JPH0513399B2 - - Google Patents
Info
- Publication number
- JPH0513399B2 JPH0513399B2 JP60287162A JP28716285A JPH0513399B2 JP H0513399 B2 JPH0513399 B2 JP H0513399B2 JP 60287162 A JP60287162 A JP 60287162A JP 28716285 A JP28716285 A JP 28716285A JP H0513399 B2 JPH0513399 B2 JP H0513399B2
- Authority
- JP
- Japan
- Prior art keywords
- optical
- wavelength
- section
- output
- optical frequency
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000003287 optical effect Effects 0.000 claims description 241
- 230000010355 oscillation Effects 0.000 claims description 35
- 241001417527 Pempheridae Species 0.000 claims description 21
- 230000003321 amplification Effects 0.000 claims description 21
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 21
- 238000001514 detection method Methods 0.000 claims description 19
- 238000006243 chemical reaction Methods 0.000 claims description 5
- 238000000862 absorption spectrum Methods 0.000 claims description 3
- 238000010521 absorption reaction Methods 0.000 description 32
- 238000010586 diagram Methods 0.000 description 18
- 210000004027 cell Anatomy 0.000 description 12
- 239000004065 semiconductor Substances 0.000 description 10
- 239000011248 coating agent Substances 0.000 description 7
- 238000000576 coating method Methods 0.000 description 7
- 238000010408 sweeping Methods 0.000 description 7
- 239000013078 crystal Substances 0.000 description 6
- 230000008859 change Effects 0.000 description 5
- 230000001427 coherent effect Effects 0.000 description 5
- 238000000034 method Methods 0.000 description 4
- 238000010897 surface acoustic wave method Methods 0.000 description 4
- 238000004891 communication Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 230000003595 spectral effect Effects 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N titanium dioxide Inorganic materials O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 3
- 229910013641 LiNbO 3 Inorganic materials 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229940125730 polarisation modulator Drugs 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 238000004847 absorption spectroscopy Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000002223 garnet Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- MTRJKZUDDJZTLA-UHFFFAOYSA-N iron yttrium Chemical compound [Fe].[Y] MTRJKZUDDJZTLA-UHFFFAOYSA-N 0.000 description 1
- GQYHUHYESMUTHG-UHFFFAOYSA-N lithium niobate Chemical compound [Li+].[O-][Nb](=O)=O GQYHUHYESMUTHG-UHFFFAOYSA-N 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000009022 nonlinear effect Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 210000004694 pigment cell Anatomy 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/06—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
- H01S5/068—Stabilisation of laser output parameters
- H01S5/0683—Stabilisation of laser output parameters by monitoring the optical output parameters
- H01S5/0687—Stabilising the frequency of the laser
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J9/00—Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength
- G01J9/04—Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength by beating two waves of a same source but of different frequency and measuring the phase shift of the lower frequency obtained
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/11—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on acousto-optical elements, e.g. using variable diffraction by sound or like mechanical waves
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2/00—Demodulating light; Transferring the modulation of modulated light; Frequency-changing of light
- G02F2/002—Demodulating light; Transferring the modulation of modulated light; Frequency-changing of light using optical mixing
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/501—Structural aspects
- H04B10/506—Multiwavelength transmitters
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/572—Wavelength control
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/28—Investigating the spectrum
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
- H01S3/13—Stabilisation of laser output parameters, e.g. frequency or amplitude
- H01S3/1303—Stabilisation of laser output parameters, e.g. frequency or amplitude by using a passive reference, e.g. absorption cell
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Nonlinear Science (AREA)
- Optics & Photonics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Semiconductor Lasers (AREA)
Description
【発明の詳細な説明】
≪産業上の利用分野≫
本発明は、周波数、位相、振幅および偏光を制
御したコヒーレント光を発生する光周波数シンセ
サイザ・スイーパに関する。DETAILED DESCRIPTION OF THE INVENTION <<Industrial Application>> The present invention relates to an optical frequency synthesizer/sweeper that generates coherent light with controlled frequency, phase, amplitude, and polarization.
≪従来の技術≫
従来の波長掃引機能を備えたレーザ光源として
は次のようなものがある(第12図、第13図)。<<Prior Art>> Conventional laser light sources with a wavelength sweeping function include the following (FIGS. 12 and 13).
イ 半導体レーザの波長の温度特性を利用するも
ので、レーザダイオードの温度を変えて波長を
掃引するもの。第12図はその原理を示す説明
図で、恒温槽TBを温度制御手段TCで制御す
ることにより、レーザダイオードLDの出力波
長を掃引する。掃引幅は数10nmである。B. It uses the temperature characteristics of the wavelength of a semiconductor laser, and sweeps the wavelength by changing the temperature of the laser diode. FIG. 12 is an explanatory diagram showing the principle, in which the output wavelength of the laser diode LD is swept by controlling the constant temperature bath TB with the temperature control means TC. The sweep width is several tens of nanometers.
ロ 色素レーザのゲイン幅が広いことを利用し、
共振器内のプリズムを回転して発振波長を掃引
するもの。第13図において、Mはミラー、
CCは色素セル、Lはレンズ、Pはプリズム、
HMはハーフミラーである。掃引幅はおよそ
100nmである。(b) Taking advantage of the wide gain range of the dye laser,
A device that sweeps the oscillation wavelength by rotating the prism inside the resonator. In FIG. 13, M is a mirror;
CC is a pigment cell, L is a lens, P is a prism,
HM is a half mirror. The sweep width is approx.
It is 100nm.
≪発明が解決しようとする問題点≫
しかしながら、上記のような構成の可変波長レ
ーザ光源では、波長精度がせいぜい1nm(300G
Hz)と悪いという欠点がある。将来のコヒーレン
ト光通信分野や光応用計測分野ではMHz以下の精
度での周波数測定が必要とされるので、上記の光
源はコヒーレント光計測器には使用できない。≪Problems to be solved by the invention≫ However, with the tunable wavelength laser light source configured as above, the wavelength accuracy is at most 1 nm (300G
Hz). In the field of coherent optical communication and applied optical measurement in the future, frequency measurement with an accuracy of MHz or less will be required, so the above light sources cannot be used in coherent optical measuring instruments.
本発明はこのような問題点を解決するためにな
されたもので、光周波数が高精度、高安定かつ高
スペクトル純度のコヒーレント光出力が得られる
光周波数シンセサイザ・スイーパを実現すること
を目的とする。 The present invention was made to solve these problems, and an object of the present invention is to realize an optical frequency synthesizer/sweeper that can obtain a coherent optical output with high optical frequency accuracy, high stability, and high spectral purity. .
≪問題点を解決するための手段≫
本発明の第1の発明に係る光周波数シンセサイ
ザ・スイーパは基準波長光源部と、この基準波長
光源部の発振波長に対応する波長に光出力の波長
を制御する光周波数PLL部とを備えたことを特
徴とする。<<Means for Solving the Problems>> The optical frequency synthesizer sweeper according to the first aspect of the present invention includes a reference wavelength light source section and controls the wavelength of the optical output to a wavelength corresponding to the oscillation wavelength of the reference wavelength light source section. It is characterized by comprising an optical frequency PLL section.
本発明の第2の発明に係る光周波数シンセサイ
ザ・スイーパは基準波長光源部と、この基準波長
光源部の発振波長に対応する波長に光出力の波長
を制御する光周波数PLL部と、この光周波数
PLL部の出力光を変調する光変調部と、この光
変調部の出力光を増幅する光増幅部とを備えたこ
とを特徴とする。 The optical frequency synthesizer sweeper according to the second aspect of the present invention includes a reference wavelength light source section, an optical frequency PLL section that controls the wavelength of the optical output to a wavelength corresponding to the oscillation wavelength of the reference wavelength light source section, and the optical frequency
It is characterized by comprising an optical modulation section that modulates the output light of the PLL section, and an optical amplification section that amplifies the output light of the optical modulation section.
≪作用≫
上記のような構成の光周波数シンセサイザ・ス
イーパによれば、光周波数PLLの原理により、、
前記光周波数PLL部の光出力の波長を可変とす
ることができる。<<Operation>> According to the optical frequency synthesizer/sweeper configured as above, based on the principle of optical frequency PLL,
The wavelength of the optical output of the optical frequency PLL section can be made variable.
≪実施例≫ 以下本発明を図面を用いて詳しく説明する。≪Example≫ The present invention will be explained in detail below using the drawings.
第1図は本発明に係る光周波数シンセサイザ・
スイーパの一実施例を示す構成ブロツク図であ
る。1は波長を安定化された基準波長光源部、2
はこの基準波長光源部1の出力光を入力する光周
波数PLL部、3はこの光周波数PLL部2の出力
光を変調する光変調部、4はこの光変調部3の出
力光を増幅する光増幅部である。光周波数PLL
部2において、21は基準波長光源部1の出力光
を一方の入力とする光ヘテロダイン検波部、22
はこの光ヘテロダイン検波部21の出力により出
力光の発振波長を制御される可変波長光源部、2
3はこの可変波長光源部22の出力光の周波数を
シフトする光周波数シフタ部、24はこの光周波
数シフタ部23の出力光の周波数を逓倍するとと
もにその出力光を前記光ヘテロダイン検波部21
の他方の入力とする光周波数逓倍部である。ここ
で光周波数シフタ部23および光周波数逓倍部2
4は、可変波長光源部22の出力光に関連する光
を入射してその光周波数を他の光周波数に変換す
る光周波数変換部を構成する。 FIG. 1 shows an optical frequency synthesizer according to the present invention.
1 is a configuration block diagram showing an embodiment of a sweeper. FIG. 1 is a reference wavelength light source unit whose wavelength is stabilized; 2
3 is an optical frequency PLL section that inputs the output light of this reference wavelength light source section 1, 3 is an optical modulation section that modulates the output light of this optical frequency PLL section 2, and 4 is a light that amplifies the output light of this optical modulation section 3. This is the amplification section. optical frequency PLL
In the section 2, 21 is an optical heterodyne detection section whose one input is the output light of the reference wavelength light source section 1;
2 is a variable wavelength light source section whose oscillation wavelength of output light is controlled by the output of the optical heterodyne detection section 21;
3 is an optical frequency shifter section that shifts the frequency of the output light of this variable wavelength light source section 22; 24 is an optical frequency shifter section that multiplies the frequency of the output light of this optical frequency shifter section 23 and transmits the output light to the optical heterodyne detection section 21;
This is an optical frequency multiplier that takes the other input as the other input. Here, the optical frequency shifter section 23 and the optical frequency multiplier section 2
Reference numeral 4 constitutes an optical frequency conversion section that inputs light related to the output light of the variable wavelength light source section 22 and converts the optical frequency to another optical frequency.
このような構成の装置の動作を次に説明する。
基準波長光源部1の出力光が光周波数PLL部2
に入力すると、光周波数PLL部2は基準波長光
源部1の発振波長に対応する波長にその光出力の
波長を固定(ロツク)する。すなわち光ヘテロダ
イン検波部21は基準波長光源部1からの出力光
と光周波数逓倍部24の出力光を比較して、その
差が小さくなるように可変波長光源部22を制御
する。フイードバツク回路における光周波数シフ
タ部23は可変波長光源部22の出力光にオフセ
ツト周波数を加え、光周波数逓倍部24は可変波
長光源部22の出力光周波数と基準波長光源部1
の出力光周波数の比を定める。光変調部3は光周
波数PLL部2の出力光を変調し、光増幅部4は
この光変調部の出力光を増幅して光周波数シンセ
サイザ・スイーパの出力を発生する。 The operation of the device having such a configuration will be explained next.
The output light of the reference wavelength light source section 1 is transmitted to the optical frequency PLL section 2.
, the optical frequency PLL section 2 fixes (locks) the wavelength of its optical output to the wavelength corresponding to the oscillation wavelength of the reference wavelength light source section 1. That is, the optical heterodyne detection section 21 compares the output light from the reference wavelength light source section 1 and the output light from the optical frequency multiplication section 24, and controls the variable wavelength light source section 22 so that the difference between them becomes small. The optical frequency shifter section 23 in the feedback circuit adds an offset frequency to the output light of the variable wavelength light source section 22, and the optical frequency multiplier section 24 adds an offset frequency to the output light frequency of the variable wavelength light source section 22 and the reference wavelength light source section 1.
Determine the ratio of the output optical frequencies. The optical modulation section 3 modulates the output light of the optical frequency PLL section 2, and the optical amplification section 4 amplifies the output light of this optical modulation section to generate the output of the optical frequency synthesizer sweeper.
第2図は本発明の第2の実施例で、第1図の構
成をさらに具体化したものの構成ブロツク図であ
る。基準波長光源部1において、LD1はレーザ
ダイオード、CLはRbガスまたはCsガスが封入さ
れ前記レーザダイオードLD1の出力光を入射す
る吸収セル、HM1はこの吸収セルCLの出力光
が入射するハーフミラー、PD1はこのハーフミ
ラーHM1の反射光を入力するフオトダイオー
ド、A1はこのフオトダイオードPD1の電気出
力を入力しこれに対応する出力で前記レーザダイ
オードLD1の電流を制御する制御回路、IS1は
前記ハーフミラーHM1の透過光が通過する戻り
光防止用のアイソレータ、OA1はこのアイソレ
ータIS1を通過した光が入力する光増幅素子であ
る。光周波数PLL部2において、HM2は前記基
準波長光源部1の出力光を入射するハーフミラ
ー、PD2は光ヘテロダイン検波部21を構成し
前記ハーフミラーHM2の透過光を入力するPIN
フオトダイオードやアバランシエダイオードなど
からなるフオトダイオード、ECは水晶などから
基準周波数を入力して所定の周波数の電気信号を
発生する発振器、MX1はこの発振器ECの電気
出力と前記光ヘテロダイン検波部PD2の電気出
力が接続するミキサ(混合)回路である。このミ
キサ(混合)回路MX1の出力が接続する可変波
長光源部22において、FCは前記ミキサ回路
MX1の出力が接続する光周波数変調回路、VL
1〜VL3はこの光周波数変調回路FCの出力を入
力する可変波長レーザダイオード、IS2はYIG
(イツトリウム・アイアン・ガーネツト)で構成
され前記可変波長レーザダイオードVL1〜VL3
の出力光が通過するアイソレータ、OS1は複数
(第2図では3つ)のアイソレータIS2を通過し
た光が入射する光スイツチである。HM3はこの
光スイツチOS1の出力光が入射するハーフミラ
ー、OA2はこのハーフミラーHM3の反射光を
入力する光増幅素子、UM1は光周波数シフタ部
23を構成し前記光増幅素子OA2の出力光を入
力する超音波変調器、NLは光周波数逓倍部を構
成しこの光周波数シフタ部の出力光を入力する非
線形材料を用いた光導波路、OA3はこの光導波
路NLの出力光を増幅する光増幅素子である。前
記光周波数PLL部2の出力光を入射する光変調
部3において、AM1,PM1はLiNbO3などの
電気光学結晶を用いたそれぞれ振幅変調器および
位相変調器、LM1はYIGなどの磁気光学結晶を
用いた偏光変調器である。OA4は光増幅部4を
構成し、光変調部3の出力光を増幅する光増幅素
子である。 FIG. 2 is a block diagram showing a second embodiment of the present invention, which is a further embodiment of the configuration shown in FIG. In the reference wavelength light source section 1, LD1 is a laser diode, CL is an absorption cell filled with Rb gas or Cs gas and receives the output light of the laser diode LD1, HM1 is a half mirror into which the output light of the absorption cell CL enters; PD1 is a photodiode that inputs the reflected light of this half mirror HM1, A1 is a control circuit that inputs the electric output of this photodiode PD1 and controls the current of the laser diode LD1 with the corresponding output, IS1 is the half mirror An isolator for preventing return light, OA1, through which the light transmitted through HM1 passes, is an optical amplification element into which the light that has passed through this isolator IS1 is input. In the optical frequency PLL section 2, HM2 is a half mirror into which the output light of the reference wavelength light source section 1 is input, and PD2 is a PIN which constitutes the optical heterodyne detection section 21 and inputs the transmitted light of the half mirror HM2.
A photodiode consisting of a photodiode or an avalanche diode, EC is an oscillator that generates an electrical signal of a predetermined frequency by inputting a reference frequency from a crystal, etc., and MX1 is a combination of the electrical output of this oscillator EC and the optical heterodyne detector PD2. It is a mixer (mixing) circuit to which the electrical output is connected. In the variable wavelength light source section 22 to which the output of the mixer (mixing) circuit MX1 is connected, FC is connected to the mixer circuit MX1.
Optical frequency modulation circuit, VL, to which the output of MX1 is connected
1 to VL3 are variable wavelength laser diodes that input the output of this optical frequency modulation circuit FC, and IS2 is a YIG
(yttrium iron garnet) and the variable wavelength laser diodes VL1 to VL3
The isolator OS1 through which the output light of is passed is an optical switch through which the light that has passed through a plurality of (three in FIG. 2) isolators IS2 is incident. HM3 is a half mirror into which the output light of this optical switch OS1 enters, OA2 is an optical amplification element into which the reflected light of this half mirror HM3 is input, and UM1 constitutes an optical frequency shifter section 23, which converts the output light of the optical amplification element OA2. The input ultrasonic modulator, NL is an optical waveguide using a nonlinear material that constitutes an optical frequency multiplier and inputs the output light of this optical frequency shifter, and OA3 is an optical amplification element that amplifies the output light of this optical waveguide NL. It is. In the optical modulation section 3 into which the output light of the optical frequency PLL section 2 is input, AM1 and PM1 are amplitude modulators and phase modulators using electro-optic crystals such as LiNbO 3 , respectively, and LM1 is a magneto-optic crystal such as YIG. This is the polarization modulator used. OA 4 is an optical amplification element that constitutes the optical amplification section 4 and amplifies the output light of the optical modulation section 3 .
このような構成の装置の動作を次に詳しく説明
する。 The operation of the apparatus having such a configuration will be described in detail below.
基準波長光源部1は以下に述べるように、Rb
(またはCs)原子の吸収線にレーザダイオードの
発振波長を制御して絶対波長で高精度、高安定化
(10-12以上)するものである。レーザダイオード
LD1の出力光は、吸収セルCLを通過する際に
LD1の出力光の波長がRbガス(またはCsガス)
の吸収線と一致すると吸収され、第3図Aの特性
曲線図に示すような吸収特性が現れる。第4図は
Rbガスのエネルギー準位を示す説明図で、Rbの
吸収線はD2線が780nm、D1線が795nmであり、
2逓倍するとそれぞれ1560nm、1590nmとなり、
光フアイバ通信波長である1500nm帯と一致する
ので都合がよい。これはまた光反応計測の分野に
も使いやすい波長域である。吸収セルCLの出力
光の内ハーフミラーHM1で反射された部分は光
検出器PD1で検出され、光検出器PD1の出力に
対応して制御回路A1でレーザダイオードLD1
の電流を制御することにより、吸収中心にLD1
の出力波長をロツクする。例えば、第3図Aのa
点にロツクしたい場合、制御回路A1でロツクイ
ンアンプなどを用いて第3図Aの微分波形である
第3図Bのb点(微分波形値が0となる点)に固
定する。この方法は線形吸収法とよばれ、第3図
Aのように吸収スペクトルが太くなるが、飽和吸
収法(堀、門田、北野、薮崎、小川:飽和吸収分
光を用いた半導体レーザの周波数安定化、信学技
報 OQE82−116)によりドツプラシフトで隠れ
ている超微細構造の吸収線を検出して、これにレ
ーザダイオードLD1の発振波長をロツクすれば
さらに高安定となる。なおレーザダイオードLD
1は恒温槽で温度安定化されている。ハーフミラ
ーHM1を透過した光はアイソレータIS1に入射
する。アイソレータIS1は、外部からの反射によ
る戻り光がレーザダイオードLD1に入つてノイ
ズとなることを防止する。アイソレータIS1の出
力光は必要に応じて光増幅素子OA1で増幅され
る。 The reference wavelength light source section 1 has Rb as described below.
(or Cs) atomic absorption line to control the oscillation wavelength of the laser diode to achieve high precision and high stability (10 -12 or more) at the absolute wavelength. laser diode
When the output light of LD1 passes through the absorption cell CL,
The wavelength of the output light of LD1 is Rb gas (or Cs gas)
When the absorption line coincides with the absorption line of , it is absorbed, and an absorption characteristic as shown in the characteristic curve diagram of FIG. 3A appears. Figure 4 is
This is an explanatory diagram showing the energy level of Rb gas. The absorption lines of Rb are the D2 line at 780nm and the D1 line at 795nm.
When multiplied by 2, they become 1560nm and 1590nm, respectively.
This is convenient because it coincides with the 1500 nm band, which is the optical fiber communication wavelength. This is also a wavelength range that is easy to use in the field of photoreaction measurement. The part of the output light from the absorption cell CL that is reflected by the half mirror HM1 is detected by the photodetector PD1, and the control circuit A1 switches the laser diode LD1 in response to the output of the photodetector PD1.
By controlling the current of LD1 at the absorption center
locks the output wavelength of For example, a in Figure 3A
If it is desired to lock to a point, the control circuit A1 uses a lock-in amplifier or the like to fix it at point b (the point where the differential waveform value becomes 0) in FIG. 3B, which is the differential waveform in FIG. 3A. This method is called the linear absorption method, and the absorption spectrum becomes thicker as shown in Figure 3A. , IEICE Technical Report OQE82-116), detecting the absorption line of the ultrafine structure hidden by the Doppler shift and locking the oscillation wavelength of the laser diode LD1 to this will further increase stability. Furthermore, the laser diode LD
1 is temperature stabilized in a constant temperature bath. The light transmitted through the half mirror HM1 enters the isolator IS1. The isolator IS1 prevents return light due to reflection from the outside from entering the laser diode LD1 and causing noise. The output light of the isolator IS1 is amplified by the optical amplification element OA1 as necessary.
光周波数PLL部2は以下に述べるように、可
変波長光源部22の発振波長を、基準波長光源部
1の発振波長に対し所定の比および所定のオフセ
ツトを持つてロツクする機能を有する。基準波長
光源部1の出力光はハーフミラーHM2を透過し
て光ヘテロダイン検波部21のフオトダイオード
PD2に入射する。光周波数逓倍部24からのフ
イードバツク光も光増幅素子OA3を介してハー
フミラーHM2で反射した後フオトダイオード
PD2に入射する。基準波長光源部1の出力およ
びフイードバツク光の光周波数をそれぞれωs、
ω1とすると、光ヘテロダイン検波部21の出力
電気信号の周波数ω2はω2=|ωs−ω1|となる。
発振器ECの出力周波数をω3とすると、ミキサ回
路(位相検波回路)MX1の出力ω4は、光ヘテロ
ダイン検波部21の出力周波数ω2にオフセツト
周波数を加えられてω4=ω2−ω3となる。ミキサ
回路MX1の出力電気信号ω4は可変波長光源部2
2の光周波数変調回路FCに入力し、光周波数変
調回路FCはω4=0となるように可変波長レーザ
ダイオードVL1〜VL3の光周波数を制御する。
ここで可変波長レーザダイオードVL1〜VL3と
しては、レーザダイオードチツプ内に作り込んだ
回折格子からの反射を利用して共振器が構成され
回折格子のピツチで発振周波数が決まるため比較
的波長が安定なDFB(Distributed Feedback)レ
ーザやDBR(Distributed Bragg Reflector)レ
ーザの一種でADFB(Acoustic DFB)レーザ
(Yamanishi M、et.al.:GaAs Acoustic
Distributed Feedback Lasers、Jpn.J.Appl.
Phys.、Suppl.18−1、p.355、1979)と呼ばれる
ものを用いている。ADFBレーザはDBRレーザ
内の回折格子と直交して表面弾性波(SAW)を
発生させ、チツプ内に作りこんだ回折格子と
SAWとでブラツグ回折による光のリング共振器
を形成する。SAWの波長を掃引すると、リング
共振器の共振波長が変化し、発振波長を掃引する
ことができる。本実施例では発振波長を1560nm
帯としている。共振器長の長いDFB、DBRや
ADFBレーザは発振スペクトルが狭く、スペク
トル純度が良いという利点もある。1つの
ADFBレーザの可変波長範囲で不十分の場合は
第2図のように複数のADFBレーザVL1〜VL
3を用い、光スイツチや光合波器で切換えること
ができる。すなわち可変波長レーザダイオード
VL1〜VL3の出力光はそれぞれ戻り光防止用の
アイソレータIS2を介して光スイツチOS1に入
力し所定の可変波長範囲のものか選択される。光
スイツチOS1の出力光の一部はハーフミラー
HM3で反射され、光増幅素子OA2に入力する。 As described below, the optical frequency PLL section 2 has a function of locking the oscillation wavelength of the variable wavelength light source section 22 to the oscillation wavelength of the reference wavelength light source section 1 at a predetermined ratio and a predetermined offset. The output light of the reference wavelength light source section 1 is transmitted through the half mirror HM2 and is then sent to the photodiode of the optical heterodyne detection section 21.
It enters PD2. The feedback light from the optical frequency multiplier 24 is also reflected by the half mirror HM2 via the optical amplification element OA3, and then transmitted to the photodiode.
It enters PD2. The output of the reference wavelength light source section 1 and the optical frequency of the feedback light are respectively ω s ,
When ω 1 is assumed, the frequency ω 2 of the output electrical signal of the optical heterodyne detection section 21 becomes ω 2 =|ω s −ω 1 |.
When the output frequency of the oscillator EC is ω 3 , the output ω 4 of the mixer circuit (phase detection circuit) MX1 is obtained by adding an offset frequency to the output frequency ω 2 of the optical heterodyne detection section 21 to obtain ω 4 =ω 2 −ω 3 . becomes. The output electrical signal ω 4 of the mixer circuit MX1 is the variable wavelength light source section 2.
The optical frequency modulation circuit FC controls the optical frequencies of the variable wavelength laser diodes VL1 to VL3 so that ω 4 =0.
Here, for the variable wavelength laser diodes VL1 to VL3, a resonator is constructed using reflection from a diffraction grating built into the laser diode chip, and the oscillation frequency is determined by the pitch of the diffraction grating, so the wavelength is relatively stable. ADFB (Acoustic DFB) laser (Yamanishi M, et.al.: GaAs Acoustic) is a type of DFB (Distributed Feedback) laser and DBR (Distributed Bragg Reflector) laser.
Distributed Feedback Lasers, Jpn.J.Appl.
Phys., Suppl. 18-1, p. 355, 1979). The ADFB laser generates surface acoustic waves (SAW) perpendicular to the diffraction grating inside the DBR laser, and the diffraction grating built into the chip
A ring resonator of light is formed by Bragg diffraction with SAW. Sweeping the wavelength of the SAW changes the resonance wavelength of the ring resonator, making it possible to sweep the oscillation wavelength. In this example, the oscillation wavelength is 1560nm.
It is worn as an obi. DFB, DBR, etc. with long resonator length
ADFB lasers also have the advantage of having a narrow oscillation spectrum and good spectral purity. one
If the variable wavelength range of the ADFB laser is insufficient, use multiple ADFB lasers VL1 to VL as shown in Figure 2.
3 and can be switched using an optical switch or optical multiplexer. i.e. tunable laser diode
The output lights of VL1 to VL3 are each input to an optical switch OS1 via an isolator IS2 for preventing return light, and are selected from a predetermined variable wavelength range. A part of the output light of optical switch OS1 is a half mirror.
It is reflected by HM3 and input to optical amplification element OA2.
光増幅素子OA2の出力光は光周波数シフタ部
23に入力し、超音波変調器UM1に入射して
Braggのs次回折光を出力する。水晶発振器など
の基準周波数源から供給される超音波の周波数を
ω5とすると、回折光の光周波数はsω5だけシフト
する。 The output light of the optical amplification element OA2 is input to the optical frequency shifter section 23, and then input to the ultrasonic modulator UM1.
Outputs Bragg's s-order diffracted light. If the frequency of the ultrasonic wave supplied from a reference frequency source such as a crystal oscillator is ω5 , then the optical frequency of the diffracted light is shifted by sω5 .
光周波数シフタ部23の出力光は光周波数逓倍
部24に入射し非線形材料を用いた光導波路NL
で入力光の2次高調波を出力する。すなわち
1560nmの可変波長レーザダイオード出力を光増
幅器を介して入力し、2次高調波の780nmを出
力している。導波路として、ZnSの非線形薄膜お
よびTiO2の線形薄膜を用いた空気−TiO2−ZnS
−ガラスの4層スラブ光導波路を用いて、非線形
効果を効率良く起こしている。なおこの実施例で
は2次高調波を利用しているが、任意のn次高調
波を用いることができる。 The output light from the optical frequency shifter section 23 enters the optical frequency multiplier section 24 and is connected to an optical waveguide NL using a nonlinear material.
outputs the second harmonic of the input light. i.e.
The tunable wavelength laser diode output of 1560 nm is input through an optical amplifier, and the second harmonic of 780 nm is output. Air− TiO2 −ZnS using a nonlinear thin film of ZnS and a linear thin film of TiO2 as waveguides
-Using a four-layer glass slab optical waveguide, nonlinear effects are efficiently generated. Although this embodiment uses second-order harmonics, any n-order harmonics may be used.
光周波数逓倍部24の出力光は光増幅素子OA
3で増幅された後、前述のようにフイードバツク
光としてハーフミラーHM2で基準波長光源部1
からの出力光と合流する。 The output light of the optical frequency multiplier 24 is transmitted to the optical amplification element OA.
After being amplified in step 3, as described above, the reference wavelength light source unit 1 is sent to the half mirror HM2 as feedback light.
It merges with the output light from.
以上の動作により、光周波数PLL部2の光出
力の光周波数ω0は
ω0=(ωs±ω3)/n±sω5
となる(ただし符号は同順でない)。ただし本実
施例では光周波数逓倍数n=2である。すなわち
ω0が絶対波長で高精度かつ高安定な光周波数ωs
に所定の比nを介してロツクし、さらに任意の周
波数ω3/nまたはω5だけオフセツトを持つた光
周波数となる。ω3またはω5を掃引すれば、高精
度の光周波数掃引が実現できる。ここでω3、ω5
は電気信号であるので、高精度、高安定性は容易
に得られる。 Through the above operation, the optical frequency ω 0 of the optical output of the optical frequency PLL unit 2 becomes ω 0 =(ω s ±ω 3 )/n±sω 5 (note that the signs are not in the same order). However, in this embodiment, the optical frequency multiplication number n=2. In other words, ω 0 is the absolute wavelength and a highly accurate and highly stable optical frequency ω s
It becomes an optical frequency that is locked by a predetermined ratio n and further offset by an arbitrary frequency ω 3 /n or ω 5 . By sweeping ω 3 or ω 5 , highly accurate optical frequency sweeping can be achieved. Here ω 3 , ω 5
Since is an electrical signal, high precision and high stability can be easily obtained.
光周波数PLL部2の光出力は光変調部3に入
力し、振幅変調器AM1で振幅変調され、位相変
調器PM1で位相を変調され、偏光変調器LM1
で偏光方向を変化される。光変調部3の光出力は
光増幅部4の光増幅素子OA4で増幅された後、
シンセサイザ出力となる。 The optical output of the optical frequency PLL section 2 is input to the optical modulation section 3, where it is amplitude modulated by the amplitude modulator AM1, phase modulated by the phase modulator PM1, and then modulated by the polarization modulator LM1.
The direction of polarization is changed by After the optical output of the optical modulator 3 is amplified by the optical amplifying element OA4 of the optical amplifying unit 4,
This is the synthesizer output.
上記の実施例において、光増幅素子OA1〜
OA4はGaAlAsレーザ(780nm帯)やInGaAsP
レーザ(1500nm帯)などで構成され、下記の3
方式のものを用いることができる。 In the above embodiment, the optical amplification elements OA1 to
OA4 uses GaAlAs laser (780nm band) or InGaAsP
Consists of lasers (1500nm band), etc., and the following three
A system can be used.
(イ) 共振器形半導体レーザ増幅器と呼ばれ、発振
閾値近傍のバイアス電流を流し、レーザダイオ
ードに信号光を入射して誘導放出により線形光
増幅を行うもの。(a) Called a resonator-type semiconductor laser amplifier, it conducts linear optical amplification through stimulated emission by passing a bias current near the oscillation threshold and inputting signal light into the laser diode.
(ロ) 光注入同期増幅器と呼ばれ、発振しているレ
ーザダイオードに信号光を入射して発振光の光
周波数および位相を制御するもの。(b) This is called an optical injection locked amplifier, which controls the optical frequency and phase of the oscillated light by inputting signal light into the oscillating laser diode.
(ハ) 進行波形レーザ増幅器と呼ばれ、レーザダイ
オード・チツプの両端面を無反射コートし、信
号光の通過のみで光増幅するもの。(c) It is called a traveling wave laser amplifier, and both ends of the laser diode chip are coated with anti-reflection coating, and light is amplified only by passing the signal light.
なお、上記の実施例において、光周波数シフタ
部23と光周波数逓倍部24の位置を入れ替え
て、光周波数PLL部2の光出力の周波数ω0を
ω0=(ωs±ω3±sω5)/n
としてもよい。 In the above embodiment, the positions of the optical frequency shifter section 23 and the optical frequency multiplier section 24 are swapped, and the frequency ω 0 of the optical output of the optical frequency PLL section 2 is changed to ω 0 =(ω s ±ω 3 ±sω 5 )/n.
また光周波数PLL部2において、ミキサ回路
MX1および光周波数シフタ部23はいずれもオ
フセツト周波数を加えるためのものであり、いず
れか一方を省略することもできる。 In addition, in the optical frequency PLL section 2, a mixer circuit
Both the MX1 and the optical frequency shifter section 23 are for adding an offset frequency, and either one can be omitted.
また光周波数PLL部2において、逓倍数nを
1とすれば光周波数逓倍部24を省略することが
できる。 Furthermore, in the optical frequency PLL section 2, if the multiplication number n is set to 1, the optical frequency multiplication section 24 can be omitted.
また上記の実施例では基準波長光源部において
RbまたはCsの吸収線を利用しているが、これら
に限らず、絶対波長で高精度、高安定線な任意の
吸収線例えばNH3やH2Oの吸収線(1500nm帯)
を用いることもできる。この場合には光周波数逓
倍部24は不要となる。公知のフアブリペロー共
振器を波長検出器として用いて波長安定化するこ
ともできるが、上記のような量子標準的な吸収線
を用いた方が特性が優れている。 In addition, in the above embodiment, in the reference wavelength light source section,
Although the absorption line of Rb or Cs is used, it is not limited to these, but any absorption line with high precision and high stability at the absolute wavelength, such as the absorption line of NH 3 or H 2 O (1500 nm band)
You can also use In this case, the optical frequency multiplier 24 becomes unnecessary. Although it is possible to stabilize the wavelength by using a known Fabry-Perot resonator as a wavelength detector, the characteristics are better if the quantum standard absorption line as described above is used.
また可変波長レーザダイオードVL1〜3とし
ては上記の実施例のようなADFBなどに限られ
ず、レーザダイオードチツプ外部に回折格子を用
いた外部共振器を付加し、回折格子を回転させ、
その波長選択性を利用して可変波長としたもので
もよい。外部共振器形レーザダイオードは狭スペ
クトルという優れた特長を持つ。 Further, the variable wavelength laser diodes VL1 to VL3 are not limited to ADFBs as in the above embodiments, but may include an external resonator using a diffraction grating added to the outside of the laser diode chip, and rotating the diffraction grating.
It may be possible to use the wavelength selectivity to make the wavelength variable. External cavity laser diodes have the excellent feature of narrow spectrum.
また可変波長レーザダイオードVL1〜VL3と
して、第5図のように共振器内に波長選択性の素
子を挿入したものを用いてもよい。図において
LD2は半導体レーザ、51,52はこの半導体
レーザLD2の両端に設けられた無反射コート部、
LS1はこの無反射コート部51から出射される
光を平行光とするレンズ、M1はこのレンズLS
1を通過した光が反射されるミラー、LS2は無
反射コート部52から出射される光を平行光とす
るレンズ、UM2はこのレンズLS2を通過する
光が入射する第1の超音波変調器、UM3はこの
超音波変調器UM2から出射する光が入射する第
2の超音波変調器、M2はこの超音波変調器UM
3から出射した光を反射するミラー、DR1は前
記超音波変調器UM2,UM3を周波数Fで励振
する発振器である。第6図は第5図装置における
超音波変調器UM2,UM3による波長選択およ
び周波数掃引動作の様子を示すための動作説明図
である。半導体レーザLD2の無反射コート部5
1から出射した光はレンズLS1で平行光とされ、
ミラーM1で反射される。ミラーM1からの反射
光は光路を元に戻つて再び半導体レーザLD2に
入射する。無反射コート部52から出射した周波
数f01の光はレンズLS2で平行光とされ、第1の
超音波変調器UM2に入射する。この際回折条件
から、超音波61により生じる回折格子63への
入射角θi1、回折後の出射角θ01、光の波長λ0およ
び超音波の波長Λ0の間には次式のような関係が
ある。 Moreover, as the variable wavelength laser diodes VL1 to VL3, those in which a wavelength selective element is inserted into a resonator as shown in FIG. 5 may be used. In the figure
LD2 is a semiconductor laser, 51 and 52 are anti-reflection coating parts provided at both ends of this semiconductor laser LD2,
LS1 is a lens that converts the light emitted from this non-reflection coating portion 51 into parallel light, and M1 is this lens LS.
1 is a mirror on which the light passing through LS2 is reflected; LS2 is a lens that converts the light emitted from the anti-reflection coating section 52 into parallel light; UM2 is a first ultrasonic modulator into which the light passing through lens LS2 is incident; UM3 is a second ultrasonic modulator into which the light emitted from this ultrasonic modulator UM2 enters, and M2 is this ultrasonic modulator UM.
DR1 is an oscillator that excites the ultrasonic modulators UM2 and UM3 at a frequency F. FIG. 6 is an explanatory diagram showing the wavelength selection and frequency sweeping operations performed by the ultrasonic modulators UM2 and UM3 in the apparatus shown in FIG. 5. Anti-reflection coating part 5 of semiconductor laser LD2
The light emitted from 1 is made into parallel light by lens LS1,
It is reflected by mirror M1. The reflected light from the mirror M1 returns along the optical path and enters the semiconductor laser LD2 again. The light having the frequency f 01 emitted from the anti-reflection coating portion 52 is converted into parallel light by the lens LS2, and is incident on the first ultrasonic modulator UM2. At this time, from the diffraction conditions, the angle of incidence θ i1 to the diffraction grating 63 generated by the ultrasonic wave 61, the output angle θ 01 after diffraction, the wavelength λ 0 of the light, and the wavelength Λ 0 of the ultrasonic wave are determined by the following equation. There is a relationship.
sinθi1+sinθ01=λ0/Λ0 ……(1)
すなわち特定の入射角θi1および出射角θ01を満
足するような光路を通る光の波長λ0は超音波の波
長Λ0が変われば変化する。出射光は超音波によ
るドツプラシフトを受け、この場合は+1次回折
光(超音波の方向と回折される方向が同じ)であ
るので、その周波数はf01+Fとなる。超音波変
調器UM2からの出射光は超音波変調器UM3で
再び回折する。前記同様、超音波62により生じ
る回折格子64への入射角θi2、回折後の出射角
θ02、光の波長λ0および超音波の波長Λ0の間には
次式のような関係がある。 sinθ i1 + sinθ 01 = λ 0 / Λ 0 ...(1) In other words, the wavelength λ 0 of light passing through an optical path that satisfies the specific incident angle θ i1 and exit angle θ 01 will change if the ultrasonic wavelength Λ 0 changes. Change. The emitted light undergoes a Doppler shift due to the ultrasonic wave, and in this case is +1st order diffracted light (the direction of the ultrasonic wave is the same as the diffracted direction), so its frequency becomes f 01 +F. The light emitted from the ultrasonic modulator UM2 is diffracted again by the ultrasonic modulator UM3. Similarly to the above, there is a relationship as shown in the following equation between the incident angle θ i2 of the ultrasonic wave 62 on the diffraction grating 64, the output angle θ 02 after diffraction, the wavelength λ 0 of the light, and the wavelength Λ 0 of the ultrasonic wave. .
sinθi2+sinθ02=λ0/Λ0 ……(2)
ただし(2)式において超音波変調器UM2のドツ
プラシフトによるλ0の変化は小さいので無視して
いる。ここでは超音波の進行波62と回折光の関
係が超音波変調器UM2における場合と逆で、−
1次回折光となるので、ドツプラシフト量は−F
となり、超音波変調器UM3の出射光の周波数は
f01+F−F=f01となる。超音波変調器UM3の
出射光はミラーM2で反射した後元の光路を逆行
して、再び半導体レーザLD2に入射する。逆行
する際に、ドツプラシフトでUM3の出射光の周
波数はf01−Fとなり、UM2の出射光の周波数は
f01−F+F=f01と元の周波数f01となつて半導体
レーザLD2に戻るので、共振状態が持続する。
なお回折効率を高めるためにブラツグ入射条件を
満足させ、超音波の波長Λ0のとき入射角θi1、出
射角θ01、入射角θi2および出射角θ02の間に次の関
係が成立つようにしている。 sinθ i2 +sinθ 02 =λ 0 /Λ 0 (2) However, in equation (2), the change in λ 0 due to the Doppler shift of the ultrasonic modulator UM2 is ignored because it is small. Here, the relationship between the ultrasonic traveling wave 62 and the diffracted light is opposite to that in the ultrasonic modulator UM2, and -
Since it is the first-order diffracted light, the Doppler shift amount is -F
Therefore, the frequency of the emitted light from the ultrasonic modulator UM3 is
f 01 +F−F=f 01 . The emitted light from the ultrasonic modulator UM3 is reflected by the mirror M2, travels back along the original optical path, and enters the semiconductor laser LD2 again. When going backwards, the frequency of the emitted light of UM3 becomes f 01 −F due to Doppler shift, and the frequency of the emitted light of UM2 becomes
Since the original frequency f 01 becomes f 01 −F+F=f 01 and returns to the semiconductor laser LD2, the resonance state continues.
In order to increase the diffraction efficiency, the Bragg incidence condition is satisfied, and the following relationship holds between the incident angle θ i1 , the output angle θ 01 , the incident angle θ i2 , and the output angle θ 02 when the wavelength of the ultrasonic wave is Λ 0. That's what I do.
θi1=θ01=θi2=θ02
この様な構成で超音波の波長Λ0を変えれば、
θi1、θ01、θ2、θ02を満足して共振する光の波長λ0
を次式のように掃引できる。 θ i1 = θ 01 = θ i2 = θ 02 If you change the wavelength Λ 0 of the ultrasonic wave with this configuration,
Wavelength λ 0 of light that resonates while satisfying θ i1 , θ 01 , θ 2 , θ 02
can be swept as shown in the following equation.
sinθi1+sinθ01
=(λ0+Δλ)/(Λ0+ΔΛ)
また可変波長レーザダイオードVL1〜VL3と
して、第7図のように共振器内に屈折率を制御で
きる素子を挿入したものを用いてもよい。第5図
と同一の部分には同じ記号を付して説明を省略す
る。EO1はLiNbO3(ニオブ酸リチウム)等から
なりレンズLS2の出力光を入射する両面無反射
コートの電気光学素子、71はこの電気光学素子
EO1を制御する電源である。半導体レーザLD2
を出射した光はレンズLS2で平行光となつた後
電気光学素子EO1を通過し、ミラーM2で反射
した後元の光路を逆行して、再び半導体レーザ
LD2に入射する。この結果ミラーM1とミラー
M2の間で共振器を構成できる。ミラーM1とミ
ラーM2の間の電気光学素子EO1の光路に沿つ
た長さlを除く距離をL、電気光学素子EO1の
屈折率をn、光速をc、pを整数とすると、発振
周波数f02は
f02=p・c/2(L+n(v)l) ……(3)
となる。すなわち電源71により電気光学素子
EO1の電界強度を変えることにより屈折率nを
変化させることができ、その結果発振周波数f02
を掃引できる。sinθ i1 + sinθ 01 = (λ 0 + Δλ) / (Λ 0 + ΔΛ) Alternatively, as the variable wavelength laser diodes VL1 to VL3, a device in which an element that can control the refractive index is inserted into the resonator as shown in Fig. 7 may be used. good. The same parts as in FIG. 5 are given the same symbols and their explanation will be omitted. EO1 is an electro-optical element made of LiNbO 3 (lithium niobate) etc. and has anti-reflection coating on both sides and receives the output light from lens LS2, and 71 is this electro-optical element.
This is the power supply that controls EO1. Semiconductor laser LD2
The emitted light becomes parallel light by lens LS2, passes through electro-optical element EO1, is reflected by mirror M2, and then goes back along the original optical path and returns to the semiconductor laser.
Injects into LD2. As a result, a resonator can be constructed between mirror M1 and mirror M2. If the distance excluding the length l of the electro-optical element EO1 between the mirror M1 and the mirror M2 is L, the refractive index of the electro-optical element EO1 is n, the speed of light is c, and p is an integer, then the oscillation frequency f 02 becomes f 02 =p・c/2(L+n(v)l)...(3). In other words, the electro-optical element is powered by the power source 71.
By changing the electric field strength of EO1, the refractive index n can be changed, resulting in the oscillation frequency f 02
can be swept.
第8図は第7図の可変波長レーザダイオードを
2重共振器形としたものを示す構成ブロツク図で
ある。第7図と同一の部分は同じ記号を付して説
明を省略する。BS1はレンズLS2からの出射光
を2方向に分離するビームスプリツタ、EO2は
このビームスプリツタBS1を透過した光を入射
する電気光学素子、M2はこの電気光学素子EO
2の出射光を反射するミラー、EO3は前記ビー
ムスプリツタBS1で反射した光を入射する電気
光学素子、M3はこの電気光学素子EO3の出射
光を反射するミラーである。電気光学素子EO2,
EO3の光路方向の長さをそれぞれl1、l2、屈折率
をそれぞれn1、n2、ミラーM1,M2間の光路に
沿つたl1を除く距離をL1、ミラーM1,M3間の
光路に沿つたう2を除く距離をL2、qを整数とす
ると、この場合の発振周波数f03は
f03=q・c/2|(L1+n1(V1)l1)
−(L2+n2(V2)l2)| ……(4)
となる。(4)式は(3)式よりも分母を小さくできるの
で、第7図装置の場合よりも発振周波数の可変範
囲を大きくできる。 FIG. 8 is a structural block diagram showing a double resonator type tunable wavelength laser diode of FIG. 7. The same parts as in FIG. 7 are given the same symbols and the explanation is omitted. BS1 is a beam splitter that separates the light emitted from lens LS2 into two directions, EO2 is an electro-optical element that receives the light that has passed through this beam splitter BS1, and M2 is this electro-optical element EO.
2, EO3 is an electro-optical element that receives the light reflected by the beam splitter BS1, and M3 is a mirror that reflects the output light of this electro-optical element EO3. Electro-optical element EO2,
The length of EO3 in the optical path direction is l 1 and l 2 respectively, the refractive index is n 1 and n 2 respectively, the distance excluding l 1 along the optical path between mirrors M1 and M2 is L 1 , and the distance between mirrors M1 and M3 is If the distance along the optical path excluding 2 is L 2 and q is an integer, then the oscillation frequency f 03 in this case is f 03 = q・c/2 | (L 1 + n 1 (V 1 ) l 1 ) − (L 2 + n 2 (V 2 ) l 2 ) | ...(4). Since the denominator of equation (4) can be made smaller than that of equation (3), the variable range of the oscillation frequency can be made larger than in the case of the device shown in FIG.
第9図は第7図の可変波長レーザダイオードを
1チツプ上に集積形としたものを示す構成図であ
る。91はGaAlAs、InGaAsPなどから構成され
るレーザダイオード、92はこのレーザダイオー
ド91の接合部に設けられた光増幅部、93は同
じく導波路形外部共振器、94,95はレーザダ
イオード91の両端にもうけられたミラー、96
は前記光幅部92に対応してレーザダイオード9
1の表面に設けられた電極、97は前記導波路形
外部共振器93に対応してレーザダイオード91
の表面に設けられた電極である。電極96を介し
て接合部に電流ILDを注入して光増幅部92にお
いてレーザ光を発生させ、導波路形外部共振器9
3に電極97を介して電流IFを流し導波路形外部
共振器93の屈折率を変化させて発振周波数を掃
引する。光増幅部92および導波路形外部共振器
93の接合部に沿つた長さをそれぞれl3、l4、屈
折率をそれぞれn3、n4、rを整数とすると、発振
周波数f04は
f04=r・c/2(n3l3+n4(IF)l4)
となる。 FIG. 9 is a configuration diagram showing the tunable wavelength laser diode of FIG. 7 integrated on one chip. 91 is a laser diode made of GaAlAs, InGaAsP, etc.; 92 is an optical amplification unit provided at the junction of this laser diode 91; 93 is a waveguide-type external resonator; 94 and 95 are located at both ends of the laser diode 91. The mirror that was born, 96
The laser diode 9 corresponds to the light width portion 92.
An electrode 97 provided on the surface of the laser diode 91 corresponds to the waveguide external resonator 93.
This is an electrode provided on the surface of the A current I LD is injected into the junction via the electrode 96 to generate laser light in the optical amplification section 92 , and the waveguide external resonator 9
3 through an electrode 97 to change the refractive index of the waveguide external resonator 93 and sweep the oscillation frequency. Assuming that the lengths along the junction of the optical amplifying section 92 and the waveguide external resonator 93 are l 3 and l 4 respectively, and the refractive indexes are n 3 , n 4 and r are integers, then the oscillation frequency f 04 is f 04 = r·c/2 (n 3 l 3 + n 4 (I F ) l 4 ).
また光ヘテロダイン検波部21にW−Ni(タン
グステン、ニツケル)点接触ダイオードやジヨゼ
フソン素子を使うこともできる。これらの素子は
逓倍とミキサの両方の機能を備えているためωs、
ω1、ω3を同時に入力することができ、第2図に
おけるミキサ回路MX1は不要となる。この場
合、これらの素子の出力すなわち光周波数変調回
路FCの入力信号はω4=ωs−ω1±mω3(mは逓倍
数)となる。またω4=ωs−2ω1±mω3とすること
もでき、この場合には光周波数逓倍部24が不要
となる。 Further, a W-Ni (tungsten, nickel) point contact diode or Josephson element can also be used for the optical heterodyne detection section 21. Since these elements have both multiplier and mixer functions, ω s ,
ω 1 and ω 3 can be input simultaneously, and the mixer circuit MX1 in FIG. 2 becomes unnecessary. In this case, the outputs of these elements, that is, the input signals of the optical frequency modulation circuit FC, are ω 4 =ω s −ω 1 ±mω 3 (m is a multiplier). It is also possible to set ω 4 =ω s −2ω 1 ±mω 3 , and in this case, the optical frequency multiplier 24 becomes unnecessary.
第10図は光ヘテロダイン検波部21の他の構
成例を示す構成ブロツク図である。OCは第2の
波長安定化光源を用いた光出力周波数ωLの局部
発振器、OXはこの局部発振器OCの光出力およ
び前記光周波数逓倍部24の光出力が前記光増幅
素子OA3を介して入力する非線形光学結晶を用
いた光周波数ミキサ、ODはこの光周波数ミキサ
OXの光出力と前記基準波長光源部1からの出力
光を入力して可変波長光源部22に出力するPIN
フオトダイオードまたはアバランシエフオトダイ
オードなどからなる光検出器である。このような
構成によれば、光周波数ミキサOXの光出力周波
数ω6は非線形光学効果により、ω6=ω1+ωLとな
る。第2図の構成では光周波数逓倍部により、
(オフセツト周波数は別にして)ωs=ω1=nω0で
決まる限られたω1しか得られないが、第10図
の構成ではいろいろな波長の光を出力できる。例
えばRbの吸収線を用いてωsの波長をλs=780nm、
Csの吸収線を用いてωLの波長をλL=852nmと選
べば、フイードバツクループのバランス時の関係
ωs=ω6からωs、ω1、ωLのそれぞれの波長λs、
λ1、λLの間には1/λs=1/λ1+1/λLの関係が
あるから、λ1=9230nmとなる。 FIG. 10 is a block diagram showing another example of the structure of the optical heterodyne detection section 21. OC is a local oscillator with an optical output frequency ω L using a second wavelength stabilized light source, and OX is the optical output of this local oscillator OC and the optical output of the optical frequency multiplier 24 inputted via the optical amplification element OA3. An optical frequency mixer using a nonlinear optical crystal, OD is an optical frequency mixer using a nonlinear optical crystal.
A PIN that inputs the optical output of OX and the output light from the reference wavelength light source section 1 and outputs it to the variable wavelength light source section 22.
A photodetector consisting of a photodiode or an avalanche photodiode. According to such a configuration, the optical output frequency ω 6 of the optical frequency mixer OX becomes ω 6 =ω 1 +ω L due to the nonlinear optical effect. In the configuration shown in Figure 2, the optical frequency multiplier allows
Although only a limited ω 1 determined by ω s =ω 1 =nω 0 can be obtained (aside from the offset frequency), the configuration shown in FIG. 10 can output light of various wavelengths. For example, using the absorption line of Rb, the wavelength of ω s is λ s = 780 nm,
If the wavelength of ω L is chosen as λ L = 852 nm using the absorption line of Cs, then from the relationship ω s = ω 6 when the feedback loop is balanced, the respective wavelengths λ s of ω s , ω 1 , and ω L ,
Since there is a relationship between λ 1 and λ L of 1/λ s =1/λ 1 +1/λ L , λ 1 =9230 nm.
第11図は第1図の構成を具体化した本発明の
第3の実施例で、2つの光周波数を同時に出力で
きる光周波数シンセサイザスイーパを示すための
構成ブロツク図である。基準波長光源部1として
飽和吸収分光(前記資料参照)を利用した2波長
安定化レーザダイオードを使用する。すなわち
LD11,LD12は異なる波長のレーザ出力を発
生するレーザダイオード、HM4はこのレーザダ
イオードLD11,LD12の両出力を合流させる
ハーフミラー、HM5はこのハーフミラーHM4
の出力光を2方向に分離するハーフミラー、CL
はこのハーフミラーHM5の透過光が入射する第
2図と同様の吸収セル、HM6はこの吸収セル
CLからの出射光が入射するハーフミラー、IS1
はこのハーフミラーHM6の出力光を通過させる
戻り光防止用のアイソレータ、M4は前記ハーフ
ミラーHM5の反射光を入射するミラー、HM7
はこのミラーM4の反射光を入射するハーフミラ
ー、LS3はこのハーフミラーHM7の透過光を
入射する絞り、M5はこの絞りLS3の出力光を
入射するミラー、PD11はこのミラーM5の出
力光がハーフミラーHM6、吸収セルCLおよび
ハーフミラーHM5を介して入射する光検出器、
PD12は前記ハーフミラーHM7の反射光が吸
収セルCLを介して入射する光検出器、A2はこ
の光検出器PD11およびPD12の電気出力の差
を演算する差動増幅器、LA1,LA2はこの差動
増幅器A2の出力を入力しレーザダイオードLD
11,LD12にそれぞる出力するするレーザダ
イオード駆動回路付きロツクインアンプ、IS1は
前記ハーフミラーHM6の出力光が通過する戻り
光防止用のアイソレータである。 FIG. 11 is a configuration block diagram showing an optical frequency synthesizer sweeper capable of simultaneously outputting two optical frequencies, which is a third embodiment of the present invention embodying the configuration of FIG. 1. As the reference wavelength light source section 1, a two-wavelength stabilized laser diode using saturation absorption spectroscopy (see the above document) is used. i.e.
LD11 and LD12 are laser diodes that generate laser outputs of different wavelengths, HM4 is a half mirror that combines the outputs of the laser diodes LD11 and LD12, and HM5 is this half mirror HM4.
A half mirror that separates the output light into two directions, CL
is an absorption cell similar to that shown in Fig. 2 where the transmitted light of this half mirror HM5 enters, and HM6 is this absorption cell.
Half mirror where the light emitted from CL enters, IS1
M4 is an isolator for preventing return light that passes the output light of the half mirror HM6, M4 is a mirror that receives the reflected light of the half mirror HM5, and HM7
is a half mirror that receives the reflected light from this mirror M4, LS3 is an aperture that receives the transmitted light from this half mirror HM7, M5 is a mirror that receives the output light of this aperture LS3, and PD11 is a half mirror that receives the output light of this mirror M5. a photodetector incident through the mirror HM6, the absorption cell CL and the half mirror HM5;
PD12 is a photodetector into which the light reflected by the half mirror HM7 enters through the absorption cell CL, A2 is a differential amplifier that calculates the difference between the electrical outputs of the photodetectors PD11 and PD12, and LA1 and LA2 are the differential amplifiers. Input the output of amplifier A2 and connect the laser diode LD.
A lock-in amplifier with a laser diode driving circuit outputs outputs to LD11 and LD12, respectively, and IS1 is an isolator for preventing return light through which the output light of the half mirror HM6 passes.
光周波数PLL部における第2図装置との相違
部分のみを次に述べる。MX11およびMX12
は光ヘテロダイン検波部21の電気出力とそれぞ
れFM変調周波数ΩA、ΩBを入力するミキサであ
る。可変波長光源部22において、FC1,FC2
は前記ミキサMX11,MX12の出力をそれぞ
れ入力しLPF特性を有する光周波数変調回路、
VL4,VL5はそれぞれ前記光周波数変調回路
FC1,FC2の出力で発振周波数を制御される可
変波長レーザダイオード、IS21,IS22はそれ
ぞれ前記可変波長ダイオードVL4,VL5の光出
力を通過させる戻り光防止用のアイソレータ、
OS2はこのアイソレータIS21,IS22の光出
力を入射して合成する光合波器である。その他の
部分は第2図の構成と同様である。 Only the differences from the device shown in FIG. 2 in the optical frequency PLL section will be described below. MX11 and MX12
are mixers that input the electrical output of the optical heterodyne detection unit 21 and the FM modulation frequencies Ω A and Ω B , respectively. In the variable wavelength light source section 22, FC1, FC2
is an optical frequency modulation circuit which inputs the outputs of the mixers MX11 and MX12 and has LPF characteristics,
VL4 and VL5 are the optical frequency modulation circuits respectively
tunable wavelength laser diodes whose oscillation frequencies are controlled by the outputs of FC1 and FC2; IS21 and IS22 are isolators for preventing return light that pass the optical outputs of the tunable wavelength diodes VL4 and VL5, respectively;
OS2 is an optical multiplexer that receives and combines the optical outputs of the isolators IS21 and IS22. The other parts are the same as the configuration shown in FIG.
このような構成の装置の動作を次に説明する。
2つのレーザダイオードLD11,LD12の光出
力の発振周波数をωA+ΩA、ωB+ΩBとする。この
2光束はハーフミラーNH4で合成された後ハー
フミラーHM5で2方向に分離される。ハーフミ
ラーHM5を透過した光は飽和光として吸収セル
CLを透過した後ハーフミラーHM6を透過して
アイソレータIS1を介して光周波数PLL部に出
力される。ハーフミラーHM5の反射光はミラー
M4で反射され、ハーフミラーHM7で2方向に
分離する。ハーフミラーHM7を透過した光は絞
りLS3で絞られた後ハーフミラーHM6で反射
され、飽和光より十分細いプローブ光となつて吸
収セルCLに入射しドツプラ拡がりの中に飽和効
果による鋭いくぼみを伴う吸収を受けた後、ハー
フミラーHM5で反射されて光検出器PD11に
入射する。ハーフミラーHM7で反射された光は
参照光として吸収セルCLに垂直方向から入射し
てドツプラ拡がりのある吸収を受けた後、光検出
器PD12に入射する。差動増幅器A2は光検出
器PD11,PD12の電気出力の差を演算し、そ
の差信号出力を2つのロツクインアンプLA1,
LA2に入力する。ロツクインアンプLA1はΩA
を参照周波数として同期整流し、ΩA成分のみを
検出してレーザダイオードLD11を制御するこ
とにより、例えば第3図のF=1の吸収線におい
てドツプラシフトで隠されている超微細構造の吸
収線である第4図のr〜tのいずれかの中心にロ
ツクする。同様にロツクインアンプLA2はΩBを
参照周波数として同期整流し、ΩB成分のみを検
出してレーザダイオードLD12を制御すること
により、例えば第3図のF=2の吸収線において
ドツプラシフトで隠されている超微細構造の吸収
線である第4図のo〜qのいずれかの中心にロツ
クする。このようにして発振周波数ωA+ΩA、ωB
+ΩBの2波長安定化光源が得られる。基準波長
光源部1から出力される2波長基準光出力は光周
波数PLL部に入力し、光ヘテロダイン検波部2
1で光周波数逓倍部24からの光出力とともに光
ヘテロダイン検波され、周波数が|ωA−ω1A+ΩA
|、|ωB−ω1B+ΩB|、|ωA−ωB+ΩA+ΩB|、|
ωA−ω1B+ΩA|、|ωB−ω1A+ΩB|(ω1A、ω1Bは
光
周波数逓倍部24の光出力の2つの周波数)の検
波出力を得る。光周波数PLL部2が動作してい
ると、ωAω1A、ωBω1Bであり、ΩA、ΩBは数k
Hz、ωAとωBの差は第4図に示すように6.8GHzで
あるので、光検出器PD2にローパス特性を持た
せることにより、|ωA−ω1A+ΩA|、|ωB−ω1B+
ΩB|周波数成分のみを取出すことができる。2
つのミキサ回路MX11,MX12は光周波数ヘ
テロダイン検波部21の出力電気信号をそれぞれ
周波数ΩA、ΩBの入力信号とミキシングし、それ
ぞれ出力信号ω4A=|ωA−ω1A|、ω4B=|ωB−
ω1B|を発生する。可変波長光源部22におい
て、2つの光周波数変調回路FC1,FC2はそれ
ぞれミキサ回路MX11,MX12の出力信号
ω4A、ω4Bが0となるように可変波長ダイオード
VL4,VL5の発振周波数を制御する。可変波長
ダイオードVL4,VL5の光出力はそれぞれアイ
ソレータIS21,IS22を介して光合波器OS2
に入射し、合成されて2つの光周波数ωA/n±
sω5、ωB/n±sω5からなる光出力を発生する。
この光出力は周波数ΩA、ΩBでFM変調されてい
ない。 The operation of the device having such a configuration will be explained next.
The oscillation frequencies of the optical outputs of the two laser diodes LD11 and LD12 are assumed to be ω A +Ω A and ω B +Ω B. These two beams are combined by a half mirror NH4 and then separated into two directions by a half mirror HM5. The light transmitted through the half mirror HM5 is absorbed into the absorption cell as saturated light.
After passing through CL, it passes through half mirror HM6 and is output to the optical frequency PLL section via isolator IS1. The reflected light from half mirror HM5 is reflected by mirror M4 and separated into two directions by half mirror HM7. The light transmitted through the half mirror HM7 is focused by the aperture LS3 and then reflected by the half mirror HM6, becoming a probe light that is much narrower than the saturated light and entering the absorption cell CL, where the Doppler spread is accompanied by a sharp depression due to the saturation effect. After being absorbed, it is reflected by half mirror HM5 and enters photodetector PD11. The light reflected by the half mirror HM7 enters the absorption cell CL from the vertical direction as a reference light, undergoes absorption with Doppler spread, and then enters the photodetector PD12. The differential amplifier A2 calculates the difference between the electrical outputs of the photodetectors PD11 and PD12, and sends the difference signal output to the two lock-in amplifiers LA1 and
Input to LA2. Lock-in amplifier LA1 is Ω A
By using synchronous rectification as a reference frequency and controlling the laser diode LD11 by detecting only the Ω A component, for example, in the absorption line of F=1 in Fig. 3, it is possible to detect the ultrafine structure of the absorption line hidden by the Doppler shift. Lock at the center of any one of r to t in Fig. 4. Similarly, the lock-in amplifier LA2 performs synchronous rectification using Ω B as a reference frequency, detects only the Ω B component, and controls the laser diode LD12. It locks at the center of any one of o to q in FIG. 4, which is the absorption line of the ultrafine structure. In this way, the oscillation frequency ω A +Ω A , ω B
A two-wavelength stabilized light source of +Ω B can be obtained. The two-wavelength reference optical output output from the reference wavelength light source section 1 is input to the optical frequency PLL section, and the optical heterodyne detection section 2
1, optical heterodyne detection is performed together with the optical output from the optical frequency multiplier 24, and the frequency is |ω A −ω 1A +Ω A
|, |ω B −ω 1B +Ω B |, |ω A −ω B +Ω A +Ω B |, |
Detection outputs of ω A −ω 1B +Ω A |, |ω B −ω 1A +Ω B | (ω 1A and ω 1B are two frequencies of the optical output of the optical frequency multiplier 24) are obtained. When the optical frequency PLL unit 2 is operating, ω A ω 1A , ω B ω 1B , and Ω A and Ω B are several k.
Hz, ω Since the difference between A and ω B is 6.8 GHz as shown in Figure 4, by giving the photodetector PD2 a low-pass characteristic, |ω A −ω 1A +Ω A |, |ω B −ω 1B +
Ω B | Only frequency components can be extracted. 2
The two mixer circuits MX11 and MX12 mix the output electrical signal of the optical frequency heterodyne detection unit 21 with input signals of frequencies Ω A and Ω B , respectively, and output signals ω 4A =|ω A −ω 1A |, ω 4B =|, respectively. ω B −
ω 1B | is generated. In the variable wavelength light source section 22, the two optical frequency modulation circuits FC1 and FC2 are configured using variable wavelength diodes so that the output signals ω 4A and ω 4B of the mixer circuits MX11 and MX12 are 0, respectively.
Controls the oscillation frequency of VL4 and VL5. The optical outputs of the variable wavelength diodes VL4 and VL5 are sent to the optical multiplexer OS2 via isolators IS21 and IS22, respectively.
and synthesized into two optical frequencies ω A /n±
A light output consisting of sω 5 , ω B /n±sω 5 is generated.
This optical output is not FM modulated at frequencies Ω A and Ω B.
なお上記の実施例では2周波数の場合のシンセ
サイザ・スイーパの場合を示したが、2周波に限
らず任意の複数の周波数の場合にも同様に適用で
きる。 In the above embodiment, the case of a synthesizer sweeper with two frequencies is shown, but the present invention is not limited to two frequencies, but can be similarly applied to any plurality of frequencies.
また上記の実施例では基準波長光源部1として
飽和吸収法を用いたものを示したが、線形吸収法
を用いて第3図のF=1、F=2の吸収中心に2
波長をロツクしてもよい。この場合には第2図の
基準波長光源部1で吸収セルCLへの入射光を2
光束とし、ロツクインアンプを2つ用いたものを
第11図の基準波長光源部1とする。 In addition, in the above embodiment, the reference wavelength light source section 1 uses the saturated absorption method, but the absorption center of F=1 and F=2 in FIG.
The wavelength may also be locked. In this case, the reference wavelength light source section 1 shown in Fig. 2 inputs the light incident on the absorption cell CL to
The reference wavelength light source section 1 shown in FIG. 11 uses a light beam and two lock-in amplifiers.
また第11図では光周波数のオフセツトおよび
掃引の為に超音波変調器UM1のみを用いている
が、ミキサ回路MX11,MX12の入力周波数
ΩA、ΩBのかわりにシフト周波数ω3A、ω3Bを加え
たω3A+ΩA、ω3B+ΩBを用いてもよい。この場合、
光出力の2つの光周波数はそれぞれ(ωA±
ω3A)/n±sω5および(ωB±ω3B)/n±sω5と
なるので、ω5で2周波数を同時に掃引できると
ともに、ω3A、ω3Bを独立に掃引することにより
2周波数を独立に掃引することもできる。 Furthermore, in Fig. 11, only the ultrasonic modulator UM1 is used for offset and sweeping of the optical frequency, but shift frequencies ω 3A and ω 3B are used instead of the input frequencies Ω A and Ω B of the mixer circuits MX11 and MX12. The added ω 3A +Ω A and ω 3B +Ω B may be used. in this case,
The two optical frequencies of the optical output are respectively (ω A ±
ω 3A )/n±sω 5 and (ω B ±ω 3B )/n±sω 5 , so two frequencies can be swept simultaneously at ω 5 , and two frequencies can be swept simultaneously by sweeping ω 3A and ω 3B independently. can also be swept independently.
≪発明の効果≫
以上の各実施例で示したように、本発明の光周
波数シンセサイザ・スイーパはその光出力が絶対
波長で高精度かつ高安定にRb、Csなどの吸収線
にロツクすることができ、10-12以上の安定度の
量子標準(従来の周波数標準はCs(9GHz)、Rb
(6GHz)のマイクロ波共鳴を利用している)を得
ることができる。<<Effects of the Invention>> As shown in the above embodiments, the optical frequency synthesizer/sweeper of the present invention is capable of locking its optical output to the absorption lines of Rb, Cs, etc. at the absolute wavelength with high precision and high stability. quantum standards with stability above 10 -12 (traditional frequency standards are Cs (9GHz), Rb
(using 6GHz microwave resonance) can be obtained.
また可変波長レーザダイオードとして共振器長
の長いADFBや外部共振器形レーザダイオード
を用いるため、共振器のQが高く、発振スペクト
ル幅を狭くすることができる。 Furthermore, since an ADFB or external cavity type laser diode with a long cavity length is used as the variable wavelength laser diode, the Q of the cavity is high and the oscillation spectrum width can be narrowed.
また光周波数PLLの原理を用いているため、
高精度な光周波数スイープができる。 Also, since it uses the principle of optical frequency PLL,
Highly accurate optical frequency sweep is possible.
またRbの吸収線(780nm、795nm)などを用
いていることと2逓倍方式により、光通信用フア
イバで最も光伝送損失が小さい1500nm帯の光を
高精度かつ安定に出力できるので、2用性に優れ
ている。 In addition, by using Rb absorption lines (780nm, 795nm) and the doubling method, it is possible to output light in the 1500nm band, which has the lowest optical transmission loss among optical communication fibers, with high precision and stability, making it dual-purpose. Excellent.
第10図に示したような構成により、いろいろ
な光周波数を出力できる。 With the configuration shown in FIG. 10, various optical frequencies can be output.
また第11図の構成により、複数の光周波数を
同時に出力し、かつ独立に掃引することもでき
る。 Furthermore, the configuration shown in FIG. 11 allows a plurality of optical frequencies to be output simultaneously and swept independently.
また第11図の構成のように、光出力から不要
なFM変調成分を除去することができる。第2図
の場合でもω3′=ω3+Ω(Ωはロツクインアンプ
を用いた場合のFM変調周波数)をミキサ回路
MX1に入力すれば、同様に除去できる。 Further, as in the configuration shown in FIG. 11, unnecessary FM modulation components can be removed from the optical output. Even in the case of Figure 2, ω 3 ′ = ω 3 + Ω (Ω is the FM modulation frequency when using a lock-in amplifier) is set in the mixer circuit.
It can be removed in the same way by inputting it into MX1.
以上述べたように本発明によれば、光周波数が
高精度、高安定かつ高スペクトル純度のコヒーレ
ント光出力が得られる光周波数シンセサイザ・ス
イーパを簡単な構成で実現することができる。 As described above, according to the present invention, it is possible to realize an optical frequency synthesizer/sweeper that can obtain a coherent optical output with high optical frequency accuracy, high stability, and high spectral purity with a simple configuration.
第1図は本発明の一実施例の基本構成を示す構
成ブロツク図、第2図は第1図の構成を具体化し
た本発明の第2の実施例を示す構成ブロツク図、
第3図は第2図装置の動作を説明するための特性
曲線図、第4図は第2図装置の動作を説明するた
めの説明図、第5図および第7図〜第9図は第2
図における可変波長レーザダイオードの他の実施
例を示す構成説明図、第6図は第5図装置の動作
を説明するための動作説明図、第10図は第2図
装置の一部の変形例を示すための構成ブロツク
図、第11図は本発明の第3の実施例を示すため
の構成ブロツク図、第12図、第13図は従来の
可変波長レーザ光源を示すための原理説明図であ
る。
1……基準波長光源部、2……光周波数PLL
部、3……光変調部、4……光増幅部。
FIG. 1 is a configuration block diagram showing the basic configuration of one embodiment of the present invention, FIG. 2 is a configuration block diagram showing a second embodiment of the present invention embodying the configuration of FIG. 1,
Fig. 3 is a characteristic curve diagram for explaining the operation of the apparatus shown in Fig. 2, Fig. 4 is an explanatory diagram for explaining the operation of the apparatus shown in Fig. 2, and Figs. 2
A configuration explanatory diagram showing another embodiment of the tunable wavelength laser diode in the figure, FIG. 6 is an operation explanatory diagram for explaining the operation of the device in FIG. 5, and FIG. 10 is a partial modification of the device in FIG. 2. FIG. 11 is a configuration block diagram showing a third embodiment of the present invention, and FIGS. 12 and 13 are principle explanatory diagrams showing a conventional tunable wavelength laser light source. be. 1... Reference wavelength light source section, 2... Optical frequency PLL
section, 3... optical modulation section, 4... optical amplification section.
Claims (1)
源部と、この基準波長光源部の発振波長に対応す
る波長に光出力の波長を制御する光周波数PLL
部とを備えるとともに、前記光周波数PLL部が
可変波長光源部と、この可変波長光源部の出力光
に関連する光を入射してその光周波数をこれに対
応する他の光周波数に変換する光周波数変換部
と、この光周波数変換部の出力光に関連する光と
前記基準波長光源部の出力光とを入力しその電気
出力に関連する信号により前記可変波長光源部の
出力光の発振波長を制御する光ヘテロダイン検波
部とを具備し、基準波長光源部の出力波長を基準
として光周波数PLL部の出力波長を可変とした
ことを特徴とする光周波数シンセサイザ・スイー
パ。 2 基準波長光源部が複数の発振波長を有し、光
周波数PLL部が前記複数の発振波長に対応する
波長に光出力の波長をそれぞれ制御する特許請求
の範囲第1項記載の光周波数シンセサイザ・スイ
ーパ。 3 基準波長光源部としてRb原子またはCs原子
の吸収スペクトルにレーザダイオードの発振波長
を制御したものを用いた特許請求の範囲第1項記
載の光周波数シンセサイザ・スイーパ。 4 基準波長光源部としてRb原子のD2(780nm)
線およびD1線(795nm)の少なくともいずれか
1つの吸収スペクトルにレーザダイオードの発振
波長を制御したものを用い、光周波数PLL部が
前記各発振波長の2倍の波長帯域の光を出力する
特許請求の範囲第1項記載の光周波数シセサイ
ザ・スイーパ。 5 光周波数変換部が可変波長光源部の出力光に
関連する光の周波数をシフトする光周波数シフタ
部を備えた特許請求の範囲第1項記載の光周波数
シンセサイザ・スイーパ。 6 光周波数変換部が可変波長光源部の出力光に
関連する光の周波数を逓倍する光周波数逓倍部を
備えた特許請求の範囲第1項記載の光周波数シン
セサイザ・スイーパ。 7 光周波数PLL部が光ヘテロダイン検波部の
電気出力を入力するミキサ回路を備え、ミキサ回
路の電気出力に関連する信号により可変波長光源
部の出力光の発振波長が制御されるように構成し
た特許請求の範囲第1項記載の光周波数シンセサ
イザ・スイーパ。 8 可変波長光源部が共振器内に超音波変調器に
よる光の回折を利用して波長選択性を持たせた可
変波長レーザダイオードを備えた特許請求の範囲
第5項、第6項、及び第7項記載の光周波数シン
セサイザ・スイーパ。 9 可変波長光源部が共振器内の光路の屈折率を
制御できるようにした可変波長レーザダイオード
を備えた特許請求の範囲第5項、第6項、及び第
7項記載の光周波数シンセサイザ・スイーパ。 10 出力光の波長が一定に制御された基準波長
光源部と、この基準波長光源部の発振波長に対応
する波長に光出力の波長を制御する光周波数
PLL部とを備えるとともに、前記光周波数PLL
部が可変波長光源部と、この可変波長光源部の出
力光に関連する光を入射してその光周波数をこれ
に対応する他の光周波数に変換する光周波数変換
部と、この光周波数変換部の出力光に関連する光
と前記基準波長光源部の出力光とを入力しその電
気出力に関連する信号により前記可変波長光源部
の出力光の発振波長を制御する光ヘテロダイン検
波部とを具備し、基準波長光源部の出力波長を基
準として光周波数PLL部の出力波長を可変とし、
さらに前記可変波長光源部の光出力を変調する光
変調部と、この光変調部の光出力を増幅する光増
幅部とを備え、光変調部に入力する信号により光
出力の波長を可変とするように構成したことを特
徴とする光周波数シンセサイザ・スイーパ。[Claims] 1. A reference wavelength light source section whose output light wavelength is controlled to be constant, and an optical frequency PLL which controls the wavelength of the optical output to a wavelength corresponding to the oscillation wavelength of the reference wavelength light source section.
The optical frequency PLL section includes a variable wavelength light source section, and a light source that inputs light related to the output light of the variable wavelength light source section and converts the optical frequency into another optical frequency corresponding thereto. A frequency converter inputs light related to the output light of the optical frequency converter and the output light of the reference wavelength light source, and changes the oscillation wavelength of the output light of the variable wavelength light source by a signal related to the electrical output. What is claimed is: 1. An optical frequency synthesizer/sweeper, comprising: an optical heterodyne detection section for controlling the optical frequency PLL section; 2. The optical frequency synthesizer according to claim 1, wherein the reference wavelength light source section has a plurality of oscillation wavelengths, and the optical frequency PLL section controls the wavelengths of the optical output to wavelengths corresponding to the plurality of oscillation wavelengths. Sweeper. 3. The optical frequency synthesizer/sweeper according to claim 1, wherein the reference wavelength light source section uses a laser diode whose oscillation wavelength is controlled based on the absorption spectrum of Rb atoms or Cs atoms. 4 D2 of Rb atom (780nm) as reference wavelength light source part
A patent claim in which an optical frequency PLL section outputs light in a wavelength band twice that of each oscillation wavelength, using a laser diode whose oscillation wavelength is controlled to absorb at least one of the absorption spectra of the line and the D1 line (795 nm). The optical frequency synthesizer/sweeper according to item 1. 5. The optical frequency synthesizer sweeper according to claim 1, wherein the optical frequency conversion section includes an optical frequency shifter section that shifts the frequency of light related to the output light of the variable wavelength light source section. 6. The optical frequency synthesizer/sweeper according to claim 1, wherein the optical frequency conversion section includes an optical frequency multiplication section that multiplies the frequency of light related to the output light of the variable wavelength light source section. 7. A patent in which the optical frequency PLL section includes a mixer circuit that inputs the electrical output of the optical heterodyne detection section, and the oscillation wavelength of the output light of the variable wavelength light source section is controlled by a signal related to the electrical output of the mixer circuit. An optical frequency synthesizer sweeper according to claim 1. 8. Claims 5, 6, and 8, wherein the tunable wavelength light source section includes a tunable wavelength laser diode in a resonator that has wavelength selectivity by utilizing light diffraction by an ultrasonic modulator. The optical frequency synthesizer/sweeper according to item 7. 9. An optical frequency synthesizer/sweeper according to claims 5, 6, and 7, comprising a tunable laser diode in which the tunable wavelength light source section can control the refractive index of the optical path within the resonator. . 10 A reference wavelength light source section in which the wavelength of output light is controlled to be constant, and an optical frequency that controls the wavelength of the optical output to a wavelength corresponding to the oscillation wavelength of this reference wavelength light source section.
and a PLL section, and the optical frequency PLL
The section includes a variable wavelength light source section, an optical frequency conversion section that inputs light related to the output light of the variable wavelength light source section and converts the optical frequency to another corresponding optical frequency, and the optical frequency conversion section. an optical heterodyne detection section that receives light related to the output light of the variable wavelength light source section and the output light of the reference wavelength light source section, and controls the oscillation wavelength of the output light of the variable wavelength light source section by a signal related to the electrical output thereof. , the output wavelength of the optical frequency PLL section is made variable based on the output wavelength of the reference wavelength light source section,
Further, it includes an optical modulation section that modulates the optical output of the variable wavelength light source section, and an optical amplification section that amplifies the optical output of the optical modulation section, and the wavelength of the optical output can be varied by a signal input to the optical modulation section. An optical frequency synthesizer/sweeper characterized by being configured as follows.
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60287162A JPS62145887A (en) | 1985-12-20 | 1985-12-20 | Optical frequency synthesizer sweeper |
US06/942,448 US4893353A (en) | 1985-12-20 | 1986-12-16 | Optical frequency synthesizer/sweeper |
US06/943,670 US4856899A (en) | 1985-12-20 | 1986-12-18 | Optical frequency analyzer using a local oscillator heterodyne detection of incident light |
DE3643569A DE3643569C2 (en) | 1985-12-20 | 1986-12-19 | Optical frequency analyzer |
GB8630374A GB2185619B (en) | 1985-12-20 | 1986-12-19 | Optical frequency synthesizer/sweeper |
GB8630375A GB2185567B (en) | 1985-12-20 | 1986-12-19 | Optical frequency analyzer |
DE3643553A DE3643553C2 (en) | 1985-12-20 | 1986-12-19 | Device for generating and wobbling optical frequencies |
US07/293,020 US4912526A (en) | 1985-12-20 | 1989-01-03 | Optical frequency synthesizer/sweeper |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60287162A JPS62145887A (en) | 1985-12-20 | 1985-12-20 | Optical frequency synthesizer sweeper |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62145887A JPS62145887A (en) | 1987-06-29 |
JPH0513399B2 true JPH0513399B2 (en) | 1993-02-22 |
Family
ID=17713879
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60287162A Granted JPS62145887A (en) | 1985-12-20 | 1985-12-20 | Optical frequency synthesizer sweeper |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62145887A (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58175882A (en) * | 1982-04-08 | 1983-10-15 | Agency Of Ind Science & Technol | Optical frequency sweep type semiconductor laser device |
-
1985
- 1985-12-20 JP JP60287162A patent/JPS62145887A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58175882A (en) * | 1982-04-08 | 1983-10-15 | Agency Of Ind Science & Technol | Optical frequency sweep type semiconductor laser device |
Also Published As
Publication number | Publication date |
---|---|
JPS62145887A (en) | 1987-06-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4893353A (en) | Optical frequency synthesizer/sweeper | |
US4856899A (en) | Optical frequency analyzer using a local oscillator heterodyne detection of incident light | |
AU2007302314B2 (en) | Method and device for generating a synthetic wavelength | |
CN110034758B (en) | Injection locking millimeter wave frequency divider based on self-oscillation optical frequency comb and frequency dividing method thereof | |
US11744003B2 (en) | Device and method for interaction between an agile laser beam and a hyperfine energy transition of a chemical species | |
Poulin et al. | An absolute frequency reference at 192.6 THz (1556 nm) based on a two-photon absorption line of rubidium at 778 nm for WDM communication systems | |
EP0585758B1 (en) | Optical wavelength converter | |
Saitoh et al. | Modulation characteristic of waveguide-type optical frequency comb generator | |
JP2583410B2 (en) | Optical frequency spectrum analyzer | |
CN114447761B (en) | Laser chip | |
JPH0513399B2 (en) | ||
JP6961185B1 (en) | Optical comb generator controller | |
JPH0523613B2 (en) | ||
JP3803748B2 (en) | Optical millimeter wave or submillimeter wave generator | |
Poulin et al. | Progress in the realization of a frequency standard at 192.1 THz (1560.5 nm) using/sup 87/Rb D/sub 2/-line and second harmonic generation | |
JPH0521496B2 (en) | ||
Grund et al. | A widely tunable narrow linewidth RF source integrated in a heterogeneous photonic module | |
JPH0549055B2 (en) | ||
Lou et al. | A frequency-doubling optoelectronic oscillator based on stimulated Brillouin scattering | |
Sun | Forced oscillation in integrated opto-electronic circuits for realization of stable RF synthesizers | |
US20240201563A1 (en) | On-chip optical synthesizer | |
JP3575653B2 (en) | Ultra-fast synchronous pulse light source | |
Schnatz et al. | Extension of the PTB frequency chain towards the Ca intercombination line at 657 nm | |
Lee et al. | Development of a far‐infrared ring laser for plasma diagnostic applications | |
JP2863564B2 (en) | Ultra-wideband and high coherent optical sweep generator from infrared to ultraviolet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |