JPH05132728A - Molded body of reinforcement for composite material and its production - Google Patents

Molded body of reinforcement for composite material and its production

Info

Publication number
JPH05132728A
JPH05132728A JP32525091A JP32525091A JPH05132728A JP H05132728 A JPH05132728 A JP H05132728A JP 32525091 A JP32525091 A JP 32525091A JP 32525091 A JP32525091 A JP 32525091A JP H05132728 A JPH05132728 A JP H05132728A
Authority
JP
Japan
Prior art keywords
molded body
reinforcing material
composite material
binder
reinforcement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32525091A
Other languages
Japanese (ja)
Inventor
Nobuyuki Suzuki
信幸 鈴木
Akira Terashi
晶 寺師
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
A M Tech KK
Original Assignee
A M Tech KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by A M Tech KK filed Critical A M Tech KK
Priority to JP32525091A priority Critical patent/JPH05132728A/en
Publication of JPH05132728A publication Critical patent/JPH05132728A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PURPOSE:To increase the reinforcing effect and to supply a large-sized composite material by practically preventing the adverse effect on the composite material and allowing a binder to thinly and uniformly adhere to the surface of a reinforcement. CONSTITUTION:Magnesium salt and aluminum salt are newly added, other than the conventional organic binder, as binder for an inorganic reinforcement, such as alumina short fiber and aluminum borate whisker, and also water is added and they are mixed. The resulting mixture is poured into the desired mold so as to be formed into a molded body. This molded body is dried and burnt. By this method, the molded reinforcement body for composite material can be produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はアルミニウム合金やマグ
ネシウム合金等を強化するために用いる複合材料用強化
材成形体及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reinforcing material compact for composite materials used for strengthening aluminum alloys, magnesium alloys and the like, and a method for producing the same.

【0002】[0002]

【従来の技術】一般に短繊維またはウィスカを用いて強
化するアルミニウム合金基複合材料等の高圧鋳造による
製造に於いて、複合材料の形状や繊維の体積率,分散状
態の制御のために、アルミナ質短繊維やホウ酸アルミニ
ウムウィスカなどの無機質強化材を予め有機質バインダ
−或いはSiO2で固定させ、強化材成形体を形成し、
その強化材成形体にアルミニウム合金やマグネシウム合
金等を含浸させて複合材の強化が行われている。
2. Description of the Related Art Generally, in the production of aluminum alloy matrix composites reinforced with short fibers or whiskers by high pressure casting, alumina material is used to control the shape of composite material, volume ratio of fibers, and dispersion state. An inorganic reinforcing material such as short fibers or aluminum borate whiskers is previously fixed with an organic binder or SiO 2 to form a reinforcing material molded body,
The composite material is strengthened by impregnating the reinforcing material compact with an aluminum alloy, a magnesium alloy, or the like.

【0003】この前記強化材成形体の第1製造方法とし
ては、先ずアルミナ質短繊維やホウ酸アルミニウムウィ
スカなどの無機質強化材に水と有機質バインダ−とを添
加して混合し、この混合物を所望の型に流し込んで成形
体を形成させ、該成形体を乾燥させると共に焼成して成
す製造方法である。
As a first method for producing the above-mentioned molded body of reinforcing material, first, water and an organic binder are added to an inorganic reinforcing material such as alumina short fibers and aluminum borate whiskers and mixed, and this mixture is desired. It is a manufacturing method in which the molded body is formed by pouring it into the mold, and the molded body is dried and baked.

【0004】また前記強化材成形体の第2製造方法とし
ては、前記無機質強化材に水とSiO2ゾル、或いは必
要に応じて有機質バインダ−を添加させて混合し、この
混合物を所望の型に流し込んで成形体を形成させ、該成
形体を乾燥させると共に焼成して成す製造方法である。
In the second method for producing the reinforcing material molded body, water and SiO 2 sol or, if necessary, an organic binder are added to the inorganic reinforcing material and mixed, and the mixture is made into a desired mold. It is a manufacturing method in which a molded body is formed by pouring, and the molded body is dried and baked.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、第1製
造方法によって得られた強化材成形体は、乾燥された状
態では強度が大きいが、それを焼成すると有機質バイン
ダ−が燃えて無くなり、前記有機質バインダ−はバイン
ダ−としての役目を失ってしまう。このため、前記強化
材成形体の強度が著しく低下し、輸送中に強化材成形体
は破損され易く、且つ高圧鋳造する際、それを金型にセ
ットする時にも破損し易くなる。従って、高圧鋳造して
金属湯を含浸させ複合化する時に前記強化材成形体が容
易に破損されてしまう事故は多く発生していた。
However, the reinforcing material molded body obtained by the first manufacturing method has a high strength in a dried state, but when it is fired, the organic binder burns out and the organic binder is absent. − Loses its role as a binder. For this reason, the strength of the reinforcing material molded body is remarkably reduced, the reinforcing material molded body is easily damaged during transportation, and is also easily damaged when high pressure casting is carried out and set in a mold. Therefore, there have been many accidents in which the reinforcing material molded body is easily damaged when high pressure casting is performed to impregnate the molten metal with the composite to form a composite.

【0006】又、第2製造方法によって得られた強化材
成形体は、焼成時に有機質バインダ−が燃えて無くなっ
てしまうが、SiO2が残存しているので、著しい強度
の低下は無くなる。しかし、この強化材成形体は、高圧
鋳造してアルミニウム合金やマグネシウム合金等の金属
湯を含浸させて複合化を行うと、前記SiO2は前記金
属湯に接する時に、容易に還元されSiが合金中に溶解
すると共にγ−Al23が強化材の表面に生成する。こ
の生成したSiは凝固組織に粗大粒子として複合材の欠
陥とも成り、またアルミニウム合金やマグネシウム合金
等の重要な合金元素であるMgを容易に奪う。この結
果、バインダ−であるSiO2が消滅して強化材成形体
の軟化を引き起こし、強度が激減する。該軟化の現象は
特に寸法の大きな複合材を製造する時に影響が大きくな
り、従って寸法の大きな複合材の製造が出来ない等の問
題点があった。
Further, in the reinforcing material molded body obtained by the second manufacturing method, the organic binder burns out during firing, but since SiO 2 remains, the strength is not significantly reduced. However, when this reinforcing material compact is subjected to high pressure casting and impregnated with a molten metal such as an aluminum alloy or a magnesium alloy to form a composite, the SiO 2 is easily reduced when contacting with the molten metal and Si is alloyed. Γ-Al 2 O 3 is formed on the surface of the reinforcing material while being dissolved therein. The generated Si becomes defects in the composite material as coarse particles in the solidified structure, and easily deprives Mg which is an important alloying element such as aluminum alloy and magnesium alloy. As a result, the binder, SiO 2 , disappears, causing softening of the reinforcing material molded body, resulting in a drastic decrease in strength. The phenomenon of softening has a large influence particularly when manufacturing a composite material having a large size, and thus there is a problem that a composite material having a large size cannot be manufactured.

【0007】図4は金属湯にMgが固溶されて減少する
状態を説明する図であり、これは図1の状態から切り出
された従来品サンプル、縦100mm,横100mmの断面
におけるMg分布を示した図である。このMg分布状態
を詳細に説明すると、強化材成形体の上方から金属湯が
注入されて浸透しながら複合材を製作する関係上、下方
へ行くに従ってMgが減少し、又、周囲からも金属湯が
浸透する関係上、中心部へ行くに従ってMgを減少させ
ることが判明した。この結果、複合材の強度は所望の半
分以下の強度に低下してしまう箇所が発生することも他
の実験で判明し、且つ、この強度低下原因はバインダ−
のSiO2にあることが突き止めるに至ったのである。
そこで本発明者はSiO2に代替出来る安定した新たな
バインダ−の開発に着眼したのである。
FIG. 4 is a diagram for explaining the state in which Mg is solid-dissolved in the molten metal and decreases. This is a conventional product sample cut out from the state of FIG. 1, showing the Mg distribution in the cross section of 100 mm in length and 100 mm in width. It is the figure shown. This Mg distribution state will be described in detail. Since the molten metal is injected from the upper side of the reinforcing material molded body to permeate the composite material, Mg decreases as it goes downward, and the molten metal from the surroundings also decreases. It has been found that the Mg content decreases toward the central part due to the penetration of Mg. As a result, it was found in another experiment that the strength of the composite material was reduced to less than half the desired strength, and the cause of this strength reduction was the binder.
It came to discover that it was in SiO 2 .
Therefore, the present inventor has focused on the development of a new stable binder that can substitute for SiO 2 .

【0008】本発明は強化材成形体の強度を充分に保
ち、且つアルミニウム合金やマグネシウム合金等の金属
湯に対して熱的強度が極めて安定可能となり、しかも大
きな寸法の複合材用の強化も可能と成る複合材料用強化
材成形体及びその製造方法を提供することを目的とす
る。
According to the present invention, the strength of the reinforcing material molded body can be sufficiently maintained, and the thermal strength can be extremely stable against metal hot water such as aluminum alloy and magnesium alloy, and further, strengthening for large size composite materials is possible. It is an object of the present invention to provide a reinforcing material molded body for composite material and a method for producing the same.

【0009】[0009]

【課題を解決するための手段】本発明は上記問題点を消
去するためになされたものであり、つまり複合材料用強
化材成形体は、アルミナ質短繊維やホウ酸アルミニウム
ウィスカなどの無機質強化材のバインダ−として、従来
の有機質バインダ−の他に、マグネシウム塩とアルミニ
ウム塩を新たに添加させて成る。またその製造方法は、
前記無機質強化に、マグネシウム塩とアルミニウム塩を
少なくとも添加すると共に水を入れて混合し、この混合
物を所望の型に流し込んで成形体を形成させ、該成形体
を乾燥させると共に焼成して成る強化材成形体の製造方
法である。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, that is, a reinforcing material molded body for composite material is an inorganic reinforcing material such as alumina short fiber or aluminum borate whisker. In addition to the conventional organic binder, a magnesium salt and an aluminum salt are newly added as the binder of 1. The manufacturing method is
At least a magnesium salt and an aluminum salt are added to the above-mentioned inorganic reinforcement, water is added and mixed, the mixture is poured into a desired mold to form a molded body, and the molded body is dried and fired to obtain a reinforcing material. It is a manufacturing method of a compact.

【0010】[0010]

【作用】次に本発明の作用を実験を通して詳細に説明す
る。先ずホウ酸アルミニウムウィスカ(9Al23・2
23 四国化成工業アルボレックスG)を100部
と、マグネシウム塩(MgCl2・6H2O)を3.5部
と、アルミニウム塩(AlCl3・6H2O)を5部とか
ら成る本発明の強化材成形体が、ウィスカ体積率20
%,直径100mm,高さ100mmの円柱状に予め形成さ
れ焼成したものを用意する。又、ホウ酸アルミニウムウ
ィスカ(9Al23・2B23)を100部と、SiO
2ゾルを2部とから成る従来の強化材成形体が上記条件
の円柱状に予め形成され焼成したものを用意して置く。
次に本発明品と従来品の強化材成形体を所定の金型に順
次セットする。尚、この時、前記強化材成形体は800
℃に加熱し、金型も250℃に予め加熱された状態のも
のを使用する。強化材成形体をセットした後、予め加熱
された金属湯(Al−1重量%Mg−0.6重量%S
i)を前記金型に注入し、強化材成形体へ金属湯が充分
に浸透するように鋳造加圧力1000Kg/cm2を加えて鋳
造を行う。そして複合化されたものは直径100mm,高
さ100mmの円柱状に形成して複合材が製造されるので
ある。
Next, the operation of the present invention will be described in detail through experiments. First aluminum borate whisker (9Al 2 O 3 · 2
Book consists of a B 2 O 3 Shikoku ALBOREX G) 100 parts, and 3.5 parts of a magnesium salt (MgCl 2 · 6H 2 O) , and aluminum salt (AlCl 3 · 6H 2 O) 5 parts The reinforcing material molding of the invention has a whisker volume ratio of 20.
%, A diameter of 100 mm, and a height of 100 mm are prepared in advance and prepared in a cylindrical shape. Also, 100 parts of aluminum borate whiskers (9Al 2 O 3 .2B 2 O 3 ) and SiO 2
A conventional reinforcing material molded body composed of 2 parts of 2 sol is preliminarily formed into a cylindrical shape under the above-mentioned conditions and fired.
Next, the reinforcing material molded bodies of the present invention product and the conventional product are sequentially set in a predetermined mold. At this time, the reinforcing material compact is 800
The mold is heated to 250 ° C., and the mold is also preheated to 250 ° C. After setting the reinforcing material compact, preheated metal water (Al-1 wt% Mg-0.6 wt% S
i) is poured into the mold, and a casting pressure of 1000 kg / cm 2 is applied so that the molten metal can sufficiently penetrate into the reinforcing material compact, and casting is performed. Then, the composite material is formed into a cylindrical shape having a diameter of 100 mm and a height of 100 mm to manufacture a composite material.

【0011】前記本発明品を用いたものと、従来品を用
いたものをそれぞれの複合材から図1に示す如き寸法の
サンプルを切り出す。つまり縦100mm,横100mm,
幅10mmのサンプルを切り出し、それを更に上から下方
に向って10mmの幅で順次小きざみにし、図2に示す如
きNo01〜No10迄のサンプルを作り、それらをT6処
理して引張試験片とする。処理後、本発明品の引張試験
片と従来品の引張試験片とを室温で引張試験を行う。そ
の試験結果は図3に示す如く本発明品は白丸で示し、従
来品は黒丸で示すデ−タ−を得た。
Samples having the dimensions shown in FIG. 1 are cut out from the composite material of each of the product using the product of the present invention and the product using the conventional product. In other words, length 100mm, width 100mm,
A sample with a width of 10 mm is cut out, and it is further stepped from top to bottom with a width of 10 mm to make samples of No01 to No10 as shown in FIG. .. After the treatment, the tensile test piece of the present invention and the conventional tensile test piece are subjected to a tensile test at room temperature. As a result of the test, as shown in FIG. 3, the data of the present invention is shown by white circles and the conventional product is shown by black circles.

【0012】このデ−タ−から分かるように本発明品
は、従来品の強度バラツキが約3割もあるのに比べ、強
度バラツキが約1割であり、複合材の位置による変化が
少ない。また最低強度を比べると、本発明品は従来品よ
りも約5割向上したことが確認された。尚、強化材成形
体の結合部分のX線回折分析を行ったところ、ホウ酸ア
ルミニウムの他にMgAl24のピ−クが現われ、Mg
Al24(スピネル)が生成されてバインダ−の役目を
充分に成していることが判明した。又、この強化材成形
体の中のウィスカの結合部分は、焼成後は金属湯と反応
しないスピネルがMgCl2(マグネシウム塩)とAl
Cl3(アルミニウム塩)とによって生じ、それがウィ
スカの間で結合がされている状態が確認された。更にE
PMAによる線分析を行って確認したところ、明らかな
Mgの偏析の様子は観察されなかった。従ってバインダ
−はMgAl24(スピネル)になっており、この成分
はMgやAlとの反応は殆ど起こっていない。
As can be seen from this data, the product of the present invention has a strength variation of about 10% as compared with the strength variation of the conventional product, which is about 10%, and the change due to the position of the composite material is small. Further, when the minimum strengths were compared, it was confirmed that the product of the present invention was improved by about 50% over the conventional product. An X-ray diffraction analysis of the bonded portion of the reinforcing material molded body revealed that a peak of MgAl 2 O 4 appeared in addition to aluminum borate.
It was found that Al 2 O 4 (spinel) was generated and fully served as a binder. In addition, in the joint portion of the whiskers in this reinforcing material molded body, spinel that does not react with the molten metal after firing is MgCl 2 (magnesium salt) and Al.
It was confirmed that Cl 3 (aluminum salt) caused the bond between whiskers. Further E
When the line analysis by PMA was performed and confirmed, no clear appearance of segregation of Mg was observed. Therefore, the binder is MgAl 2 O 4 (spinel), and this component hardly reacts with Mg or Al.

【0013】[0013]

【実施例】次に本発明の実施例について説明する。先
ず、無機質強化材としてホウ酸アルミニウムウィスカ
(9Al23・2B23)を用い、マグネシウム塩とし
てMgCl2・6H2Oを用い、アルミニウム塩にはAl
Cl3・6H2Oを用いる。また有機質バインダ−として
ポリビニルアルコ−ルを用いる。尚、前記マグネシウム
塩としてはMgCl2以外に、MgSO4,Mg(N
32などを用い、前記アルミニウム塩としてはAlC
3以外に、Al2(SO43,アルミニウムみょうばん
等を用い、更に前記有機質バインダ−としてはポリビニ
ルアルコ−ル以外に、カルボキシメチルセルロ−ス,で
んぷん等を用いても良い。
EXAMPLES Next, examples of the present invention will be described. First, using aluminum borate whiskers (9Al 2 O 3 · 2B 2 O 3) as an inorganic reinforcing material, using a MgCl 2 · 6H 2 O as the magnesium salt, the aluminum salt Al
Cl 3 .6H 2 O is used. Polyvinyl alcohol is used as the organic binder. As the magnesium salt, in addition to MgCl 2 , MgSO 4 , Mg (N
O 3 ) 2 and the like, and the aluminum salt is AlC
In addition to l 3 , Al 2 (SO 4 ) 3 , aluminum alum or the like may be used, and as the organic binder, carboxymethyl cellulose, starch or the like may be used other than polyvinyl alcohol.

【0014】次に本発明の製造方法について説明する
と、先ずホウ酸アルミニウムウィスカ(9Al23・2
23)を100部に、MgCl2・6H2Oを3〜3.
5部と、AlCl3・6H2Oを4.5〜5部と、ポリビ
ニルアルコ−ル2〜3部とを添加すると共に水を100
0部入れて混合させる。そしてこの混合物を所望の型に
流し込んで成形体を形成する。尚、この成形体の大きさ
は焼成後、直径100mm,高さ100mm,ウィスカ体積
率20%の円柱状に成るように予め設定させておく。次
に前記成形体を型から出して自然乾燥させるか或いは急
ぎの時には約100℃の温度で乾燥させる。乾燥後、こ
の成形体を800〜1000℃の温度で約2時間焼成さ
せて強化材成形体が完成するのである。尚、前記乾燥時
間,焼成時間は成形体の大きさによって変化する。又前
記MgCl2・6H2Oの添加量は最小値0.1部〜最大
値7部とし、前記AlCl3・6H2Oの添加量は最小値
0.5部〜最大値7部とする。この最小値よりもマグネ
シウム塩,アルミニウム塩の添加量が少なくなると、バ
インダ−の役目が出来なくなり、又、この最大値よりも
添加量が多くなると、強化材と金属湯とのぬれが悪くな
り、強化に対して悪影響を生じるのである。
Next, the manufacturing method of the present invention will be described. First, aluminum borate whiskers (9Al 2 O 3 .2) are used.
The B 2 O 3) to 100 parts of the MgCl 2 · 6H 2 O 3~3.
5 parts, 4.5 to 5 parts of AlCl 3 .6H 2 O and 2 to 3 parts of polyvinyl alcohol are added, and 100 parts of water is added.
Add 0 parts and mix. Then, this mixture is poured into a desired mold to form a molded body. It should be noted that the size of this molded body is preset after firing so that it has a cylindrical shape with a diameter of 100 mm, a height of 100 mm, and a whisker volume ratio of 20%. Next, the molded body is taken out of the mold and naturally dried, or in a urgent case, dried at a temperature of about 100 ° C. After drying, the molded body is fired at a temperature of 800 to 1000 ° C. for about 2 hours to complete the reinforcing material molded body. The drying time and firing time vary depending on the size of the molded body. The addition amount of MgCl 2 .6H 2 O is set to a minimum value of 0.1 part to a maximum value of 7 parts, and the addition amount of AlCl 3 .6H 2 O is set to a minimum value of 0.5 parts to a maximum value of 7 parts. When the addition amount of magnesium salt or aluminum salt is less than this minimum value, the function of the binder cannot be performed, and when the addition amount is more than this maximum value, the wettability between the reinforcing material and the metal hot water becomes worse, It has a negative effect on the strengthening.

【0015】[0015]

【発明の効果】このように本発明品の強化材成形体が用
いられて複合材を製作することにより、従来のSiO2
のバインダ−を用いた場合に生じていたSi粒子の生成
やMgの反応による偏析などが殆ど無くなり、複合材へ
の悪影響等の問題が解決できる。
As described above, by manufacturing a composite material using the reinforcing material molded body of the present invention, the conventional SiO 2
The generation of Si particles and segregation due to the reaction of Mg, which occurred when the binder of No. 1 was used, is almost eliminated, and the problem of adverse effects on the composite material can be solved.

【0016】又、バインダ−はマグネシウム塩とアルミ
ニウム塩を用いるので、混合してもゲル化されず溶液状
であるため、強化材表面に薄く均一に付着し、その結
果、強化の効果は大きく、強化材成形体の強度及び複合
材の強度も向上可能と成る。
Further, since the magnesium salt and the aluminum salt are used as the binder, even if they are mixed, they are not gelled and are in a solution state, so that they adhere thinly and uniformly to the surface of the reinforcing material, and as a result, the effect of strengthening is large, The strength of the reinforcing material molded body and the strength of the composite material can also be improved.

【0017】本発明の強化材成形体を用いれば、それ自
体の強度が従来品よりも向上し、高圧鋳造に充分耐える
ことができ、大きなサイズの複合材料が供給できる。従
って押出用ビレット,内燃機関用エンジンブロック,船
舶用ピストンの強化用材料として利用することが可能と
成った。
By using the reinforcing material molded body of the present invention, the strength of the molded body itself is improved as compared with the conventional product, and it is possible to sufficiently withstand high pressure casting and to supply a large-sized composite material. Therefore, it can be used as a reinforcing material for extrusion billets, internal combustion engine blocks, and marine pistons.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の強化材成形体を用いて鋳造された複合
材からサンプルを切り出す説明図である。
FIG. 1 is an explanatory view of cutting a sample from a composite material cast using a reinforcing material molded body of the present invention.

【図2】図1を細かく切り出した引張用試験片を作る状
態を示す説明図である。
FIG. 2 is an explanatory view showing a state in which a tensile test piece obtained by finely cutting out FIG. 1 is produced.

【図3】図2の引張用試験片のデ−タ−結果を示す説明
図である。
3 is an explanatory view showing the data results of the tensile test piece of FIG. 2. FIG.

【図4】図1の従来品サンプルのMg分布図である。FIG. 4 is a Mg distribution diagram of the conventional sample of FIG.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 アルミナ質短繊維やホウ酸アルミニウム
ウィスカなどの無機質強化材と、マグネシウム塩と、ア
ルミニウム塩とから成る複合材料用強化材成形体。
1. A reinforcing material molded body for a composite material, which comprises an inorganic reinforcing material such as alumina short fibers or aluminum borate whiskers, a magnesium salt, and an aluminum salt.
【請求項2】 前記無機質強化に、マグネシウム塩とア
ルミニウム塩とを少なくとも添加すると共に水を入れて
混合し、この混合物を所望の型に流し込んで成形体を形
成させ、該成形体を乾燥させると共に焼成して成る複合
材料用強化材成形体の製造方法。
2. To the inorganic reinforcement, at least magnesium salt and aluminum salt are added, water is added and mixed, the mixture is poured into a desired mold to form a molded body, and the molded body is dried. A method for manufacturing a reinforcing material compact for a composite material, which is formed by firing.
JP32525091A 1991-11-13 1991-11-13 Molded body of reinforcement for composite material and its production Pending JPH05132728A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32525091A JPH05132728A (en) 1991-11-13 1991-11-13 Molded body of reinforcement for composite material and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32525091A JPH05132728A (en) 1991-11-13 1991-11-13 Molded body of reinforcement for composite material and its production

Publications (1)

Publication Number Publication Date
JPH05132728A true JPH05132728A (en) 1993-05-28

Family

ID=18174716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32525091A Pending JPH05132728A (en) 1991-11-13 1991-11-13 Molded body of reinforcement for composite material and its production

Country Status (1)

Country Link
JP (1) JPH05132728A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1987002865A1 (en) * 1985-11-11 1987-05-21 Nippon Kayaku Kabushiki Kaisha Insecticidal compositions
US6521061B1 (en) * 2000-04-28 2003-02-18 Hiroshima University Preforms, metal matrix composite materials using said preforms, and producing processes thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1987002865A1 (en) * 1985-11-11 1987-05-21 Nippon Kayaku Kabushiki Kaisha Insecticidal compositions
US6521061B1 (en) * 2000-04-28 2003-02-18 Hiroshima University Preforms, metal matrix composite materials using said preforms, and producing processes thereof

Similar Documents

Publication Publication Date Title
US4715422A (en) Reinforcement of articles of cast metal or metal alloy
US6180258B1 (en) Metal-matrix composites and method for making such composites
JPH0811813B2 (en) Fiber-reinforced metal matrix composite
KR20000048472A (en) Core Compositions and Articles with Improved Performance for Use in Castings for Gas Turbine Applications
NO893987D0 (en) PROCEDURE FOR AA FORMING COMPOSITES WITH METAL MATRIX FOR DISPERSION CASTING.
CN1142006A (en) Cylinder bush and cylinder body and method for making same
AU632148B2 (en) Ceramic material
US5141683A (en) Method of producing reinforced materials
US6044894A (en) Method for preparing a light metal or light metal alloy based composite product
JPH05132728A (en) Molded body of reinforcement for composite material and its production
JPH02310329A (en) Manufacture of particle dispersion composite
JP3286102B2 (en) Composite casting and manufacturing method thereof
CA2242756C (en) Preform and production method therefor
JP3628198B2 (en) Preform for metal matrix composite and manufacturing method thereof
Suganuma et al. Fabrication of Al2O3 fiber preform with γ-Al2O3 powder binder for 6061 alloy matrix composites
JPH1129831A (en) Preform for metal matrix composite, and its production
JPH10280067A (en) Production of composite material
JPH0293030A (en) Manufacture of fiber reinforced aluminum alloy composite material
JP3171287B2 (en) Fiber molding for reinforced metal and method for producing the same
JP2792192B2 (en) Method for producing titania whisker reinforced Al-based composite material
JPS61127836A (en) Manufacture of potassium titanate fiber reinforced metal material
JPH03211244A (en) Manufacture of alumina short fiber reinforced magnesium metal
JPS6160257A (en) Production of composite metallic material
JPS60138031A (en) Fibrous molding for composite material
JP2003253308A (en) Method for manufacturing aluminum-base composite material