JPH05129597A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH05129597A
JPH05129597A JP29124591A JP29124591A JPH05129597A JP H05129597 A JPH05129597 A JP H05129597A JP 29124591 A JP29124591 A JP 29124591A JP 29124591 A JP29124591 A JP 29124591A JP H05129597 A JPH05129597 A JP H05129597A
Authority
JP
Japan
Prior art keywords
region
semiconductor
semiconductor region
mos transistor
current detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29124591A
Other languages
Japanese (ja)
Inventor
Mitsuzo Sakamoto
光造 坂本
Isao Yoshida
功 吉田
Masatoshi Morikawa
正敏 森川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP29124591A priority Critical patent/JPH05129597A/en
Publication of JPH05129597A publication Critical patent/JPH05129597A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors
    • H01L29/7826Lateral DMOS transistors, i.e. LDMOS transistors with voltage or current sensing structure, e.g. emulator section, overcurrent sensing cell

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To provide an LSI having a shielding structure of a power LDMOS transistor with a sense FET. CONSTITUTION:A first conductivity type high concentration second semiconductor region 2 is provided on a first conductivity type first semiconductor region 1, and a second conductivity type fourth semiconductor region 3a isolated by a first conductivity type semiconductor region 4 so annularly formed as to reach the region 2 from the main surface of a semiconductor is used as a drain of the transistor. A plurality of first conductivity type fifth semiconductor regions 7b, 7c are formed in the region 3a, and at least one of them is used as a body of a mirror MOS transistor of a sense FET. Thus, an LDMOS shielding structure LSI can be realized without reducing the resistance of the sense FET.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体装置に係り、特
に、電力用素子と制御素子とが同一チップ上で共存した
集積回路半導体装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device, and more particularly to an integrated circuit semiconductor device in which a power element and a control element coexist on the same chip.

【0002】[0002]

【従来の技術】従来、電力用素子として横型2重拡散M
OSトランジスタ(以下LDMOSと呼ぶ)を用いた集
積回路半導体装置(IC)に関しては、高不純物濃度の
ボディ領域でドレイン領域を囲んだLDMOSを有する
構造の例が、ザエレクトロケミカル ソサイアティ スプ
リング ミーティングのイクステンディド アブストラ
クト VOL.89−1(1989年5月)第472頁
から第473頁(TheElectrochemical Society、 EXTEN
DED ABSTRACTS、 SPRING MEETING、 VOL.89-1May (198
9)、pp 472-473)において論じられている。この従来例
では、LDMOSの破壊耐量低下の要因となるドレイン
と基板との間の寄生バイポーラトランジスタ動作を抑制
するために、前述の高濃度のボディ領域を設けている。
2. Description of the Related Art Conventionally, a horizontal double diffusion M is used as a power element.
Regarding an integrated circuit semiconductor device (IC) using an OS transistor (hereinafter referred to as LDMOS), an example of a structure having an LDMOS in which a drain region is surrounded by a body region having a high impurity concentration is an extension of The Electrochemical Society Spring Meeting. Dido Abstract VOL. 89-1 (May 1989), pages 472 to 473 (The Electrochemical Society, EXTEN
DED ABSTRACTS, SPRING MEETING, VOL.89-1May (198
9), pp 472-473). In this conventional example, the above-mentioned high-concentration body region is provided in order to suppress the operation of the parasitic bipolar transistor between the drain and the substrate, which causes a reduction in the breakdown resistance of the LDMOS.

【0003】[0003]

【発明が解決しようとする課題】前記従来構造では半導
体基板とLDMOSのドレイン間に存在する寄生バイポ
ーラトランジスタの電流利得を低減して、その動作を抑
制する手法が述べられている。しかし、LDMOSのス
イッチング動作により発生する雑音を防止する、いわゆ
るシールド構造に関しては言及されてなかった。また、
LDMOSの電流検出を低損失で行うための電流検出端
子付き(センス)FETの実現方法に関しても考慮され
てなかった。従って、IC構造の中で、センスFETを
有するLDMOS構造を実現する場合の問題点に関して
は検討がなされてなかった。
In the above-mentioned conventional structure, there is described a method of reducing the current gain of the parasitic bipolar transistor existing between the semiconductor substrate and the drain of the LDMOS to suppress the operation thereof. However, no reference has been made to a so-called shield structure for preventing noise generated by the switching operation of the LDMOS. Also,
No consideration has been given to a method of realizing a (sense) FET with a current detection terminal for performing current detection of LDMOS with low loss. Therefore, no consideration has been given to the problem in realizing the LDMOS structure having the sense FET in the IC structure.

【0004】本発明の目的は、センスFETを有するL
DMOSシールド構造の半導体装置を提供することにあ
る。
An object of the invention is to have an L with a sense FET.
It is to provide a semiconductor device having a DMOS shield structure.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明の一実施形態によれば、第1導電型の第1半
導体領域(1)上に第1導電型の第2半導体領域(2)
を設け、半導体主面から前記第2半導体領域(2)に達
するように環状に形成した第1導電型の第3半導体領域
(4)で分離された第2導電型の第4半導体領域(3
a)をMOSトランジスタのドレインとし、前記第4半
導体領域(3a)内に、前記第1半導体領域(1)並び
に前記第2半導体領域(2)並びに前記第3半導体領域
(4)とは接しない第1導電型の第5半導体領域(7
b、7c)を複数個形成し、前記第5半導体領域(7
b、7c)のうちの少なくとも1つをセンスFETのミ
ラー用MOSトランジスタのボディとしたことを特徴と
するものである(第1図参照)。さらに、本発明の好適
な実施形態によれば、前記センスFETのミラー用MO
Sトランジスタのボディ(7b)直下には前記第2半導
体領域(2)を設けないようにしたことを特徴とするも
のである(図3参照)。
In order to achieve the above object, according to one embodiment of the present invention, a second semiconductor region of a first conductivity type is formed on a first semiconductor region (1) of a first conductivity type. (2)
And a fourth semiconductor region (3) of the second conductivity type separated by a third semiconductor region (4) of the first conductivity type formed in an annular shape so as to reach the second semiconductor region (2) from the semiconductor main surface.
a) is a drain of the MOS transistor, and is not in contact with the first semiconductor region (1), the second semiconductor region (2) and the third semiconductor region (4) in the fourth semiconductor region (3a). Fifth semiconductor region of the first conductivity type (7
b, 7c) are formed, and the fifth semiconductor region (7
b) and 7c), at least one of which is used as the body of the mirror MOS transistor of the sense FET (see FIG. 1). Furthermore, according to a preferred embodiment of the present invention, the MO for the sense FET mirror
The second semiconductor region (2) is not provided immediately below the body (7b) of the S transistor (see FIG. 3).

【0006】さらに、本発明の好適な他の実施形態によ
れば、前記センスFETのミラー用MOSトランジスタ
のボディ(7b)直下には第2導電型の第6半導体領域
(11)を設けたものである(図4、図5参照)。
Further, according to another preferred embodiment of the present invention, a sixth conductivity type semiconductor region (11) of the second conductivity type is provided immediately below the body (7b) of the mirror MOS transistor of the sense FET. (See FIGS. 4 and 5).

【0007】本発明の他の一実施形態によれば、ドレイ
ン領域(3a)を囲む高濃度ボディ領域と前記ドレイン
領域(3a)内に形成するセンスFETのソースと接続
されるボディ領域(7c)との耐圧に比べ、高濃度ボデ
ィ領域と前記ドレイン領域(3a)内に形成しセンスF
ETのミラー端子と接続されるボディ領域(7b)との
耐圧を高くなるように形成した。(図1、図4、図5、
図6参照)
According to another embodiment of the present invention, a high-concentration body region surrounding the drain region (3a) and a body region (7c) connected to the source of a sense FET formed in the drain region (3a). And a sense F formed in the high concentration body region and the drain region (3a),
It was formed to have a high breakdown voltage with respect to the body region (7b) connected to the mirror terminal of ET. (FIG. 1, FIG. 4, FIG.
(See Figure 6)

【0008】[0008]

【作用】本発明によれば、センスFETを有するLDM
OSを高濃度ボディ領域で包含することにより、雑音シ
ールド効果が達成される。また、センスFETとして働
くミラー端子用MOSトランジスタのボディ領域直下は
前記高濃度ボディ領域を除去すること、そしてミラー端
子用MOSトランジスタのボディ領域直下の低濃度ドレ
イン領域を高濃度化すること、さらに、ミラー端子用M
OSトランジスタのボディ領域直下のみ耐圧確保のため
ドレイン領域を残すことにより、シールド構造のLDM
OSにおいてもセンスFETのソース端子とミラー端子
の耐圧を向上することが可能であるという効果がある。
According to the present invention, an LDM having a sense FET
The noise shielding effect is achieved by including the OS in the high-concentration body region. Further, removing the high-concentration body region just below the body region of the mirror terminal MOS transistor acting as the sense FET, and increasing the concentration of the low-concentration drain region immediately below the body region of the mirror terminal MOS transistor, M for mirror terminal
By leaving the drain region only under the body region of the OS transistor to secure the breakdown voltage, the shielded LDM
Also in the OS, it is possible to improve the withstand voltage of the source terminal and the mirror terminal of the sense FET.

【0009】[0009]

【実施例】以下、本発明の実施例を図面に依り詳細に説
明する。
Embodiments of the present invention will now be described in detail with reference to the drawings.

【0010】図1は本発明の第1の実施例の半導体装置
の断面図を示してある。本素子はソース接地型のLDM
OSである。本構造は1Ωcm以上の通常のP型半導体
基板1上に高濃度P型埋込層2を形成し、環状の素子分
離用のP型拡散層4をP型埋込層2に達するように設
け、両者により分離されるN型エピタキシャル領域3a
をドレインとし、素子分離領域でなおかつLDMOSの
ボディ領域となっているP型拡散層4をソースと接続し
てある。本構造では、多結晶シリコン層6がゲートで、
この多結晶シリコン層に対し自己整合的に形成したP型
拡散層7a、7b、7cをボディとし、N型拡散層9を
ソースとした。本実施例では素子の周辺部以外のボディ
領域には素子分離用のP型拡散層4を使用してないため
ボディ領域の横方向拡散による面積増加を防止できる。
また、素子中央部のボディ領域はN型エピタキシャル領
域により分離された構造を実現できる。このため、半導
体基板1へのドレインの電位変動の影響をシールドで
き、これにより素子の周辺に放出される雑音が低減でき
るという効果がある。なお、本実施例では基板1がP型
のため基板がソース領域とは反対導電型の前述の従来例
の場合と異なり、ソースと基板との間に存在する寄生バ
イポーラトランジスタの電流利得が大きくなるというこ
とがない。
FIG. 1 is a sectional view of a semiconductor device according to the first embodiment of the present invention. This element is a source grounded LDM
OS. In this structure, a high concentration P-type buried layer 2 is formed on a normal P-type semiconductor substrate 1 of 1 Ωcm or more, and an annular P-type diffusion layer 4 for element isolation is provided so as to reach the P-type buried layer 2. , N-type epitaxial region 3a separated by both
Is used as a drain, and the P-type diffusion layer 4 which is an element isolation region and is also a body region of the LDMOS is connected to the source. In this structure, the polycrystalline silicon layer 6 is a gate,
The P-type diffusion layers 7a, 7b and 7c formed in self alignment with the polycrystalline silicon layer were used as the body, and the N-type diffusion layer 9 was used as the source. In this embodiment, since the P-type diffusion layer 4 for element isolation is not used in the body region other than the peripheral portion of the element, it is possible to prevent an increase in area due to lateral diffusion of the body region.
Further, the body region in the central portion of the device can be realized with a structure separated by the N type epitaxial region. Therefore, the influence of the potential fluctuation of the drain on the semiconductor substrate 1 can be shielded, and the noise emitted to the periphery of the element can be reduced. In this embodiment, since the substrate 1 is of P type, the current gain of the parasitic bipolar transistor existing between the source and the substrate becomes large unlike the case of the above-mentioned conventional example in which the substrate has a conductivity type opposite to that of the source region. There is no such thing.

【0011】図2は本発明のLDMOSのセンスFET
の等価回路である。ソースとドレインが接続された被電
流検出用MOSトランジスタ(本体部)100、102
と電流検出用MOSトランジスタ(ミラー部)101か
らなり、電流検出用MOSトランジスタ101と被電流
検出用MOSトランジスタ100、102のゲート幅の
比を例えば1対10程度以上に設定するとソース電圧が
ほぼ等しい場合、ソース電流の比が両者のゲート幅の比
となる。電流検出用のMOSトランジスタ102のソー
ス10bと被電流検出用MOSトランジスタのソース1
0a、10cとの間には通常抵抗を接続し、電流検出用
のMOSトランジスタのソース電流による抵抗両端の電
圧を測定することによりドレイン電流を検出する。この
ため、被電流検出用MOSトランジスタのソース10a
と10cの耐圧は不要であるが、電流検出用のMOSト
ランジスタのソース10bと被電流検出用MOSトラン
ジスタのソース10aの耐圧は必要である。すなわち、
図1の実施例ではシールド用の低抵抗ボディ領域2、4
と被電流検出用MOSトランジスタのボディ7cの耐圧
は不要であるが、電流検出用のMOSトランジスタのボ
ディ7bとの耐圧は高くする必要がある。
FIG. 2 shows an LDMOS sense FET of the present invention.
Is an equivalent circuit of. Current-detecting MOS transistors (main body) 100 and 102 in which sources and drains are connected
And a current detection MOS transistor (mirror portion) 101, and the source voltages are substantially equal when the ratio of the gate widths of the current detection MOS transistor 101 and the current detection MOS transistors 100 and 102 is set to about 1:10 or more, for example. In this case, the ratio of the source currents becomes the ratio of the gate widths of both. Source 10b of MOS transistor 102 for current detection and source 1 of MOS transistor for current detection
A resistor is usually connected between 0a and 10c, and the drain current is detected by measuring the voltage across the resistor due to the source current of the MOS transistor for current detection. Therefore, the source 10a of the current detection MOS transistor
And 10c are not required to withstand voltage, but the source 10b of the current detecting MOS transistor and the source 10a of the current receiving MOS transistor are required to have withstand voltage. That is,
In the embodiment of FIG. 1, the low resistance body regions 2 and 4 for shielding are used.
The withstand voltage of the body 7c of the current detection MOS transistor is not necessary, but the withstand voltage of the body 7b of the current detection MOS transistor needs to be high.

【0012】図3は本発明の第2の実施例の半導体装置
の断面図を示してある。本実施例では、電流検出用MO
Sトランジスタのソースと被電流検出用MOSトランジ
スタのソースとの耐圧向上のため電流検出用MOSトラ
ンジスタのボディ下のみ高濃度P型埋込層2を除いてあ
る。すなわち、10bをミラー用MOSトランジスタ
(電流検出用MOSトランジスタ)のソース電極とし、
10aと10cを本体のMOSトランジスタ(被電流検
出用MOSFETトランジスタ)のソース電極とした図
2で示すようなソース接地型のセンスFETを実現した
場合に、ソース端子とミラー端子の耐圧を高くすること
が可能となる。本実施例ではミラー用MOSトランジス
タのボディ領域直下には低抵抗ボディ領域がないが、主
要ドレイン領域を低抵抗ボディ領域で包含してあるため
シールド効果を保つことが可能である。即ち、本実施例
のドレイン領域は高濃度素子分離領域4と高濃度P型埋
込層2でほぼ取り囲んだN型エピタキシャル領域3aに
形成してあるため、ドレイン電圧が高速に変動したり誘
導性負荷のためグランド電圧以下に下がった場合にも高
濃度のP型ボディ領域がグランド電位に対し低インピー
ダンスで固定される。図4は本発明の第3の実施例の半
導体装置の断面図を示してある。本実施例では電流検出
用MOSトランジスタのソースと被電流検出用MOSト
ランジスタのソースとのパンチスルー耐圧向上のための
第2の実施例に高濃度N型埋込層11を追加した実施例
である。ここでN型埋込層11にリン、P型埋込層2に
ボロンを用いると埋込層のピーク濃度はP型埋込層が高
く、拡散層のわき上がり量はN型埋込層の方が大きく設
定できるためドレインのシールドはP型拡散層4とP型
埋込層2で行いソースと基板とのパンチスルー耐圧はN
型埋込層11で行うことが可能である。
FIG. 3 is a sectional view of a semiconductor device according to the second embodiment of the present invention. In this embodiment, the current detection MO
In order to improve the withstand voltage between the source of the S transistor and the source of the current detection MOS transistor, the high concentration P-type buried layer 2 is removed only under the body of the current detection MOS transistor. That is, 10b is used as the source electrode of the mirror MOS transistor (current detection MOS transistor),
When a source-grounded sense FET as shown in FIG. 2 in which 10a and 10c are used as the source electrodes of the body MOS transistors (current-detecting MOSFET transistors) is realized, the withstand voltage of the source terminal and the mirror terminal is increased. Is possible. In this embodiment, there is no low resistance body region directly under the body region of the mirror MOS transistor, but since the main drain region is included in the low resistance body region, the shield effect can be maintained. That is, since the drain region of this embodiment is formed in the N-type epitaxial region 3a which is almost surrounded by the high-concentration element isolation region 4 and the high-concentration P-type buried layer 2, the drain voltage fluctuates at high speed and the inductive property is high. Even when the voltage drops below the ground voltage due to the load, the high-concentration P-type body region is fixed with a low impedance with respect to the ground potential. FIG. 4 shows a sectional view of a semiconductor device according to a third embodiment of the present invention. In this embodiment, a high-concentration N-type buried layer 11 is added to the second embodiment for improving the punch-through breakdown voltage between the source of the current detection MOS transistor and the source of the current detection MOS transistor. .. Here, when phosphorus is used for the N-type buried layer 11 and boron is used for the P-type buried layer 2, the peak concentration of the buried layer is high in the P-type buried layer, and the raised amount of the diffusion layer is higher than that of the N-type buried layer. Since it can be set larger, the drain is shielded by the P-type diffusion layer 4 and the P-type buried layer 2, and the punch-through breakdown voltage between the source and the substrate is N.
It is possible to use the mold burying layer 11.

【0013】図5は本発明の第5の実施例の半導体装置
の断面図を示してある。本実施例では電流検出用MOS
トランジスタのソースと被電流検出用MOSトランジス
タのソースとのパンチスルー耐圧向上のため第4の実施
例に高濃度N型埋込層11を電流検出用MOSトランジ
スタのソース直下のみに追加した。これによりドレイン
のシールドはP型拡散層4とP型埋込層2で行いソース
と基板とのパンチスルー耐圧はN型埋込層3で行うこと
が可能である。
FIG. 5 is a sectional view of a semiconductor device according to the fifth embodiment of the present invention. In this embodiment, a current detection MOS
In order to improve the punch-through breakdown voltage between the source of the transistor and the source of the current detection MOS transistor, the high-concentration N-type buried layer 11 is added to the fourth embodiment only just under the source of the current detection MOS transistor. As a result, the drain can be shielded by the P-type diffusion layer 4 and the P-type buried layer 2, and the punch-through breakdown voltage between the source and the substrate can be performed by the N-type buried layer 3.

【0014】図6は本発明の第6の実施例の半導体装置
の断面図を示してある。本実施例では被電流検出用MO
Sトランジスタのボディ領域に電流検出用MOSトラン
ジスタのボディ領域用拡散層7より深くP型拡散層12
を形成している。これにより、被電流検出用MOSトラ
ンジスタのボディ領域の抵抗を低減し、破壊強度を増加
した。P型拡散層12がシールド用の高濃度埋込拡散層
2に達するように形成した場合には大電流素子の中央部
でのシールド領域の電位変動を防止することが可能であ
る。
FIG. 6 is a sectional view of a semiconductor device according to the sixth embodiment of the present invention. In this embodiment, the current detection MO
In the body region of the S transistor, the P-type diffusion layer 12 is deeper than the body region diffusion layer 7 of the current detection MOS transistor.
Is formed. As a result, the resistance of the body region of the current detection MOS transistor is reduced and the breakdown strength is increased. When the P-type diffusion layer 12 is formed so as to reach the high-concentration buried diffusion layer 2 for shielding, it is possible to prevent potential fluctuations in the shield region at the center of the large current element.

【0015】本発明の他の一実施形態によれば、前記第
1導電型の第1半導体領域(1)の比抵抗を0.5Ωc
m以下に選定することにより、前記第2半導体領域
(2)を省略できる場合がある。
According to another embodiment of the present invention, the specific resistance of the first conductive type first semiconductor region (1) is 0.5 Ωc.
By selecting m or less, it may be possible to omit the second semiconductor region (2).

【0016】[0016]

【発明の効果】本発明によれば、ドレインを高濃度ボデ
ィ領域で包含する雑音シールド構造のLDMOSトラン
ジスタにおいても良好なセンスFETを実現できるとい
う効果がある。
According to the present invention, there is an effect that a good sense FET can be realized even in an LDMOS transistor having a noise shield structure including a drain in a high concentration body region.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例の半導体装置FIG. 1 is a semiconductor device according to a first embodiment of the present invention.

【図2】本発明の実施例の等価回路FIG. 2 is an equivalent circuit of an embodiment of the present invention.

【図3】本発明の第2の実施例の半導体装置FIG. 3 is a semiconductor device according to a second embodiment of the present invention.

【図4】本発明の第3の実施例の半導体装置FIG. 4 is a semiconductor device according to a third embodiment of the present invention.

【図5】本発明の第4の実施例の半導体装置FIG. 5 is a semiconductor device according to a fourth embodiment of the present invention.

【図6】本発明の第5の実施例の半導体装置FIG. 6 is a semiconductor device of a fifth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…P型半導体基板、2…P型埋込層、3a、3b…N
型エピタキシャル層、4…素子分離用P拡散層、5…絶
縁層、6…多結晶シリコン層、7a、7c…被電流検出
用MOSトランジスタのボディ、7b…電流検出用MO
Sトランジスタのボディ、8、12…P型拡散層、9…
N型拡散層、10a、10c…ソース電極層(被電流検
出用MOSトランジスタ)、10d…ドレイン電極層、
10b…ミラー電極層(電流検出用MOSトランジス
タ)、11…N型埋込層、100、101…被電流検出
用MOSトランジスタ、102…電流検出用MOSトラ
ンジスタ。
1 ... P-type semiconductor substrate, 2 ... P-type buried layer, 3a, 3b ... N
Type epitaxial layer, 4 ... Element isolation P diffusion layer, 5 ... Insulating layer, 6 ... Polycrystalline silicon layer, 7a, 7c ... Current detection target MOS transistor body, 7b ... Current detection MO
S-transistor body, 8, 12 ... P-type diffusion layer, 9 ...
N type diffusion layers, 10a, 10c ... Source electrode layer (current detection MOS transistor), 10d ... Drain electrode layer,
10b ... Mirror electrode layer (current detection MOS transistor), 11 ... N-type buried layer, 100, 101 ... Current detection MOS transistor, 102 ... Current detection MOS transistor.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】第1導電型の第1半導体領域上に第1導電
型の第2半導体領域を設け、半導体主面から前記第2半
導体領域に達するように環状に形成した第1導電型の第
3半導体領域で分離された第2導電型の第4半導体領域
をMOSトランジスタのドレインとし、前記第4半導体
領域内に、前記第1半導体領域並びに前記第2半導体領
域並びに前記第3半導体領域とは接しない第1導電型の
第5半導体領域を複数個形成し、前記第5半導体領域の
うちの少なくとも1つを電流検出用端子を有するMOS
トランジスタのボディとしたことを特徴とする半導体装
置。
1. A first-conductivity-type second semiconductor region is provided on a first-conductivity-type first semiconductor region, and the first-conductivity-type second semiconductor region is formed in an annular shape so as to reach the second semiconductor region from a semiconductor main surface. The fourth semiconductor region of the second conductivity type separated by the third semiconductor region is used as the drain of the MOS transistor, and the first semiconductor region, the second semiconductor region, and the third semiconductor region are provided in the fourth semiconductor region. A MOS having a plurality of first conductivity type fifth semiconductor regions that are not in contact with each other, and at least one of the fifth semiconductor regions has a current detection terminal.
A semiconductor device having a body of a transistor.
【請求項2】前記第1導電型の第5半導体領域のうち、
電流検出用端子を有するMOSトランジスタのボディと
なる直下には前記第2半導体領域を設けないようにした
ことを特徴とする請求項1記載の半導体装置。
2. The fifth semiconductor region of the first conductivity type,
2. The semiconductor device according to claim 1, wherein the second semiconductor region is not provided immediately below the body of a MOS transistor having a current detection terminal.
【請求項3】前記第1導電型の第5半導体領域のうち、
電流検出用端子を有するMOSトランジスタのボディと
なる直下には前記第2導電型の第4半導体領域より高濃
度の第2導電型の第6半導体領域を設けたことを特徴と
する請求項1記載の半導体装置。
3. A fifth semiconductor region of the first conductivity type,
The sixth semiconductor region of the second conductivity type having a higher concentration than that of the fourth semiconductor region of the second conductivity type is provided immediately below the body of the MOS transistor having the current detection terminal. Semiconductor device.
【請求項4】横形2重拡散型MOSトランジスタにおい
て、ドレイン領域の主要部を高濃度ボディ領域で分離
し、前記ドレイン領域内に電流検出用端子を有するMO
Sトランジスタのソース用ボディ領域とミラー用ボディ
領域を設け、前記高濃度ボディ領域とソース用ボディ領
域の耐圧に比べ、前記高濃度ボディ領域とミラー用ボデ
ィ領域の耐圧の方を高くしたことを特徴とする半導体装
置。
4. A lateral double-diffused MOS transistor, wherein a main part of a drain region is separated by a high-concentration body region, and a current detection terminal is provided in the drain region.
The source body region and the mirror body region of the S transistor are provided, and the breakdown voltage of the high concentration body region and the mirror body region is higher than the breakdown voltage of the high concentration body region and the source body region. Semiconductor device.
JP29124591A 1991-11-07 1991-11-07 Semiconductor device Pending JPH05129597A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29124591A JPH05129597A (en) 1991-11-07 1991-11-07 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29124591A JPH05129597A (en) 1991-11-07 1991-11-07 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH05129597A true JPH05129597A (en) 1993-05-25

Family

ID=17766365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29124591A Pending JPH05129597A (en) 1991-11-07 1991-11-07 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH05129597A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100380577B1 (en) * 1995-09-22 2003-07-18 페어차일드코리아반도체 주식회사 Sense fet with improved voltage and current detecting ability
US6825543B2 (en) 2000-12-28 2004-11-30 Canon Kabushiki Kaisha Semiconductor device, method for manufacturing the same, and liquid jet apparatus
US6867457B2 (en) 2002-07-10 2005-03-15 Canon Kabushiki Kaisha Semiconductor device and liquid jetting device using the same
CN102810540A (en) * 2012-07-31 2012-12-05 电子科技大学 LDMOS (laterally diffused metal oxide semiconductor) device with current sampling function

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100380577B1 (en) * 1995-09-22 2003-07-18 페어차일드코리아반도체 주식회사 Sense fet with improved voltage and current detecting ability
US6825543B2 (en) 2000-12-28 2004-11-30 Canon Kabushiki Kaisha Semiconductor device, method for manufacturing the same, and liquid jet apparatus
US7056798B2 (en) 2000-12-28 2006-06-06 Canon Kabushiki Kaisha Semiconductor device, method for manufacturing the same, and liquid jet apparatus
EP2302677A1 (en) 2000-12-28 2011-03-30 Canon Kabushiki Kaisha Method for manufacturing a semiconductor device
US6867457B2 (en) 2002-07-10 2005-03-15 Canon Kabushiki Kaisha Semiconductor device and liquid jetting device using the same
CN102810540A (en) * 2012-07-31 2012-12-05 电子科技大学 LDMOS (laterally diffused metal oxide semiconductor) device with current sampling function

Similar Documents

Publication Publication Date Title
JP3214818B2 (en) High voltage power integrated circuit with level shifting operation and no metal crossover
US4969023A (en) SOS transistor structure
US5146298A (en) Device which functions as a lateral double-diffused insulated gate field effect transistor or as a bipolar transistor
US6960807B2 (en) Drain extend MOS transistor with improved breakdown robustness
US6144070A (en) High breakdown-voltage transistor with electrostatic discharge protection
US7466006B2 (en) Structure and method for RESURF diodes with a current diverter
US7553733B2 (en) Isolated LDMOS IC technology
EP1187214A2 (en) Semiconductor device with a protection against ESD
US4631562A (en) Zener diode structure
US20100065885A1 (en) Soi device with more immunity from stubstrate voltage
US9735264B2 (en) Semiconductor switch with integrated temperature sensor
US5554872A (en) Semiconductor device and method of increasing device breakdown voltage of semiconductor device
US5990535A (en) Power integrated circuit
JP2954854B2 (en) Integrated circuit chip
JPH03180074A (en) Semiconductor device
JP4447768B2 (en) Field MOS transistor and semiconductor integrated circuit including the same
WO2005112134A2 (en) High current mos device with avalanche protection and method of operation
EP0115098A1 (en) Lateral DMOS transistor device having an injector region
US6995453B2 (en) High voltage integrated circuit including bipolar transistor within high voltage island area
JPH05129597A (en) Semiconductor device
KR20040058255A (en) Lateral isolated gate bipolar transistor device
JP3402043B2 (en) Field effect transistor
JP6389247B2 (en) Insulated gate bipolar transistor amplifier circuit
US5608236A (en) Semiconductor device
KR920007826B1 (en) Method for manufacturing of mos semiconductor devices