JPH051317A - Plasma heating method for molten steel - Google Patents

Plasma heating method for molten steel

Info

Publication number
JPH051317A
JPH051317A JP3151638A JP15163891A JPH051317A JP H051317 A JPH051317 A JP H051317A JP 3151638 A JP3151638 A JP 3151638A JP 15163891 A JP15163891 A JP 15163891A JP H051317 A JPH051317 A JP H051317A
Authority
JP
Japan
Prior art keywords
molten steel
plasma
gas
arc
holding container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3151638A
Other languages
Japanese (ja)
Other versions
JP2923085B2 (en
Inventor
Hideki Iritani
英樹 入谷
Tadashi Saito
忠 斎藤
Masahiro Maeda
昌宏 前田
Junichiro Katsuta
順一郎 勝田
Katsuyoshi Matsuo
勝良 松尾
Hideaki Fujimoto
英明 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP15163891A priority Critical patent/JP2923085B2/en
Publication of JPH051317A publication Critical patent/JPH051317A/en
Application granted granted Critical
Publication of JP2923085B2 publication Critical patent/JP2923085B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)
  • Furnace Details (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Abstract

PURPOSE:To obtain high heating output with plasma arc for heating molten steel while preventing oxidizing and nitriding of the molten steel in a molten steel holding vessel. CONSTITUTION:By using a plasma torch 3 fitted to a cover body 1a in the molten steel holding vessel 1 and supplying gas for working Ar plasma, the molten steel M is heated. At this time, gas supplying rate for Ar sealed gas supplied in the molten steel holding vessel 1 in order to prevent the oxidizing and the nitriding of molten steel M, is controlled so that concns. of oxygen and nitrogen in the molten steel holding vessel 1 can be kept in the range possible to prevent the oxidizing and the nitriding of molten steel M and make arc voltage in the plasma arc P high. By this method, the arc voltage can be made to high with thermal pinch effect due to increase of supplying rate of the gas for working Ar plasma and action of the oxygen and the nitrogen having larger potential inclination in comparison with Ar sealed gas.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、鉄鋼業における取
鍋、タンディシュなどの溶鋼保持容器の内部に収容され
た溶鋼の加熱をプラズマトーチから発生させたプラズマ
アークによって行う、溶鋼のプラズマ加熱方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plasma heating method for molten steel in which a molten steel contained in a molten steel holding container such as a ladle and a tundish in a steel industry is heated by a plasma arc generated by a plasma torch. It is a thing.

【0002】[0002]

【従来の技術】従来、この種の溶鋼のプラズマ加熱方法
としては、図4に示すように、貫通孔51bを有する蓋体
51aが配された溶鋼保持容器51の内部に、溶鋼Mの酸化
や窒化を防ぐための不活性シールドガスとしてのAr(ア
ルゴン)シールドガスを、上記蓋体51aの別の貫通孔に
挿通されたシールドガス用配管52を通して一定量供給し
ながら、プラズマ作動用ガスとしてのArプラズマ作動用
ガスが供給され上記蓋体51aの貫通孔51bに挿通された
複数のプラズマトーチ53から発生させたプラズマアーク
Pにより、溶鋼保持容器51内の溶鋼Mの加熱を行うよう
にしている。
2. Description of the Related Art Conventionally, as a plasma heating method for molten steel of this kind, as shown in FIG. 4, a lid body having a through hole 51b is used.
Ar (argon) shield gas as an inert shield gas for preventing the oxidation or nitridation of the molten steel M was inserted into another through hole of the lid 51a inside the molten steel holding container 51 in which 51a was arranged. Plasma arc P generated from a plurality of plasma torches 53 which are supplied with Ar plasma operating gas as plasma operating gas and are inserted through the through holes 51b of the lid 51a while supplying a constant amount through the shield gas pipe 52. Thus, the molten steel M in the molten steel holding container 51 is heated.

【0003】すなわち、従来は、溶鋼保持容器51内に溶
鋼Mの酸化や窒化を防ぐために供給される不活性シール
ドガスと、プラズマトーチ53に供給されるプラズマ作動
用ガスとは、それぞれ独立にそのガス供給量が設定され
ていた。
That is, conventionally, the inert shield gas supplied to prevent the oxidation and nitridation of the molten steel M in the molten steel holding container 51 and the plasma working gas supplied to the plasma torch 53 are independent of each other. The gas supply was set.

【0004】[0004]

【発明が解決しようとする課題】ところで、プラズマア
ークの加熱出力は、プラズマアーク電流(以下、単にア
ーク電流という。)とプラズマアーク電圧(以下、単に
アーク電圧という。)との積により定められる。そこ
で、溶鋼を能率よく加熱するためにプラズマアークによ
る高い加熱出力を得るには、アーク電流はプラズマトー
チの電極の溶損速度が大きくならないようにその電流密
度が制限されることから、アーク電圧を高くすることが
必要となる。
The heating output of the plasma arc is determined by the product of the plasma arc current (hereinafter simply referred to as arc current) and the plasma arc voltage (hereinafter simply referred to as arc voltage). Therefore, in order to obtain a high heating output by the plasma arc in order to efficiently heat the molten steel, the arc current is limited so that the melting rate of the electrodes of the plasma torch does not increase, so the arc voltage is It is necessary to raise it.

【0005】この場合、アーク電圧を高くする手段とし
て2つの手段が考えられる。そのひとつは、プラズマ作
動用ガスとして電位傾度の大きいガスを用いることによ
りアーク電圧を高くすることである。溶鋼のプラズマ加
熱に際しては、プラズマ作動用ガスとしては、安定した
プラズマアークが形成できるとともに比較的安価でその
取扱いが簡便で、しかも溶鋼を酸化や窒化させないとい
うことから、上述したArガスが一般に用いられている。
このため、Arガスではプラズマアークの電位傾度が200
〜300V/mと小さく、アーク電圧を高めることができず、
従来の方法では、プラズマアークによる加熱出力が不足
する場合があるという欠点があった。
In this case, two means can be considered as means for increasing the arc voltage. One of them is to increase the arc voltage by using a gas having a large potential gradient as the plasma operating gas. For plasma heating of molten steel, the above-mentioned Ar gas is generally used as a gas for plasma operation because a stable plasma arc can be formed, it is relatively inexpensive and easy to handle, and it does not oxidize or nitride the molten steel. Has been.
Therefore, with Ar gas, the potential gradient of the plasma arc is 200
As small as ~ 300V / m, the arc voltage cannot be increased,
The conventional method has a drawback that the heating output by the plasma arc may be insufficient.

【0006】一方、他の手段は、プラズマトーチに供給
するプラズマ作動用ガスの供給量を増やすことである。
これにより、サーマルピンチ効果によってアーク柱が絞
られてアークの断面積が減少し、一般に電位傾度が大き
くなる。ところが、溶鋼保持容器内にて溶鋼の加熱を行
う場合には、この手段によってもアーク電圧を十分に高
くできない。
On the other hand, another means is to increase the supply amount of the plasma working gas supplied to the plasma torch.
This narrows the arc column due to the thermal pinch effect, reduces the cross-sectional area of the arc, and generally increases the potential gradient. However, when the molten steel is heated in the molten steel holding container, the arc voltage cannot be sufficiently increased even by this means.

【0007】このことについて、溶鋼保持容器内での溶
鋼加熱におけるプラズマアークの様子を示す模式図の図
3、上記図4を参照して以下に説明すると、図3に示す
ように、プラズマアークPにおけるプラズマトーチTの
出口寄りの部分(図3のAで示される部分)は、Arプラ
ズマ作動用ガスによって十分にシールドされているの
で、アークに溶鋼保持容器内の雰囲気が巻き込まれてい
ない状態となっている。これに対して、プラズマアーク
Pにおける溶鋼面寄りの部分(図3のBで示される部
分)は、溶鋼保持容器とその蓋体との隙間やプラズマト
ーチを挿通するための貫通孔の隙間などから進入した大
気の酸素や窒素を含む雰囲気がアークに巻き込まれた状
態となっており、この酸素及び窒素はArに比べエネルギ
ー消費量が大きく電位傾度が大きいので、上記プラズマ
トーチTの出口寄りの部分Aよりもその電位傾度が大き
くなっている。
This will be described below with reference to FIG. 3 which is a schematic diagram showing a state of plasma arc in heating molten steel in a molten steel holding container and FIG. 4 described above. As shown in FIG. Since the portion near the outlet of the plasma torch T (the portion indicated by A in FIG. 3) is sufficiently shielded by the Ar plasma working gas, it is considered that the atmosphere in the molten steel holding container is not caught in the arc. Is becoming On the other hand, the portion of the plasma arc P that is closer to the molten steel surface (the portion indicated by B in FIG. 3) is the gap between the molten steel holding container and its lid, the gap of the through hole for inserting the plasma torch, etc. The atmosphere containing oxygen and nitrogen in the invading atmosphere is in a state of being caught in the arc. Since oxygen and nitrogen consume a large amount of energy and have a large potential gradient as compared with Ar, a portion near the exit of the plasma torch T described above. The potential gradient is larger than A.

【0008】ところが、プラズマ作動用ガスの供給量を
増やすと、上記プラズマアークPの溶鋼面寄りの部分B
の周辺における雰囲気中の酸素や窒素がかなりの程度排
除され、プラズマ作動用ガス供給量を増やす前に比べ、
この部分Bの電位傾度が小さくなり、トータルとしては
アーク電圧はほとんど増加しない。このことにより、従
来の方法では、プラズマアークによる加熱出力をより高
めることができず、加熱出力が不足する場合があった。
However, when the supply amount of the plasma working gas is increased, the portion B of the plasma arc P near the molten steel surface is increased.
Oxygen and nitrogen in the atmosphere around the are removed to a large extent, compared to before increasing the plasma operation gas supply amount,
The potential gradient of this portion B becomes small, and the arc voltage hardly increases in total. Due to this, in the conventional method, the heating output by the plasma arc cannot be further increased, and the heating output may be insufficient.

【0009】この発明は、上記のような事情に鑑みてな
されたものであって、溶鋼保持容器の蓋体の貫通孔に挿
通されプラズマ作動用ガスが供給されるプラズマトーチ
から発生させたプラズマアークによって溶鋼保持容器内
の溶鋼を加熱するに際し、溶鋼の酸化や窒化を防ぐため
の溶鋼保持容器内に供給される不活性シールドガスのガ
ス供給量を、溶鋼保持容器内の酸素及び窒素の濃度が溶
鋼の酸化や窒化を防ぎ、かつプラズマ作動用ガスの供給
量を増加してもプラズマアークのアーク電圧を高めるこ
とができる範囲に保持されるように制御することによ
り、溶鋼保持容器内の溶鋼の酸化や窒化を防止しながら
プラズマアークによる高い加熱出力を得ることができ
る、溶鋼のプラズマ加熱方法の提供をその目的とする。
The present invention has been made in view of the above circumstances, and is a plasma arc generated from a plasma torch inserted into a through hole of a lid of a molten steel holding container and supplied with a plasma working gas. When heating the molten steel in the molten steel holding container, the gas supply amount of the inert shield gas supplied to the molten steel holding container to prevent the oxidation and nitriding of the molten steel is adjusted by the oxygen and nitrogen concentrations in the molten steel holding container. By preventing the oxidation and nitriding of the molten steel and maintaining it in a range where the arc voltage of the plasma arc can be increased even if the supply amount of the plasma working gas is increased, the molten steel in the molten steel holding container is controlled. An object of the present invention is to provide a plasma heating method for molten steel capable of obtaining a high heating output by a plasma arc while preventing oxidation and nitriding.

【0010】[0010]

【課題を解決するための手段】上記の目的を達成するた
めに、この発明による溶鋼のプラズマ加熱方法は、貫通
孔を有する蓋体が配された溶鋼保持容器の内部に不活性
シールドガスを供給しつつ、プラズマ作動用ガスが供給
され前記貫通孔に挿通されたプラズマトーチから発生さ
せたプラズマアークにより、前記溶鋼保持容器内の溶鋼
を加熱する溶鋼のプラズマ加熱方法において、前記不活
性シールドガスのガス供給量を、前記溶鋼保持容器内の
酸素濃度が0.2 〜3.0%、窒素濃度が0.8 〜12.0%の範
囲に保持されるように制御しながら、前記プラズマアー
クにより前記溶鋼を加熱することを特徴とする。
In order to achieve the above object, in the method for heating molten steel by plasma according to the present invention, an inert shield gas is supplied to the inside of a molten steel holding container provided with a lid having a through hole. While, in the plasma heating method of molten steel for heating the molten steel in the molten steel holding container by the plasma arc generated from the plasma torch supplied with the plasma working gas and inserted into the through hole, the inert shield gas The molten steel is heated by the plasma arc while controlling the gas supply amount so that the oxygen concentration in the molten steel holding container is kept in the range of 0.2 to 3.0% and the nitrogen concentration in the range of 0.8 to 12.0%. And

【0011】[0011]

【作用】上記構成による溶鋼のプラズマ加熱方法では、
溶鋼保持容器の蓋体の貫通孔に挿通されプラズマ作動用
ガスが供給されるプラズマトーチから発生させたプラズ
マアークによって溶鋼保持容器内の溶鋼を加熱するに際
し、溶鋼の酸化や窒化を防ぐための溶鋼保持容器内に供
給される不活性シールドガスのガス供給量を、溶鋼保持
容器内の酸素及び窒素の濃度が溶鋼の酸化や窒化を防
ぎ、かつプラズマ作動用ガスの供給量を増加してもプラ
ズマアークのアーク電圧を高めることができる範囲に保
持されるように制御する。これにより、プラズマ作動用
ガスの供給量を増加することによるサーマルピンチ効果
と不活性シールドガスに比べ大きい電位傾度を有する酸
素及び窒素の作用とにより、アーク電圧を高めることが
でき、溶鋼の酸化や窒化を防止しながらプラズマアーク
による高い加熱出力を得ることができる。
In the plasma heating method for molten steel having the above structure,
Molten steel to prevent oxidation and nitridation of molten steel when heating the molten steel in the molten steel holding container by the plasma arc generated from the plasma torch that is inserted into the through hole of the lid of the molten steel holding container and supplied with the plasma working gas. The amount of inert shield gas supplied to the holding container is controlled by the plasma even if the concentration of oxygen and nitrogen in the molten steel holding container prevents the oxidation and nitridation of molten steel and increases the supply amount of plasma working gas. Control is performed so that the arc voltage of the arc is maintained in a range where it can be increased. Thereby, the arc voltage can be increased by the thermal pinch effect by increasing the supply amount of the plasma working gas and the action of oxygen and nitrogen having a larger potential gradient compared to the inert shield gas, and the molten steel can be oxidized or oxidized. A high heating output by the plasma arc can be obtained while preventing nitriding.

【0012】この場合、溶鋼保持容器内の酸素濃度が0.
2 〜3.0 %、かつ窒素濃度が0.8 〜12.0%の範囲に保持
されるように不活性シールドガスのガス供給量を制御す
ることが必要である。溶鋼保持容器内の酸素及び窒素の
濃度が上記範囲より低濃度では、電位傾度が大きくなる
ことによるプラズマアークのアーク電圧を高める効果が
十分発揮されず、上記範囲を超えると、溶鋼保持容器内
の溶鋼の酸化、窒化の程度が著しくなって溶鋼の品質が
低下し好ましくないからである。
In this case, the oxygen concentration in the molten steel holding container is 0.
It is necessary to control the gas supply amount of the inert shield gas so that the nitrogen concentration is maintained within the range of 2 to 3.0% and the nitrogen concentration within the range of 0.8 to 12.0%. When the concentration of oxygen and nitrogen in the molten steel holding container is lower than the above range, the effect of increasing the arc voltage of the plasma arc due to the increase in the potential gradient is not sufficiently exerted. This is because the degree of oxidation and nitriding of the molten steel becomes remarkable and the quality of the molten steel deteriorates, which is not preferable.

【0013】[0013]

【実施例】以下、実施例に基づいてこの発明を説明す
る。図1はこの発明を実施するための装置の構成説明図
である。
EXAMPLES The present invention will be described below based on examples. FIG. 1 is an explanatory diagram of the configuration of an apparatus for carrying out the present invention.

【0014】図1において、1は複数の貫通孔1bを有す
る蓋体1aが上部に配された溶鋼保持容器である。この溶
鋼保持容器1の蓋体1aには、溶鋼保持容器1内にArシー
ルドガスを供給するためのシールドガス用配管2が別の
貫通孔に挿通された状態で取り付けられる一方、複数の
プラズマトーチ(図においては2本)3が貫通孔1bにそ
れぞれ挿通された状態で取り付けられている。さらに、
蓋体1aには、この実施例では溶鋼保持容器1内のプラズ
マアークP周辺の雰囲気をサンプリングするための雰囲
気採取用配管4が取り付けられている。
In FIG. 1, reference numeral 1 is a molten steel holding container in which a lid 1a having a plurality of through holes 1b is arranged on the top. A shield gas pipe 2 for supplying an Ar shield gas into the molten steel holding container 1 is attached to the lid body 1a of the molten steel holding container 1 in a state of being inserted into another through hole, while a plurality of plasma torches are provided. (2 in the figure) 3 are attached in a state of being respectively inserted into the through holes 1b. further,
In this embodiment, an atmosphere collecting pipe 4 for sampling the atmosphere around the plasma arc P in the molten steel holding container 1 is attached to the lid 1a.

【0015】5はプラズマトーチ3にプラズマ作動用ガ
スとしてのArプラズマ作動用ガスを供給するためのプラ
ズマ作動用ガス配管であり、このプラズマ作動ガス用配
管5の途中にはプラズマ作動ガス用バルブ6が配設され
ている。7は上記シールドガス用配管2の途中に配設さ
れたシールドガス用バルブ、8は、上記雰囲気採取用配
管4を通して得られた雰囲気サンプルから溶鋼保持容器
内1の酸素及び窒素の濃度を時々刻々、つまりオンライ
ンで測定し、酸素及び窒素の濃度を示す信号を制御装置
9に与えるガス分析測定装置である。
Reference numeral 5 denotes a plasma working gas pipe for supplying an Ar plasma working gas as a plasma working gas to the plasma torch 3, and a plasma working gas valve 6 is provided in the middle of the plasma working gas pipe 5. Are arranged. Reference numeral 7 denotes a shield gas valve disposed in the middle of the shield gas pipe 2, and 8 denotes the oxygen and nitrogen concentrations in the molten steel holding container 1 from the atmosphere sample obtained through the atmosphere sampling pipe 4 every moment. That is, it is a gas analysis measuring device which is measured online and gives a signal indicating the concentration of oxygen and nitrogen to the control device 9.

【0016】制御装置9は、溶鋼保持容器1内の溶鋼M
のプラズマ加熱が開始されると、ガス分析測定装置8か
らの酸素及び窒素の濃度をそれぞれ示す信号を受けて、
溶鋼保持容器1内の酸素濃度が0.2 〜3.0 %、窒素濃度
が0.8 〜12.0%の範囲に保持されるように、シールドガ
ス用バルブ7の開度を調節して溶鋼保持容器1内へのAr
シールドガスの供給量を制御する装置である。また、こ
の制御装置9は、不活性シールドガス初期供給量設定信
号S1を受けてシールドガス用バルブ7の開度を調節して
プラズマ加熱の開始時における溶鋼保持容器1内へのAr
シールドガスの供給量を制御し、プラズマ作動用ガス供
給量設定信号S2を受けてプラズマ作動ガス用バルブ6の
開度を調節してプラズマトーチ3へのArプラズマ作動用
ガスの供給量が設定値になるように制御するようになっ
ている。
The control device 9 controls the molten steel M in the molten steel holding container 1.
When the plasma heating is started, the signals from the gas analysis and measurement device 8 indicating the concentrations of oxygen and nitrogen are received,
Ar to the molten steel holding container 1 by adjusting the opening of the shield gas valve 7 so that the oxygen concentration in the molten steel holding container 1 is kept in the range of 0.2 to 3.0% and the nitrogen concentration is kept in the range of 0.8 to 12.0%.
It is a device that controls the supply amount of the shield gas. Further, the control device 9 receives the inert shield gas initial supply amount setting signal S1 and adjusts the opening of the shield gas valve 7 to adjust the Ar into the molten steel holding container 1 at the start of plasma heating.
The shield gas supply amount is controlled, the opening amount of the plasma working gas valve 6 is adjusted in response to the plasma working gas supply amount setting signal S2, and the supply amount of the Ar plasma working gas to the plasma torch 3 is set to a set value. It is controlled to become.

【0017】以下、図1を参照しながら動作を説明する
と、溶鋼Mのプラズマ加熱を開始するに際し、溶鋼保持
容器1内へは不活性シールドガス初期供給量設定信号S1
に基づいて所定量のArシールドガスが連続的に供給され
ている。そして、プラズマ作動用ガス供給量設定信号S2
を受けてプラズマトーチ3へプラズマ加熱条件に応じて
設定された量のArプラズマ作動用ガスが供給され、図示
しないプラズマ加熱装置によってプラズマトーチ3から
プラズマアークPが発生される。
The operation will be described below with reference to FIG. 1. When the plasma heating of the molten steel M is started, the inert shield gas initial supply amount setting signal S1 is supplied to the molten steel holding container 1.
Based on the above, a predetermined amount of Ar shield gas is continuously supplied. Then, the plasma operation gas supply amount setting signal S2
In response, the plasma torch 3 is supplied with an amount of Ar plasma working gas set according to the plasma heating conditions, and a plasma arc P is generated from the plasma torch 3 by a plasma heating device (not shown).

【0018】プラズマアークPが発生すると、制御装置
9は、ガス分析測定装置8からの溶鋼保持容器1内の酸
素及び窒素の濃度をそれぞれ示す信号を受けて、溶鋼保
持容器1内の酸素濃度が0.2 〜3.0 %、窒素濃度が0.8
〜12.0%の範囲に保持されるように、シールドガス用バ
ルブ7の開度を調節して溶鋼保持容器1内へのArシール
ドガスの供給量を制御する。例えば、プラズマアークP
による加熱出力を高めるために、プラズマ作動用ガス供
給量設定信号S2が変更されてプラズマトーチ3へのArプ
ラズマ作動用ガス供給量が増加されると、溶鋼保持容器
1内の酸素濃度が0.2 〜3.0 %、窒素濃度が0.8 〜12.0
%の範囲に保持されるように、溶鋼保持容器1内へ供給
されるArシールドガスの供給量が減少される。
When the plasma arc P is generated, the control device 9 receives signals from the gas analysis and measurement device 8 respectively indicating the concentrations of oxygen and nitrogen in the molten steel holding container 1, and the oxygen concentration in the molten steel holding container 1 is changed. 0.2-3.0%, nitrogen concentration 0.8
The opening amount of the shield gas valve 7 is adjusted so that the amount of Ar shield gas supplied to the molten steel holding container 1 is controlled so as to be maintained in the range of ˜12.0%. For example, plasma arc P
In order to increase the heating output by the plasma working gas supply amount setting signal S2 is changed and the Ar plasma working gas supply amount to the plasma torch 3 is increased, the oxygen concentration in the molten steel holding container 1 becomes 0.2 to 3.0%, nitrogen concentration 0.8-12.0
The supply amount of the Ar shield gas supplied into the molten steel holding container 1 is reduced so that the molten steel holding container 1 is held in the range of%.

【0019】その結果、Arシールドガスのガス供給量
が、溶鋼保持容器1内の酸素及び窒素の濃度が溶鋼Mの
酸化や窒化を防ぎ、かつArプラズマ作動用ガス供給量を
増加してもプラズマアークPのアーク電圧を高めること
ができる範囲に保持されるように制御されるので、Arプ
ラズマ作動用ガスの供給量を増加することによるサーマ
ルピンチ効果とArシールドガスに比べ大きい電位傾度を
有する酸素及び窒素の作用とにより、アーク電圧を高め
ることができ、溶鋼保持容器1内の溶鋼Mの酸化や窒化
を防ぎながらプラズマアークPによる高い加熱出力が得
られる。
As a result, even if the gas supply amount of the Ar shield gas is such that the oxygen and nitrogen concentrations in the molten steel holding container 1 prevent the oxidation and nitridation of the molten steel M and the supply amount of the Ar plasma working gas is increased, Since the arc voltage of the arc P is controlled so as to be maintained within a range in which the arc voltage can be increased, oxygen having a thermal pinch effect by increasing the supply amount of the Ar plasma working gas and a potential gradient larger than that of the Ar shield gas. The arc voltage can be increased by the action of nitrogen and nitrogen, and a high heating output by the plasma arc P can be obtained while preventing the molten steel M in the molten steel holding container 1 from being oxidized or nitrided.

【0020】図2は、この発明に係るArプラズマ作動用
ガス供給量とアーク電圧との関係の一例を示す図であ
る。同図に示すように、プラズマアークPの周辺におけ
る酸素濃度が約 %、窒素濃度が約 %になるよう
にArシールドガスの供給量を制御しながら、Arプラズマ
作動用ガス供給量を20 Nm3/時間から60〜 100 Nm3/時
間に増加することにより、アーク電圧を約20%程度を高
めることができ、これにより、従来に比べ約20%程度高
いプラズマアークによる加熱出力を得ることができた。
FIG. 2 is a diagram showing an example of the relationship between the Ar plasma actuation gas supply amount and the arc voltage according to the present invention. As shown in the figure, the oxygen concentration around the plasma arc P is about %, Nitrogen concentration is approx. The arc voltage is approximately 20% by increasing the Ar plasma working gas supply amount from 20 Nm 3 / hour to 60 to 100 Nm 3 / hour while controlling the Ar shield gas supply amount so that it becomes 10%. It is possible to obtain a heating output by the plasma arc which is about 20% higher than the conventional one.

【0021】[0021]

【発明の効果】以上説明したように、この発明による溶
鋼のプラズマ加熱方法によれば、溶鋼保持容器の蓋体の
貫通孔に挿通されプラズマ作動用ガスが供給されるプラ
ズマトーチから発生させたプラズマアークによって溶鋼
保持容器内の溶鋼を加熱するに際し、溶鋼の酸化や窒化
を防ぐための溶鋼保持容器内に供給される不活性シール
ドガスのガス供給量を、溶鋼保持容器内の酸素及び窒素
の濃度が溶鋼の酸化や窒化を防ぎ、かつプラズマ作動用
ガスの供給量を増加してもプラズマアークのアーク電圧
を高めることができる範囲に保持されるように制御する
ようにしたので、プラズマ作動用ガスの供給量を増加す
ることによるサーマルピンチ効果と不活性シールドガス
に比べ大きい電位傾度を有する酸素及び窒素の作用とに
より、アーク電圧を高めることができ、溶鋼の酸化や窒
化を防止しながら従来に比べプラズマアークによる高い
加熱出力を得ることが可能となり、これにより、能率よ
く溶鋼をプラズマ加熱することができる。
As described above, according to the plasma heating method for molten steel according to the present invention, the plasma generated from the plasma torch inserted into the through hole of the lid of the molten steel holding container and supplied with the plasma working gas. When heating the molten steel in the molten steel holding container by the arc, the gas supply amount of the inert shield gas supplied to the molten steel holding container to prevent the oxidation and nitriding of the molten steel is determined by the oxygen and nitrogen concentrations in the molten steel holding container. Is controlled so as to prevent oxidation and nitriding of molten steel and to maintain the arc voltage of the plasma arc within a range in which the arc voltage of the plasma arc can be increased even if the supply amount of the plasma working gas is increased. Of the arc voltage due to the thermal pinch effect by increasing the supply amount of oxygen and the action of oxygen and nitrogen having a larger potential gradient than the inert shield gas. Can be increased, it is possible to obtain a high heating power due to the plasma arc than conventional while preventing oxidation or nitridation of the molten steel, thereby, it is possible to plasma heating efficiently molten steel.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明を実施するための装置の構成説明図で
ある。
FIG. 1 is a structural explanatory view of an apparatus for carrying out the present invention.

【図2】この発明に係るArプラズマ作動用ガス供給量と
アーク電圧との関係の一例を示す図である。
FIG. 2 is a diagram showing an example of a relationship between an Ar plasma actuation gas supply amount and an arc voltage according to the present invention.

【図3】溶鋼保持容器内での溶鋼加熱におけるプラズマ
アークの様子を示す模式図である。
FIG. 3 is a schematic diagram showing a state of a plasma arc in heating molten steel in a molten steel holding container.

【図4】従来の技術を説明するための図である。FIG. 4 is a diagram for explaining a conventional technique.

【符号の説明】[Explanation of symbols]

1…溶鋼保持容器 1a…蓋体 1b…蓋体の貫通孔 2…
シールドガス用配管 3…プラズマトーチ 4…雰囲気採取用配管 5…プラ
ズマ作動用ガス配管 6…プラズマ作動ガス用バルブ 7…シールドガス用バ
ルブ 8…ガス分析測定装置 9…制御装置 P…プラ
ズマアーク M…溶鋼
1 ... Molten steel holding container 1a ... Lid 1b ... Through hole of lid 2 ...
Shield gas pipe 3 ... Plasma torch 4 ... Atmosphere sampling pipe 5 ... Plasma actuation gas pipe 6 ... Plasma actuation gas valve 7 ... Shield gas valve 8 ... Gas analysis and measurement device 9 ... Control device P ... Plasma arc M ... Molten steel

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松尾 勝良 加古川市加古川町粟津494−1 (72)発明者 藤本 英明 明石市人丸町1−71 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Katsura Matsuo 494-1 Awazu, Kakogawa-cho, Kakogawa-shi (72) Inventor Hideaki Fujimoto 1-71 Hitomarucho, Akashi-shi

Claims (1)

【特許請求の範囲】 【請求項1】 貫通孔を有する蓋体が配された溶鋼保持
容器の内部に不活性シールドガスを供給しつつ、プラズ
マ作動用ガスが供給され前記貫通孔に挿通されたプラズ
マトーチから発生させたプラズマアークにより、前記溶
鋼保持容器内の溶鋼を加熱する溶鋼のプラズマ加熱方法
において、前記不活性シールドガスのガス供給量を、前
記溶鋼保持容器内の酸素濃度が0.2 〜3.0 %、窒素濃度
が0.8〜12.0%の範囲に保持されるように制御しなが
ら、前記プラズマアークにより前記溶鋼を加熱すること
を特徴とする溶鋼のプラズマ加熱方法。
Claim: What is claimed is: 1. A plasma working gas is supplied and inserted into the through hole while supplying an inert shield gas into the molten steel holding container in which a lid having a through hole is arranged. In the plasma heating method of molten steel to heat the molten steel in the molten steel holding container by the plasma arc generated from the plasma torch, the gas supply amount of the inert shield gas, the oxygen concentration in the molten steel holding container is 0.2 ~ 3.0. %, And the nitrogen concentration is controlled so as to be maintained in the range of 0.8 to 12.0%, the molten steel is heated by the plasma arc, the plasma heating method for molten steel.
JP15163891A 1991-06-24 1991-06-24 Plasma heating method for molten steel Expired - Lifetime JP2923085B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15163891A JP2923085B2 (en) 1991-06-24 1991-06-24 Plasma heating method for molten steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15163891A JP2923085B2 (en) 1991-06-24 1991-06-24 Plasma heating method for molten steel

Publications (2)

Publication Number Publication Date
JPH051317A true JPH051317A (en) 1993-01-08
JP2923085B2 JP2923085B2 (en) 1999-07-26

Family

ID=15522931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15163891A Expired - Lifetime JP2923085B2 (en) 1991-06-24 1991-06-24 Plasma heating method for molten steel

Country Status (1)

Country Link
JP (1) JP2923085B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002307160A (en) * 2001-04-11 2002-10-22 Nippon Steel Corp Transferable anode for plasma heating

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002307160A (en) * 2001-04-11 2002-10-22 Nippon Steel Corp Transferable anode for plasma heating

Also Published As

Publication number Publication date
JP2923085B2 (en) 1999-07-26

Similar Documents

Publication Publication Date Title
US5525778A (en) Apparatus for welding with a current waveform controlled by sensing arc voltage
EP0043588B1 (en) Pulse arc welding machine
US5801355A (en) Plasma piercing with non-oxidative plasma gas and plasma cutting with oxidative plasma gas
JPH03159986A (en) Process for controlling oxygen concentration in single crystal and apparatus therefor
US6274841B1 (en) Controlled plasma arc cutting
US4620082A (en) Pulsed arc welding apparatus
JP3120142B2 (en) Output control device of consumable electrode type pulse arc welding machine
JPH051317A (en) Plasma heating method for molten steel
US4803405A (en) Plasma processing apparatus and method
CN114433806B (en) Method and system for preventing molten steel of tundish from being carbureted
CA2019008A1 (en) Process and apparatus for measuring the instability of an arc in an electric furnace used for molten metal treatment
JP2002143991A (en) Method of heating molten steel in tundish
Yamane et al. Effect of power source characteristic on CO2 short circuiting arc welding
JPH08229680A (en) Output control device of consumable electrode type pulse arc welding machine
JP2001099825A (en) Method for analyzing oxygen in analysis sample
JPH0653317B2 (en) Plasma jet device
Fitterer et al. Oxygen in Steel Refining as Determined by Solid Electrolyte Techniques
JPH1022094A (en) Plasma controller for nonmigrating plasma application device
JPH11166923A (en) Element analyzing method
JPH03285746A (en) Tundish provided with plasma heating apparatus
JPH09253805A (en) Method for plasma-heating molten steel in tundish for continuous casting
JPS6199583A (en) Airtight welding equipment
JP2001234228A (en) Plasma heating method for molten steel
JPH0771885A (en) Method and apparatus for detecting dipping depth of lance
JPH05121039A (en) Heating gasification introducing device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990413

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080430

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090430

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100430

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100430

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110430

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120430

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120430

Year of fee payment: 13