JPH0513120B2 - - Google Patents

Info

Publication number
JPH0513120B2
JPH0513120B2 JP60170168A JP17016885A JPH0513120B2 JP H0513120 B2 JPH0513120 B2 JP H0513120B2 JP 60170168 A JP60170168 A JP 60170168A JP 17016885 A JP17016885 A JP 17016885A JP H0513120 B2 JPH0513120 B2 JP H0513120B2
Authority
JP
Japan
Prior art keywords
single crystal
concentration
atoms
less
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60170168A
Other languages
Japanese (ja)
Other versions
JPS6230700A (en
Inventor
Tooru Takahashi
Shinichi Takahashi
Masateru Takaya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP17016885A priority Critical patent/JPS6230700A/en
Publication of JPS6230700A publication Critical patent/JPS6230700A/en
Publication of JPH0513120B2 publication Critical patent/JPH0513120B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Recrystallisation Techniques (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、炭素濃度のきわめて低い−族の
二元素以上からなる化合物半導体単結晶およびこ
の単結晶を液体封止引上法により製造する方法に
係るものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a compound semiconductor single crystal consisting of two or more elements of the - group with an extremely low carbon concentration and a method for producing this single crystal by a liquid-sealed pulling method. It is something.

従来の技術とその問題点 −族化合物半導体たとえばガリウム砒素
(GaAs)単結晶は、電子移動度が大きいので、
高速集積回路、光電子素子等の材料として広く用
いられているが、不純物として含まれる微量の炭
素が浅いアクセプターとなり、電気的に活性を呈
してくるので、炭素濃度を一定値以下に制御する
ことが特に重要である。
Conventional technologies and their problems - Group compound semiconductors, such as gallium arsenide (GaAs) single crystals, have high electron mobility, so
It is widely used as a material for high-speed integrated circuits, optoelectronic devices, etc., but trace amounts of carbon contained as impurities become shallow acceptors and become electrically active, so it is difficult to control the carbon concentration below a certain value. This is especially important.

この液体封止引上法は2〜30Kg/cm2の窒素また
はアルゴン等の不活性ガス加圧雰囲気中で行なわ
れる。引上機チヤンバー内にはヒーター、遮熱
板、ルツボ等のグラフアイト製炉内部品が使用さ
れているが、グラフアイト自体の炭素成分が遊離
して直接引上単結晶中へ混入することはほとんど
ない。
This liquid-sealed pulling method is carried out in a pressurized atmosphere of an inert gas such as nitrogen or argon at a pressure of 2 to 30 kg/cm 2 . Graphite furnace parts such as heaters, heat shields, and crucibles are used inside the pulling machine chamber, but the carbon components of graphite itself cannot be liberated and directly mixed into the pulled single crystal. rare.

しかしながら前記炉内部品は、大気中でチヤン
バー内に組立てられるため、空気中の酸素や水分
を吸着する。チヤンバー内は加熱する前に真空引
きをし、空気を不活性ガス(窒素またはアルゴン
等)に置換するが、これを繰り返しても酸素や水
分は炉内部品に吸着されたまま残つている。
However, since the furnace parts are assembled in the chamber in the atmosphere, they adsorb oxygen and moisture in the air. Before heating, the inside of the chamber is evacuated and the air is replaced with an inert gas (nitrogen, argon, etc.), but even if this is repeated, oxygen and moisture remain adsorbed by the parts inside the furnace.

単結晶を引き上げるためにチヤンバー内を加熱
し、ヒーターの温度が500℃以上になると、炉内
部品の表面や内部で、酸素および水分と炭素が反
応して一酸化炭素(CO)が生成するので、チヤ
ンバー内のCO濃度は時間と共に増加し、
1000ppm以上に、時には2500ppmにも達すること
がある。
When the chamber is heated to pull a single crystal and the temperature of the heater reaches 500°C or higher, carbon monoxide (CO) is generated as oxygen and moisture react with carbon on the surface and inside of the furnace parts. , the CO concentration in the chamber increases with time,
It can exceed 1000ppm and sometimes reach 2500ppm.

この場合、引き上げられた単結晶の炭素濃度は
1.5×1016原子数/cm3以上となり浅いアクセプタ
ーとして電気的活性の影響が強くなり、高速集積
回路素子製造のデバイス工程での電気特性の制御
が困難になるという不利をもたらす。
In this case, the carbon concentration of the pulled single crystal is
When the number of atoms is 1.5×10 16 atoms/cm 3 or more, the influence of electrical activity becomes strong as a shallow acceptor, resulting in the disadvantage that it becomes difficult to control electrical properties in the device process of manufacturing high-speed integrated circuit elements.

この際使用したルツボ(石英、PBN等)や酸
化ホウ素中の水分量(たとえば含水量が
2000ppm、100ppm等)はCO濃度にあまり影響し
ない。
The water content in the crucible (quartz, PBN, etc.) and boron oxide used at this time (for example,
2000ppm, 100ppm, etc.) does not affect the CO concentration much.

引上単結晶中の炭素濃度を1.5×1016原子数/
cm3以下にするためには、従来の方法では上述のよ
うにチヤンネル内のCO濃度が時には2500ppmに
も達するので好ましくなかつたが、本発明はこの
CO濃度を一定値以下たとえば1000ppm以下にす
ることにより単結晶中の炭素濃度を所望値に抑え
ることができるということ、そしてこの具体的な
方法として、引上操作中にチヤンネル内の雰囲気
ガスを部分的に放出したり新規ガスを補給するこ
とによつて達成し得るという発見に基づいてい
る。そしてこのような加圧引上装置において雰囲
気ガスを置換するということは到底考えられない
ことであつた。
The carbon concentration in the pulled single crystal was set to 1.5×10 16 atoms/
In order to reduce the CO concentration to less than cm 3 , the conventional method was undesirable because the CO concentration in the channel sometimes reached 2500 ppm as mentioned above, but the present invention solves this problem.
It is possible to suppress the carbon concentration in the single crystal to a desired value by reducing the CO concentration to a certain value, for example, 1000 ppm or less. It is based on the discovery that this can be achieved by releasing new gas or replenishing it with fresh gas. It was completely unthinkable to replace the atmospheric gas in such a pressurized lifting device.

問題点を解決するための手段 本発明者らは、上記不利にかんがみ鋭意検討を
重ねた結果、単結晶に含まれる炭素濃度を一定以
下に制御することに成功し本発明に到達したもの
である。
Means for Solving the Problems In view of the disadvantages mentioned above, the present inventors have made extensive studies, and as a result have succeeded in controlling the carbon concentration contained in the single crystal to a certain level or less, and have arrived at the present invention. .

本発明の要旨とするところは、結晶中に含有す
る炭素濃度が1.5×1015原子数/cm3以下であるこ
とを特徴とする−族の二元素以上からなる化
合物半導体単結晶であり、また液体封止引上法に
よつて−族の二元素以上からなる化合物半導
体単結晶を製造するにあたり、引上機チヤンバー
内の一酸化炭素の濃度を制御し、引上単結晶に含
有される炭素濃度を1.5×1015原子数/cm3以下に
することを特徴とする−族の二元素以上から
なる化合物半導体単結晶の製造方法である。
The gist of the present invention is a compound semiconductor single crystal consisting of two or more elements of the - group, characterized in that the carbon concentration contained in the crystal is 1.5 × 10 15 atoms/cm 3 or less, and When manufacturing a compound semiconductor single crystal consisting of two or more elements of the − group by the liquid-sealed pulling method, the concentration of carbon monoxide in the pulling machine chamber is controlled to reduce the carbon content in the pulled single crystal. A method for producing a compound semiconductor single crystal comprising two or more - group elements, characterized in that the concentration is 1.5×10 15 atoms/cm 3 or less.

本発明の対象となる−族の二元素以上から
なる化合物半導体としては、GaP、GaAs、
GaAsP、InP、InSb等が例示される。
Compound semiconductors consisting of two or more elements of the − group that are the object of the present invention include GaP, GaAs,
Examples include GaAsP, InP, and InSb.

また原料となるものはGa、As、In、P、Sb等
の単体、およびGaAs、InAs、InP等の多結晶で、
これらをルツボに入れ引上機にセツトする。引上
機は公知のものでよい。
The raw materials are simple substances such as Ga, As, In, P, and Sb, and polycrystals such as GaAs, InAs, and InP.
Put these into a crucible and set it on a pulling machine. The pulling machine may be a known one.

以下に本発明についてさらに詳細に説明する。 The present invention will be explained in more detail below.

−族の二元素以上からなる化合物半導体単
結晶特にGaAsから作られた電界効果型トランジ
スタのしきい値電圧は、通常GaAs単結晶棒の長
さ方向あるいは断面内において著しく変動し、極
端な場合には±50%と大幅に変化する欠点があつ
たが、本発明者はこの原因について究明した結
果、GaAs単結晶棒のバルク内の炭素の濃度分布
が変動し、この絶対値の変動が前記しきい値の変
動に著しい相関があることを知つた。従来法によ
る通常のGaAs単結晶棒の炭素濃度変動は約5×
1015原子数/cm3であるが、これを少なくとも1.0
×1015原子数/cm3にすることによつて、上記しき
い値電圧の変動を10%以下に抑えることができる
ことが判つた。このような炭素濃度の変動を1.0
×1015原子数/cm3以下にするためにはGaAs単結
晶棒の炭素濃度を2.0×1015原子数/cm3以下好ま
しくは1.5×1015原子数/cm3以下にすると良い。
The threshold voltage of field-effect transistors made from compound semiconductor single crystals consisting of two or more elements of the − group, especially GaAs, usually varies significantly in the length direction or within the cross section of the GaAs single crystal rod, and in extreme cases However, as a result of investigating the cause of this, the present inventor found that the carbon concentration distribution in the bulk of the GaAs single crystal rod fluctuates, and this fluctuation in the absolute value causes the above-mentioned fluctuation. I learned that there is a significant correlation in the fluctuations of threshold values. The carbon concentration fluctuation of a normal GaAs single crystal rod using the conventional method is approximately 5×
10 15 atoms/ cm3 , but this should be at least 1.0
It has been found that by setting the number of atoms to ×10 15 atoms/cm 3 , the variation in the threshold voltage can be suppressed to 10% or less. If this variation in carbon concentration is 1.0
In order to reduce the carbon concentration to ×10 15 atoms/cm 3 or less, the carbon concentration of the GaAs single crystal rod should be 2.0 × 10 15 atoms/cm 3 or less, preferably 1.5 × 10 15 atoms/cm 3 or less.

他方、本発明の方法を実施するには、−族
の二元素以上からなる化合物半導体の原料を入れ
たルツボをチヤンバー内にセツトし、真空ポンプ
でチヤンバー内の空気を抜き、かわつて不活性ガ
ス(窒素またはアルゴン等)を送入し、一定圧力
を保ちながら原料を加熱溶融する。温度が上昇す
ると前記したようにチヤンバー内のCO濃度が増
加するので、不活性ガスを部分的に放出させ、そ
の分を新たに補給するなどの方法で一部置換し
て、CO濃度を1000ppm以下好ましくは500ppm以
下になるよう稀釈し、単結晶の引き上げを開始す
る。引き上げ中も連続的にまたは断続的に不活性
ガスの放出と新規補給を繰り返し、CO濃度を常
に上記以下に制御維持する。
On the other hand, in order to carry out the method of the present invention, a crucible containing a raw material for a compound semiconductor consisting of two or more elements of the - group is set in a chamber, air is removed from the chamber using a vacuum pump, and the crucible is replaced with an inert gas. (Nitrogen or argon, etc.) is introduced to heat and melt the raw material while maintaining a constant pressure. As mentioned above, when the temperature rises, the CO concentration inside the chamber increases, so by partially discharging the inert gas and replenishing it, we can reduce the CO concentration to 1000 ppm or less. Dilute to preferably 500 ppm or less and start pulling the single crystal. During lifting, inert gas is continuously or intermittently released and refilled to keep the CO concentration below the above level.

チヤンバー内のCO濃度が1000ppmを越えると、
引き上げられた単結晶中の炭素濃度が1.5×1015
原子数/cm3以上に増加するので避けなければなら
ない。
When the CO concentration inside the chamber exceeds 1000ppm,
The carbon concentration in the pulled single crystal is 1.5×10 15
This must be avoided because the number of atoms/cm 3 increases or more.

実施例 1 PBN(窒化ホウ素)ルツボに、多結晶GaAs1.4
Kg、InAs190g、酸化ホウ素160gを入れ、引上機
にセツトし、チヤンバー内をN2ガスに置換し、
圧力を4Kg/cm2に維持しながら加熱昇温すると、
1420℃に達してルツボの原料は溶融した。溶融終
了後N2ガスを徐々に補給しCO濃度を500ppm以
下に制御してから、単結晶の引上を開始し、その
後1/minの割合でN2ガスを送入しながらチ
ヤンバー内の不活性ガスを置換し、CO濃度を常
に500ppm以下に維持した。こうして引き上げた
単結晶中の炭素濃度は、シード側で1.0×1015
子数/cm3、テール側で0.8×1015原子数/cm3であ
つた。同様の方法で、N2ガスの補給を全く行な
わなかつた場合は、チヤンバー内のCO濃度は増
加し、単結晶内の炭素濃度はシード側、テール側
それぞれ3.4×1015、1.1×1016原子数/cm3となり、
前記用途の使用に耐えぬものであつた。
Example 1 Polycrystalline GaAs1.4 in a PBN (boron nitride) crucible
Kg, 190g of InAs, and 160g of boron oxide, set it on the pulling machine, replace the inside of the chamber with N2 gas,
When heating and increasing the temperature while maintaining the pressure at 4Kg/ cm2 ,
When the temperature reached 1420℃, the raw materials in the crucible melted. After melting is complete, N2 gas is gradually replenished to control the CO concentration to 500ppm or less, and then pulling of the single crystal is started.N2 gas is then fed in at a rate of 1/min to remove any defects in the chamber. The active gas was replaced and the CO concentration was always maintained below 500 ppm. The carbon concentration in the single crystal thus pulled was 1.0×10 15 atoms/cm 3 on the seed side and 0.8×10 15 atoms/cm 3 on the tail side. In the same way, if N 2 gas is not replenished at all, the CO concentration in the chamber will increase, and the carbon concentration in the single crystal will be 3.4 × 10 15 and 1.1 × 10 16 atoms on the seed side and tail side, respectively. number/ cm3 ,
It was unsuitable for use in the above-mentioned purpose.

実施例 2 GaAs半導体の原料として、Ga675g,As784g,
In91gを配合し、この上にB2O3160gを載せてル
ツボに入れ、引上機にセツトし、チヤンバー内を
N2ガスで置換後、70Kg/cm2の圧力下で460℃に昇
温しB2O3を溶融した後、600〜700℃に昇温して
Ga、As、Inを合金化した。さらに昇温し1420℃
に達して合金は溶融した。その後徐々に圧力を下
げて4Kg/cm2になつた後は、実施例1と同じ手順
で単結晶を引き上げた。このときの引上単結晶中
の炭素濃度はシード側で1.0×1015、テール側で
0.9×1015原子数/cm3であつた。
Example 2 As raw materials for GaAs semiconductor, Ga675g, As784g,
Blend 91g of In and place 160g of B 2 O 3 on top of this, put it in a crucible, set it on a pulling machine, and then vacuum the inside of the chamber.
After purging with N 2 gas, the temperature was raised to 460℃ under a pressure of 70Kg/cm 2 to melt B 2 O 3 , and then the temperature was raised to 600-700℃.
Alloyed with Ga, As, and In. The temperature further increases to 1420℃
reached and the alloy melted. Thereafter, the pressure was gradually lowered to 4 kg/cm 2 , and then the single crystal was pulled in the same manner as in Example 1. The carbon concentration in the pulled single crystal at this time is 1.0×10 15 on the seed side and 1.0×10 15 on the tail side.
The number of atoms was 0.9×10 15 atoms/cm 3 .

上述のCO濃度は、ベツクマン社製モデル867、
インフラレツド CO アナライザー
(Beckmann社製Model 867,Infrared CO
Analyzer)を、炭素濃度はパーキン−エルマー
社製983G、インフラレツド スペクトロメータ
(Perkin−Elmer社製983G Infrared
Spectrometer)およびトムソン−シ−エスエフ
社製カメカ アイエムエス−3エフ(Thomson
−CSF社製CAMECA IMS−3F)を使用して測
定した。
The above CO concentration is based on Beckman model 867,
Infrared CO Analyzer (Beckmann Model 867, Infrared CO
The carbon concentration was measured using a Perkin-Elmer 983G and an Infrared spectrometer (Perkin-Elmer 983G Infrared).
Spectrometer) and Thomson CFS Cameca IMS-3F (Thomson
- Measured using CAMECA IMS-3F manufactured by CSF.

発明の効果 本発明は、引き上げた−族の二元素以上か
らなる化合物半導体単結晶中の炭素濃度を1.5×
1015原子数/cm3以下にしたものであるため、高速
集積回路、光電子素子用として優れた材料であ
る。
Effects of the Invention The present invention improves the carbon concentration in a raised compound semiconductor single crystal consisting of two or more elements of the − group by 1.5×
Since the number of atoms is less than 10 15 atoms/cm 3 , it is an excellent material for high-speed integrated circuits and optoelectronic devices.

Claims (1)

【特許請求の範囲】 1 結晶中に含有する炭素濃度が1.5×1015原子
数/cm3以下であることを特徴とする−族の二
元素以上からなる化合物半導体単結晶。 2 液体封止引上法によつて−族の二元素以
上からなる化合物半導体単結晶を製造するにあた
り、引き上げ機チヤンバー内の不活性ガスなかの
一酸化炭素濃度を1000ppm以下に制御し、引き上
げ単結晶に含有される炭素濃度が1.5×1015原子
数/cm3以下であることを特徴する−族の二元
素以上からなる化合物半導体単結晶の製造方法。 3 単結晶の引き上げ開始前または引き上げ中
に、チヤンバー内の不活性ガスを断続的まては連
続的に置換して、一酸化炭素濃度を制御する特許
請求の範囲第2項に記載の方法。
[Scope of Claims] 1. A compound semiconductor single crystal consisting of two or more - group elements, characterized in that the carbon concentration contained in the crystal is 1.5×10 15 atoms/cm 3 or less. 2. When producing a compound semiconductor single crystal consisting of two or more elements of the − group by the liquid-sealed pulling method, the concentration of carbon monoxide in the inert gas in the pulling machine chamber is controlled to 1000 ppm or less, and the pulling process 1. A method for producing a compound semiconductor single crystal comprising two or more - group elements, characterized in that the carbon concentration contained in the crystal is 1.5×10 15 atoms/cm 3 or less. 3. The method according to claim 2, wherein the carbon monoxide concentration is controlled by replacing inert gas in the chamber intermittently or continuously before or during pulling of the single crystal.
JP17016885A 1985-08-01 1985-08-01 Compound semiconductor single crystal and production thereof Granted JPS6230700A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17016885A JPS6230700A (en) 1985-08-01 1985-08-01 Compound semiconductor single crystal and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17016885A JPS6230700A (en) 1985-08-01 1985-08-01 Compound semiconductor single crystal and production thereof

Publications (2)

Publication Number Publication Date
JPS6230700A JPS6230700A (en) 1987-02-09
JPH0513120B2 true JPH0513120B2 (en) 1993-02-19

Family

ID=15899943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17016885A Granted JPS6230700A (en) 1985-08-01 1985-08-01 Compound semiconductor single crystal and production thereof

Country Status (1)

Country Link
JP (1) JPS6230700A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01239089A (en) * 1987-11-30 1989-09-25 Toshiba Corp Process for production of compound semiconductor single crystal and apparatus therefor
JPH01192793A (en) * 1988-01-27 1989-08-02 Furukawa Electric Co Ltd:The Production of gaas single crystal by liquid-sealing and pulling up method
JPH01313398A (en) * 1988-06-14 1989-12-18 Furukawa Electric Co Ltd:The Production of gaas compound semiconductor single crystal
JP2583811B2 (en) * 1991-10-09 1997-02-19 株式会社ジャパンエナジー Compound semiconductor single crystal growth method
JP2701113B2 (en) * 1992-07-31 1998-01-21 信越半導体株式会社 GaP-based light emitting device substrate and method of manufacturing the same

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
APPL.PHYS.LETT=1984 *
APPLIED PHYSICS LETTER=1984 *
APPLIED PHYSICS LETTERS=1984 *
JAPANESE JOURNAL OF APPLIED PHYSICS=1985 *
JOURNAL OF APPLIED PHYSICS=1985 *
SEMI-INSULATING 3-5 MATERIALS KAH-NEE-TA=1984 *

Also Published As

Publication number Publication date
JPS6230700A (en) 1987-02-09

Similar Documents

Publication Publication Date Title
US6843848B2 (en) Semiconductor wafer made from silicon and method for producing the semiconductor wafer
US3496118A (en) Iiib-vb compounds
EP1746186B1 (en) A method for producing a silicon single crystal
US3647389A (en) Method of group iii-v semiconductor crystal growth using getter dried boric oxide encapsulant
JPH0513120B2 (en)
JP4120016B2 (en) Method for producing semi-insulating GaAs single crystal
US4637854A (en) Method for producing GaAs single crystal
Cockayne et al. The growth and perfection of single crystal indium phosphide produced by the LEC technique
JPH0557240B2 (en)
EP0669413B1 (en) Preparation of silicon melt for use in pull method of manufacturing single crystal
Kikuma et al. Growth and properties of ZnSe crystals by a modified Bridgman method
JPH0543679B2 (en)
JPS63250428A (en) Method for purifying indium
US4371420A (en) Method for controlling impurities in liquid phase epitaxial growth
JPH06172098A (en) Production of gaas single crystal
Borschensky et al. Monocrystal Dislocationless Si: Ge, Grown From the Melt with Gd Impurity.
JPH1112086A (en) Production of chemical semiconductor single crystal and gallium arsenide single crystal
Šestáková et al. Various methods for the growth of GaSb single crystals
Beshlin et al. Yb impurity influence on parameters of PbTe crystals grown from the melt
IE56157B1 (en) Method of controlled,uniform doping of floating zone silicon
JPH07206577A (en) Process for growing rare earth-gallium-perovskite single crystal
JPH04349191A (en) Quartz crucible for pulling up silicon single crystal
JPH01215799A (en) Semi-insulating gaas compound semiconductor single crystal and production thereof
JP3013125B2 (en) Pull-up growth method and apparatus
JPS6270300A (en) Semi-insulating gaas single crystal

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term