荷発生層及び電荷輸送層
を有する電子写真感光体において、前記電荷発生
層が電荷発生材料として0.35〜0.50ボルトの酸化
電位を有するシアニン色素を含む層から成り、前
記電荷輸送層が0.70ボルト以下の酸化電位を有す
る電荷輸送材料を含む層から成ることを特徴とす
る電子写真感光体。
1. In an electrophotographic photoreceptor having a charge generation layer and a charge transport layer on a conductive support, the charge generation layer is composed of a layer containing a cyanine dye having an oxidation potential of 0.35 to 0.50 volts as a charge generation material, and An electrophotographic photoreceptor, wherein the transport layer comprises a layer containing a charge transport material having an oxidation potential of 0.70 volts or less.
JP3667685A 1985-02-27 1985-02-27 Electrophotographic sensitive body Granted JPS61198160A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3667685A JPS61198160A (en) 1985-02-27 1985-02-27 Electrophotographic sensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3667685A JPS61198160A (en) 1985-02-27 1985-02-27 Electrophotographic sensitive body

Publications (2)

Publication Number Publication Date
JPS61198160A JPS61198160A (en) 1986-09-02
JPH0513509B2 true JPH0513509B2 (en) 1993-02-22

Family

ID=12476454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3667685A Granted JPS61198160A (en) 1985-02-27 1985-02-27 Electrophotographic sensitive body

Country Status (1)

Country Link
JP (1) JPS61198160A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6435449A (en) * 1987-07-31 1989-02-06 Mita Industrial Co Ltd Positively chargeable organic laminated photosensitive body and production thereof
JP2746299B2 (en) * 1988-05-13 1998-05-06 キヤノン株式会社 Electrophotographic photoreceptor
JP2683053B2 (en) * 1988-08-31 1997-11-26 キヤノン株式会社 Electrophotographic photoreceptor
JP2683054B2 (en) * 1988-08-31 1997-11-26 キヤノン株式会社 Electrophotographic photoreceptor

Also Published As

Publication number Publication date
JPS61198160A (en) 1986-09-02

Similar Documents

Publication Publication Date Title
JPH0513509B2 (en)
EP0585697B1 (en) Electrophotographic photoreceptors
JPH01230053A (en) Electrophotographic sensitive body containing compound having hindered phenol structure
JPH0513510B2 (en)
JPH0513512B2 (en)
JP2898685B2 (en) Electrophotographic photoreceptor
JPH01230052A (en) Electrophotographic sensitive body containing compound having hindered phenol structure
JP2568681B2 (en) Electrophotographic photoreceptor and resin composition for electrophotographic photoreceptor
JP2568679B2 (en) Electrophotographic photoreceptor and resin composition for electrophotographic photoreceptor
JPS60177346A (en) Lamination type electrophotographic sensitive body
JPS60177358A (en) Laminated type electrophotographic sensitive body and electrophotography
JPS627056A (en) Electrophotographic sensitive body
JPS61179453A (en) Electrophotographic sensitive body
JPS627054A (en) Electrophotographic sensitive body
JPS6214656A (en) Electrophotographic sensitive body
JPH036569A (en) Electrophotographic sensitive body
JPS60177344A (en) Lamination type electrophotographic sensitive body
JPS61173257A (en) Electrophotographic sensitive body
JPS61189547A (en) Electrophotographic sensitive body
JPS63153553A (en) Electrophotographic sensitive body
JPS60177355A (en) Electrophotographic sensitive body
JPS61189554A (en) Electrophotographic sensitive body
JPS61184549A (en) Electrophotographic sensitive body
JPS61294447A (en) Electrophotographic sensitive body
JPS61292148A (en) Electrophotographic sensitive body