JPH05129094A - Plasma treatment method and device - Google Patents

Plasma treatment method and device

Info

Publication number
JPH05129094A
JPH05129094A JP3288888A JP28888891A JPH05129094A JP H05129094 A JPH05129094 A JP H05129094A JP 3288888 A JP3288888 A JP 3288888A JP 28888891 A JP28888891 A JP 28888891A JP H05129094 A JPH05129094 A JP H05129094A
Authority
JP
Japan
Prior art keywords
electrode
substrate
processed
magnetic field
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3288888A
Other languages
Japanese (ja)
Other versions
JP2947995B2 (en
Inventor
Satoshi Nakagawa
聡 中川
Takashi Namura
高 名村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP3288888A priority Critical patent/JP2947995B2/en
Publication of JPH05129094A publication Critical patent/JPH05129094A/en
Application granted granted Critical
Publication of JP2947995B2 publication Critical patent/JP2947995B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To perform plasma treatment by which uneveness of plasma due to a magnetic field is eliminated so as to accomplish its uniformity and high efficiency and at the same time charge-up damage of a substrate to be treated is suppressed to a low level. CONSTITUTION:A high frequency power is applied to an upper electrode 4 from a first high frequency power supply 6 and its whole surface orthogonal to a magnetic field is exposed to plasma, and the paths of ions electrons in the plasma which are drifted due to the magnetic field have no trailing ends. Moreover, the high frequency power from a second high frequency power supply 13 is applied to a lower electrode 10 and the energy of the ions incident to a substrate 9 to be treated may be controlled by the lower electrode 10.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、低温プラズマを応用
したプラズマ処理方法および処理装置に関し、特に磁界
を印加した高効率のプラズマ処理方法および処理装置に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plasma processing method and a processing apparatus to which low temperature plasma is applied, and more particularly to a high efficiency plasma processing method and a processing apparatus to which a magnetic field is applied.

【0002】[0002]

【従来の技術】図面を参照しながら従来の技術について
説明する。図6に従来のプラズマ処理装置の断面構造概
略図を示す。図6(b)は図6(a)の矢印c方向から
見た断面構造概略図である。処理室61は、排気口62
から排気され、ガス導入口63から所望のガスが導入さ
れる。被処理基板64は、下部電極65上に置かれ、下
部電極65は絶縁性の支持台66上に設置されている。
また、下部電極65は高周波電源67に接続され、処理
室61は接地されており、下部電極65と処理室61と
の間でプラズマが発生する。さらに、永久磁石や電磁石
による磁界発生器68が設置されており、図6に示す配
置でS極N極が配置されている場合は、プラズマ中のイ
オンや電子が矢印69の方向にドリフトする。このドリ
フトにより、プラズマの密度が高くなるが、下部電極6
5が終端を持つため、下部電極65の終端(ドリフト経
路の終端)付近70にプラズマの偏りが発生する。従来
のプラズマ処理方法では、プラズマの偏りによる処理の
不均一性を改善するために、一点鎖線71で示す下部電
極65の中心を回転軸として磁界発生器68を回転させ
るなどしていた。
2. Description of the Related Art A conventional technique will be described with reference to the drawings. FIG. 6 shows a schematic sectional view of a conventional plasma processing apparatus. FIG. 6B is a schematic cross-sectional structure view as seen from the direction of arrow c in FIG. The processing chamber 61 has an exhaust port 62.
A desired gas is introduced from the gas introduction port 63. The substrate 64 to be processed is placed on the lower electrode 65, and the lower electrode 65 is placed on the insulating support base 66.
The lower electrode 65 is connected to a high frequency power supply 67, the processing chamber 61 is grounded, and plasma is generated between the lower electrode 65 and the processing chamber 61. Further, when a magnetic field generator 68 using a permanent magnet or an electromagnet is installed and the S pole and N pole are arranged in the arrangement shown in FIG. 6, ions and electrons in the plasma drift in the direction of arrow 69. This drift increases the plasma density, but lower electrode 6
Since 5 has an end, a bias of plasma is generated in the vicinity 70 of the end of the lower electrode 65 (the end of the drift path). In the conventional plasma processing method, the magnetic field generator 68 is rotated about the center of the lower electrode 65 indicated by the alternate long and short dash line 71 as the rotation axis in order to improve the non-uniformity of the processing due to the bias of the plasma.

【0003】[0003]

【発明が解決しようとする課題】上記従来の構成では、
イオンや電子のドリフトする径路に終端があるため、効
率が悪く、プラズマの偏りによる処理の不均一性が発生
した。また、これを緩和するために、磁界発生器68を
回転させるなどの機械装置が必要となり、故障の原因と
なった。また、半導体装置の製造工程に応用した場合
に、プラズマの偏りによるチャージアップが発生し、半
導体装置に損傷を与えることがしばしばあった。
SUMMARY OF THE INVENTION In the above conventional configuration,
Since there is a termination in the path where ions and electrons drift, the efficiency is poor and processing non-uniformity occurs due to plasma bias. Further, in order to alleviate this, a mechanical device such as rotating the magnetic field generator 68 is required, which causes a failure. In addition, when applied to the manufacturing process of a semiconductor device, charge-up due to bias of plasma often occurs, and the semiconductor device is often damaged.

【0004】この発明の目的は、磁界によるプラズマの
偏りをなくし、均一かつ高効率かつ被処理基板のチャー
ジアップによる損傷を小さく抑えたプラズマ処理を行う
ことのできるプラズマ処理方法および処理装置を提供す
ることである。
An object of the present invention is to provide a plasma processing method and a processing apparatus capable of eliminating the bias of plasma due to a magnetic field, performing plasma processing uniformly and highly efficiently and suppressing damage due to charge-up of a substrate to be processed. That is.

【0005】[0005]

【課題を解決するための手段】請求項1記載のプラズマ
処理方法は、接地した処理室内の制御用平板電極に被処
理基板を設置し、被処理基板に対向配置した平板型の高
周波印加電極に高周波電力を印加し、平板型の高周波印
加電極の平板面に平行な磁界を形成するようにしてい
る。
A plasma processing method according to claim 1, wherein a substrate to be processed is placed on a control plate electrode in a grounded processing chamber, and a flat plate type high frequency applying electrode is arranged to face the substrate to be processed. High frequency power is applied to form a magnetic field parallel to the flat plate surface of the flat plate type high frequency applying electrode.

【0006】請求項2記載のプラズマ処理方法は、接地
した処理室内の制御用平板電極に被処理基板を設置し、
被処理基板と中心軸が垂直になるように配置した筒状の
高周波印加電極に高周波電力を印加し、高周波印加電極
と中心軸を同一にする筒状の接地電極を接地し、高周波
印加電極および接地電極から被処理基板に対して発散磁
界を形成するようにしている。
In the plasma processing method according to the second aspect, the substrate to be processed is installed on the control plate electrode in the grounded processing chamber,
High-frequency power is applied to a cylindrical high-frequency applying electrode arranged so that the central axis is perpendicular to the substrate to be processed, and a cylindrical ground electrode having the same central axis as the high-frequency applying electrode is grounded. A divergent magnetic field is formed from the ground electrode to the substrate to be processed.

【0007】請求項3記載のプラズマ処理方法は、接地
した処理室内の制御用平板電極に被処理基板を設置し、
被処理基板と中心軸が垂直になるように配置した筒状の
高周波印加電極に高周波電力を印加し、高周波印加電極
と中心軸を同一にする筒状の接地電極を接地し、高周波
印加電極および接地電極から被処理基板に対して平行磁
界を形成するようにしている。
According to a third aspect of the plasma processing method, the substrate to be processed is installed on the control plate electrode in the grounded processing chamber,
High-frequency power is applied to a cylindrical high-frequency applying electrode arranged so that the central axis is perpendicular to the substrate to be processed, and a cylindrical ground electrode having the same central axis as the high-frequency applying electrode is grounded. A parallel magnetic field is formed from the ground electrode to the substrate to be processed.

【0008】請求項4記載のプラズマ処理方法は、接地
した処理室内の制御用平板電極に被処理基板を設置し、
被処理基板と中心軸が垂直になるように配置した筒状の
高周波印加電極に高周波電力を印加し、高周波印加電極
と中心軸を同一にする筒状の接地電極を接地し、高周波
印加電極および接地電極と被処理基板との間にカスプ磁
界を形成するようにしている。
According to a fourth aspect of the present invention, there is provided a plasma processing method, in which a substrate to be processed is installed on a control plate electrode in a grounded processing chamber,
High-frequency power is applied to a cylindrical high-frequency applying electrode arranged so that the central axis is perpendicular to the substrate to be processed, and a cylindrical ground electrode having the same central axis as the high-frequency applying electrode is grounded. A cusp magnetic field is formed between the ground electrode and the substrate to be processed.

【0009】請求項5記載のプラズマ処理装置は、接地
した処理室と、被処理基板に対向配置し高周波電力が印
加される平板型の高周波印加電極と、被処理基板を介し
て高周波印加電極に対向配置するとともに被処理基板を
設置する制御用平板電極と、高周波印加電極の平板面に
平行な磁界を発生する磁界発生器とを備えている。請求
項6記載のプラズマ処理装置は、接地した処理室と、被
処理基板と中心軸が垂直になるように配置し高周波電力
が印加される筒状の高周波印加電極と、この高周波印加
電極と中心軸を同一にする筒状の接地電極と、被処理基
板を設置する制御用平板電極と、高周波印加電極および
接地電極の近傍に配置し高周波印加電極および接地電極
の中心軸と平行な方向に磁界を発生する筒状電極側磁界
発生器とを備えている。
According to a fifth aspect of the plasma processing apparatus, a grounded processing chamber, a flat plate type high frequency applying electrode which is arranged facing the substrate to be processed and to which high frequency power is applied, and a high frequency applying electrode via the substrate to be processed. It is provided with a control flat plate electrode which is arranged facing each other and on which a substrate to be processed is placed, and a magnetic field generator which generates a magnetic field parallel to the flat plate surface of the high frequency applying electrode. The plasma processing apparatus according to claim 6, wherein a grounded processing chamber, a cylindrical high-frequency applying electrode to which high-frequency power is applied and arranged so that the central axis is perpendicular to the substrate to be processed, and the high-frequency applying electrode and the center. A cylindrical ground electrode with the same axis, a control plate electrode for setting the substrate to be processed, and a magnetic field in a direction parallel to the central axes of the high-frequency applying electrode and the ground electrode, which are placed near the high-frequency applying electrode and the ground electrode. And a cylindrical electrode side magnetic field generator for generating

【0010】請求項7記載のプラズマ処理装置は、請求
項6記載のプラズマ処理装置において、被処理基板の近
傍に配置し高周波印加電極および接地電極の中心軸と平
行な方向に磁界を発生する被処理基板側磁界発生器を設
けている。
A plasma processing apparatus according to a seventh aspect is the plasma processing apparatus according to the sixth aspect, wherein the plasma processing apparatus is disposed in the vicinity of the substrate to be processed and generates a magnetic field in a direction parallel to the central axes of the high frequency applying electrode and the ground electrode. A processing substrate side magnetic field generator is provided.

【0011】[0011]

【作用】請求項1,5記載のプラズマ処理方法および処
理装置は、平板型の高周波印加電極が磁界と垂直な方向
のプラズマに囲まれるので、イオンや電子は磁界の方向
を軸として高周波印加電極の周りを旋回する。また、請
求項2,3,4,6,7記載のプラズマ処理方法および
処理装置は、筒状の高周波印加電極と接地電極との間で
発生したプラズマが磁界により筒状の高周波印加電極と
接地電極との間を旋回する。
In the plasma processing method and the processing apparatus according to the first and fifth aspects, since the flat plate type high frequency applying electrode is surrounded by the plasma in the direction perpendicular to the magnetic field, the ions and the electrons are applied to the high frequency applying electrode with the direction of the magnetic field as an axis. Turn around. Further, in the plasma processing method and the processing apparatus according to claims 2, 3, 4, 6, and 7, the plasma generated between the cylindrical high-frequency applying electrode and the ground electrode is grounded by the magnetic field to the cylindrical high-frequency applying electrode. Swirl between the electrodes.

【0012】したがって、イオンや電子のドリフト径路
に終端が無く閉じているので、プラズマの電離効率が極
めて高くなる。そのため、プラズマの偏りも無くプラズ
マ処理の均一性も高いので、磁界発生器を回転させるた
めの機構も不要である。半導体装置の製造工程に応用し
ても、プラズマの偏りによるチャージアップも無く、半
導体装置の損傷を少なくできる。
Therefore, since the ion or electron drift path is closed without any termination, the ionization efficiency of plasma is extremely high. Therefore, since there is no bias of plasma and the uniformity of plasma processing is high, a mechanism for rotating the magnetic field generator is not necessary. Even when applied to the manufacturing process of a semiconductor device, there is no charge-up due to bias of plasma, and damage to the semiconductor device can be reduced.

【0013】[0013]

【実施例】〔第1の実施例〕この発明の第1の実施例に
ついて、図面を参照しながら説明する。図1はこの発明
の第1の実施例のプラズマ処理装置の断面構造概略図で
ある。なお、図1(b)は図1(a)の矢印aの方向か
ら見た断面構造概略図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS [First Embodiment] A first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a schematic sectional view of a plasma processing apparatus according to a first embodiment of the present invention. Note that FIG. 1B is a schematic sectional structure view as seen from the direction of arrow a in FIG.

【0014】図1において、処理室1は、排気口2から
排気され、ガス導入口3から所望のガスが導入される。
上部電極(平板型の高周波印加電極)4は、絶縁性の支
持台5により処理室1中に支持されており、第1の高周
波電源6に接続され、高周波電力が印加されている。ま
た、処理室1は接地されており、上部電極4との間で、
プラズマを発生する。上部電極4の終端は電界の局部的
集中を避けるために丸みを帯びている。さらに永久磁石
からなる磁界発生器7があり、図1に示すようにS極N
極が配置されている場合は、矢印8の方向の磁界がプラ
ズマに印加される。被処理基板9は下部電極(制御用平
板電極)10上に置かれ、下部電極10は絶縁性の支持
台11により処理室1中に設置されている。
In FIG. 1, the processing chamber 1 is exhausted from an exhaust port 2 and a desired gas is introduced from a gas introduction port 3.
The upper electrode (plate type high frequency applying electrode) 4 is supported in the processing chamber 1 by an insulating support 5 and is connected to a first high frequency power source 6 to which high frequency power is applied. Further, the processing chamber 1 is grounded, and between the processing chamber 1 and the upper electrode 4,
Generates plasma. The end of the upper electrode 4 is rounded in order to avoid local concentration of the electric field. Further, there is a magnetic field generator 7 composed of a permanent magnet, and as shown in FIG.
When the poles are arranged, a magnetic field in the direction of arrow 8 is applied to the plasma. The substrate 9 to be processed is placed on a lower electrode (flat plate electrode for control) 10, and the lower electrode 10 is installed in the processing chamber 1 by an insulating support 11.

【0015】処理室1中で発生したプラズマのイオンと
電子は、上部電極4と処理室1の面積比により発生する
陰極降下と磁界により矢印12の方向にドリフトし、上
部電極4の回りを旋回する。イオンや電子のドリフト軌
道は閉じており終端が無いため、プラズマの電離が促進
され、高密度のプラズマが発生し、プラズマの偏りも極
めて少ない。
The ions and electrons of the plasma generated in the processing chamber 1 drift in the direction of arrow 12 due to the cathode drop and magnetic field generated by the area ratio of the upper electrode 4 and the processing chamber 1, and swirl around the upper electrode 4. To do. Since the drift trajectories of ions and electrons are closed and have no termination, plasma ionization is promoted, high-density plasma is generated, and the bias of plasma is extremely small.

【0016】このようにして発生した高密度プラズマに
より被処理基板9がプラズマ処理されるが、下部電極1
0が接地されている場合と、第2の高周波電源13に接
続され高周波電力が印加されている場合では、得られる
効果が異なる。これについて、シリコン基板のプラズマ
エッチングに応用したときを例に取り、さらに説明す
る。
Although the substrate 9 to be processed is plasma-processed by the high-density plasma thus generated, the lower electrode 1
The obtained effect is different when 0 is grounded and when it is connected to the second high frequency power supply 13 and high frequency power is applied. This will be further described by taking the case of application to plasma etching of a silicon substrate as an example.

【0017】エッチングガスとしてたとえば塩素ガスを
50sccm導入し、処理室1内の圧力を10Paに保
つ。第1の高周波電源6から例えば13.56MHzの
高周波電力を印加し、上部電極4表面の電力密度を例え
ば0.5W/cm2 とし、磁界発生器7からの磁束密度
を例えば100Gaussとした。まず、下部電極10
を接地した場合の被処理基板9のエッチングについて、
図面を参照しながら説明する。図2は被処理基板9の断
面構造図であり、図2(a)はエッチング前の状態、図
2(b)はエッチング後の状態をそれぞれ示している。
For example, chlorine gas of 50 sccm is introduced as an etching gas, and the pressure in the processing chamber 1 is maintained at 10 Pa. A high frequency power of 13.56 MHz, for example, was applied from the first high frequency power supply 6, the power density on the surface of the upper electrode 4 was 0.5 W / cm 2 , and the magnetic flux density from the magnetic field generator 7 was 100 Gauss. First, the lower electrode 10
Regarding the etching of the substrate 9 to be processed when the substrate is grounded,
A description will be given with reference to the drawings. 2A and 2B are cross-sectional structural views of the substrate to be processed 9. FIG. 2A shows a state before etching and FIG. 2B shows a state after etching.

【0018】被処理基板9の構造は、シリコン基板21
上に二酸化シリコン膜22が10nmの厚さで形成さ
れ、さらにその上に、多結晶シリコン膜23が400n
mの厚さで形成されている。これらの積層構造の上に、
1200nmの厚さのフォトレジスト24で所望のパタ
ーンを形成している(図2(a))。これを、前記条件
にて、プラズマエッチングをした結果が図2(b)であ
る。下部電極10が接地されているので、プラズマ中の
イオンの方向性は小さく、図2(b)に示すような等方
性のエッチング形状が得られる。
The substrate 9 to be processed has a silicon substrate 21.
A silicon dioxide film 22 having a thickness of 10 nm is formed thereon, and a polycrystalline silicon film 23 having a thickness of 400
It is formed with a thickness of m. On top of these laminated structures,
The photoresist 24 having a thickness of 1200 nm forms a desired pattern (FIG. 2A). FIG. 2B shows the result of plasma etching under the above conditions. Since the lower electrode 10 is grounded, the directionality of ions in the plasma is small, and an isotropic etching shape as shown in FIG. 2B is obtained.

【0019】次に、下部電極10に第2の高周波電源1
3を接続し、高周波電力を印加した場合について述べ
る。第2の高周波電源13から例えば100KHzの高
周波電力を下部電極10に印加し、下部電極10表面の
電力密度を例えば0.3W/cm2 とした。被処理基板
9は、前記例と同じ図2(a)の構造のものを用いた。
図3は、この場合のエッチング後の被処理基板9の断面
構造図である。
Next, the second high frequency power source 1 is applied to the lower electrode 10.
The case where 3 is connected and high frequency power is applied will be described. A high frequency power of, for example, 100 KHz was applied to the lower electrode 10 from the second high frequency power supply 13, and the power density on the surface of the lower electrode 10 was set to 0.3 W / cm 2 . As the substrate 9 to be processed, the same structure as that of the above example shown in FIG. 2A was used.
FIG. 3 is a sectional structural view of the substrate 9 to be processed after etching in this case.

【0020】下部電極10に印加された電力により下部
電極10に陰極降下電位が発生し、プラズマ中のイオン
の方向性が増すので、図3のように異方性のエッチング
形状が得られる。この実施例のように、第2の高周波電
源13の周波数(100KHz)が第1の高周波電源6
の周波数(13.56MHz)より十分低い場合、下部
電極10に第2の高周波電源13から印加した電力が小
さくても、陰極降下電圧が大きく得られ、プラズマの生
成とほとんど独立して、被処理基板9に入射するイオン
の方向性を決めることができる。
A cathode fall potential is generated in the lower electrode 10 by the electric power applied to the lower electrode 10, and the directionality of ions in the plasma is increased, so that an anisotropic etching shape is obtained as shown in FIG. As in this embodiment, the frequency of the second high frequency power source 13 (100 KHz) is the first high frequency power source 6
If the frequency is sufficiently lower than the frequency (13.56 MHz), even if the power applied from the second high-frequency power source 13 to the lower electrode 10 is small, a large cathode drop voltage can be obtained, which is almost independent of plasma generation and is not processed. The directionality of the ions incident on the substrate 9 can be determined.

【0021】〔第2の実施例〕この発明の第2の実施例
について、図面を参照しながら説明する。図4,図5は
この発明の第2の実施例のプラズマ処理装置の断面構造
概略図である。図5は図4に示すA−A断面を矢印bの
方向から見た断面構造概略図である。図4,図5におい
て、処理室41は、排気口42から排気され、ガス導入
口43から所望のガスが導入される。高周波印加電極
(筒状の高周波印加電極)44は、絶縁性の支持台45
により処理室41中に支持されており、第1の高周波電
源46に接続され、高周波電力が印加されている。ま
た、接地電極47は高周波印加電極44を同心円状に取
り囲むように設置され、処理室41と同じ電位に接地さ
れている。接地電極47と処理室41の間には、高周波
印加外側電極(筒状の高周波印加電極)48が絶縁性の
支持台45に接地電極47を取り囲む同心円状に設置さ
れ、第1の高周波電源46に接続されている。即ち、高
周波印加電極44と接地電極47と高周波印加外側電極
48と処理室41が同心円状に配置されたプラズマ発生
電極群50を形成している。また、それぞれの電極4
4,47,48の終端は局部的な電界の集中を避ける為
に丸みを帯びている。
[Second Embodiment] A second embodiment of the present invention will be described with reference to the drawings. 4 and 5 are schematic sectional views of the plasma processing apparatus according to the second embodiment of the present invention. FIG. 5 is a schematic sectional structural view of the AA cross section shown in FIG. 4 viewed from the direction of arrow b. 4 and 5, the processing chamber 41 is exhausted from the exhaust port 42, and a desired gas is introduced from the gas introduction port 43. The high frequency applying electrode (cylindrical high frequency applying electrode) 44 is an insulating support base 45.
Is supported in the processing chamber 41, is connected to the first high-frequency power source 46, and high-frequency power is applied. Further, the ground electrode 47 is installed so as to concentrically surround the high frequency applying electrode 44, and is grounded to the same potential as the processing chamber 41. A high-frequency applying outer electrode (cylindrical high-frequency applying electrode) 48 is installed between the ground electrode 47 and the processing chamber 41 on a support 45 having an insulating property in a concentric circle surrounding the ground electrode 47. It is connected to the. That is, the high frequency applying electrode 44, the ground electrode 47, the high frequency applying outer electrode 48, and the processing chamber 41 form a plasma generation electrode group 50 in which they are concentrically arranged. Also, each electrode 4
The ends of 4, 47 and 48 are rounded to avoid local concentration of electric field.

【0022】高周波を印加した電極44,48と接地さ
れた電極47及び処理室41の間では、プラズマが発生
する。さらに、処理室41の外側にコイルで作られた第
1の磁界発生器(筒状電極側磁界発生器)49があり、
例えば、図4の矢印bの方向に磁界を印加すると、プラ
ズマ中のイオンや電子は図5の矢印51の方向にドリフ
トし、プラズマ発生電極群50の中を旋回する。イオン
や電子のドリフト軌道は閉じており終端が無いため、プ
ラズマの電離が促進され、高密度のプラズマが発生し、
プラズマの偏りも極めて少ない。被処理基板52は下部
電極(制御用平板電極)53上に置かれ、下部電極53
は絶縁性の支持台54により処理室41中に設置されて
いる。
Plasma is generated between the electrodes 44 and 48 to which a high frequency is applied, the grounded electrode 47 and the processing chamber 41. Furthermore, there is a first magnetic field generator (cylindrical electrode side magnetic field generator) 49 made of a coil outside the processing chamber 41,
For example, when a magnetic field is applied in the direction of arrow b in FIG. 4, ions and electrons in plasma drift in the direction of arrow 51 in FIG. 5 and swirl in the plasma generating electrode group 50. Since the drift trajectories of ions and electrons are closed and there is no termination, plasma ionization is promoted and high-density plasma is generated.
The bias of plasma is extremely small. The substrate 52 to be processed is placed on the lower electrode (flat plate electrode for control) 53, and the lower electrode 53
Are installed in the processing chamber 41 by an insulating support 54.

【0023】下部電極53が接地されており、プラズマ
発生電極群50から被処理基板52に向かって発散磁界
を形成している場合、高密度のプラズマは、発散してい
る方向にドリフトし、被処理基板52に到達する。この
場合、被処理基板52にはバイアス電圧が極めて低いた
め、イオンの方向性が小さく、第1の実施例の図2に示
したような処理が可能となる。
When the lower electrode 53 is grounded and a divergent magnetic field is formed from the plasma generating electrode group 50 toward the substrate 52 to be processed, the high-density plasma drifts in the direction of divergence, The processed substrate 52 is reached. In this case, since the substrate 52 to be processed has an extremely low bias voltage, the directionality of the ions is small, and the processing shown in FIG. 2 of the first embodiment can be performed.

【0024】また、下部電極53が接地されており、コ
イルで作られた第1の磁界発生器49の形状あるいは位
置を変えることにより、プラズマ発生電極群50から被
処理基板52までが平行磁界を形成している場合は、プ
ラズマが被処理基板52に対して垂直方向に入射しやす
くなり、処理室41内の圧力をたとえば0.1Pa程度
にすると、第1の実施例の図3に示したような処理が可
能となる。しかし、プラズマエッチングに応用する場
合、オーバーエッチが多くなると、本実施例のように被
エッチング膜が多結晶シリコン膜23のような場合、図
2(b)に示すようなアンダーカット形状に加工される
ことがある。
Further, since the lower electrode 53 is grounded and the shape or position of the first magnetic field generator 49 made of a coil is changed, a parallel magnetic field is generated from the plasma generating electrode group 50 to the substrate 52 to be processed. When it is formed, the plasma easily enters the substrate 52 to be processed in the vertical direction, and when the pressure in the processing chamber 41 is set to about 0.1 Pa, for example, as shown in FIG. 3 of the first embodiment. Such processing becomes possible. However, in the case of application to plasma etching, if the number of overetches increases, the undercut shape shown in FIG. 2B is processed when the film to be etched is the polycrystalline silicon film 23 as in this embodiment. Sometimes.

【0025】なお、下部電極53が第2の高周波電源5
5に接続され、高周波電力を印加された場合、例えば、
第1の高周波電源の周波数が13.56MHzで第2の
高周波電源55の周波数が100KHzであれば、第2
の高周波電源55の電力が小さくても、下部電極53に
発生するバイアス電圧が大きく、プラズマの生成にほと
んど影響を与えずに、被エッチング基板52に入射する
イオンのエネルギーをコントロールすることができる。
The lower electrode 53 is the second high frequency power source 5
5, when high frequency power is applied, for example,
If the frequency of the first high frequency power supply is 13.56 MHz and the frequency of the second high frequency power supply 55 is 100 KHz, the second
Even if the power of the high frequency power source 55 is small, the bias voltage generated in the lower electrode 53 is large, and the energy of the ions incident on the substrate 52 to be etched can be controlled with almost no effect on the generation of plasma.

【0026】さらに、下部電極53付近の処理室41の
周りに第2の磁界発生器(被処理基板側磁界発生器)5
6(図4参照)を設け、第1の磁界発生器49による磁
界との間でカスプ磁界を形成する場合、プラズマ発生電
極群50で発生したプラズマは円運動をしながらカスプ
磁界により混ざり合い、一様なプラズマとなり被処理基
板52に到達する。これにより、被処理基板52は均一
なプラズマ処理を受ける。この場合にも、下部電極53
に第2の高周波電源55から高周波電力を印加すれば、
入射するイオンのエネルギーをコントロール出来ること
は言うまでもない。
Further, a second magnetic field generator (magnetic field generator for the substrate to be processed) 5 is provided around the processing chamber 41 near the lower electrode 53.
When 6 (see FIG. 4) is provided and a cusp magnetic field is formed between the first magnetic field generator 49 and the magnetic field generated by the first magnetic field generator 49, the plasma generated in the plasma generating electrode group 50 is circularly mixed with the cusp magnetic field, It becomes uniform plasma and reaches the substrate 52 to be processed. As a result, the substrate 52 to be processed is subjected to uniform plasma processing. Also in this case, the lower electrode 53
If high frequency power is applied from the second high frequency power supply 55 to
It goes without saying that the energy of the incident ions can be controlled.

【0027】この実施例のプラズマ処理装置は、高密度
のプラズマが、均一に生成できるので、極めて効率が高
い。また、例えば半導体装置の製造工程に応用した場
合、プラズマのかたよりがないため、チャージアップに
よるダメージを少なく抑えながら、高速の処理が可能で
ある。以上、この発明の実施例について述べたが、高周
波電源の周波数や、電力、ガスの種類、同心円状に配置
した電極の数等は、ここで述べたもの以外でも構わな
い。
The plasma processing apparatus of this embodiment is extremely efficient because it can uniformly generate high-density plasma. Further, for example, when applied to a manufacturing process of a semiconductor device, since there is no bias of plasma, high-speed processing is possible while suppressing damage due to charge-up. Although the embodiments of the present invention have been described above, the frequency of the high frequency power supply, the type of power, the type of gas, the number of electrodes arranged concentrically, and the like may be other than those described here.

【0028】[0028]

【発明の効果】以上のようにこの発明のプラズマ処理方
法および処理装置によれば、極めて効率の高いプラズマ
処理を均一性良く行え、かつ、被処理基板の損傷も少な
い。余分な機構を必要とせず、装置としても故障を少な
くできる。また、制御用平板電極の印加電圧により被処
理基板に入射するイオンの方向性やエネルギーをコント
ロールすることができ、例えば、プラズマエッチングに
よる加工において、様々な断面形状にエッチングするこ
とが容易となる。さらに磁界の印加の仕方によっても同
様の制御が可能である。この発明では、以上のように広
範囲に渡る種々の処理を制御性良く極めて高い効率でし
かもチャージアップによる損傷を少なくできる。
As described above, according to the plasma processing method and the processing apparatus of the present invention, extremely efficient plasma processing can be performed with good uniformity, and the substrate to be processed is less damaged. No extra mechanism is required, and the failure as a device can be reduced. Further, the directionality and energy of the ions incident on the substrate to be processed can be controlled by the voltage applied to the control plate electrode, and for example, in the processing by plasma etching, it becomes easy to etch into various cross-sectional shapes. Further, similar control can be performed depending on how the magnetic field is applied. According to the present invention, various kinds of processing over a wide range as described above can be controlled with extremely high efficiency and damage due to charge-up can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の第1の実施例のプラズマ処理装置の
断面構造概略図である。
FIG. 1 is a schematic sectional view of a plasma processing apparatus according to a first embodiment of the present invention.

【図2】被処理基板の断面構造図である。FIG. 2 is a sectional structural view of a substrate to be processed.

【図3】被処理基板の断面構造図である。FIG. 3 is a cross-sectional structure diagram of a substrate to be processed.

【図4】この発明の第2の実施例のプラズマ処理装置の
断面構造概略図である。
FIG. 4 is a schematic sectional view of a plasma processing apparatus according to a second embodiment of the present invention.

【図5】この発明の第2の実施例のプラズマ処理装置の
断面構造概略図である。
FIG. 5 is a schematic sectional view of a plasma processing apparatus of a second embodiment of the present invention.

【図6】従来のプラズマ処理装置の断面構造概略図であ
る。
FIG. 6 is a schematic sectional view of a conventional plasma processing apparatus.

【符号の説明】[Explanation of symbols]

1 処理室 4 上部電極(平板型の高周波印加電極) 7 磁界発生器 9 被処理基板 10 下部電極(制御用平板電極) 41 処理室 44 高周波印加電極(筒状の高周波印加電極) 47 接地電極 48 高周波印加外側電極(筒状の高周波印加電極) 49 第1の磁界発生器(筒状電極側磁界発生器) 52 被処理基板 53 下部電極(制御用平板電極) 56 第2の磁界発生器(被処理基板側磁界発生器) DESCRIPTION OF SYMBOLS 1 processing chamber 4 upper electrode (plate type high frequency applying electrode) 7 magnetic field generator 9 substrate 10 to be processed lower electrode (plate electrode for control) 41 processing chamber 44 high frequency applying electrode (cylindrical high frequency applying electrode) 47 ground electrode 48 High frequency applying outer electrode (cylindrical high frequency applying electrode) 49 First magnetic field generator (cylindrical electrode side magnetic field generator) 52 Processed substrate 53 Lower electrode (control plate electrode) 56 Second magnetic field generator (target) Processing substrate side magnetic field generator)

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 接地した処理室内の制御用平板電極に被
処理基板を設置し、前記被処理基板に対向配置した平板
型の高周波印加電極に高周波電力を印加し、前記平板型
の高周波印加電極の平板面に平行な磁界を形成するプラ
ズマ処理方法。
1. A high-frequency applying electrode of a flat plate type, wherein a substrate to be processed is installed on a control flat plate electrode in a grounded processing chamber, and high-frequency power is applied to a high-frequency applying electrode of a flat plate type which is arranged so as to face the substrate to be processed. Plasma processing method for forming a magnetic field parallel to the flat plate surface of.
【請求項2】 接地した処理室内の制御用平板電極に被
処理基板を設置し、前記被処理基板と中心軸が垂直にな
るように配置した筒状の高周波印加電極に高周波電力を
印加し、前記高周波印加電極と中心軸を同一にする筒状
の接地電極を接地し、前記高周波印加電極および接地電
極から前記被処理基板に対して発散磁界を形成するプラ
ズマ処理方法。
2. A substrate to be processed is placed on a control plate electrode in a grounded processing chamber, and high-frequency power is applied to a cylindrical high-frequency applying electrode arranged so that its central axis is perpendicular to the substrate to be processed, A plasma processing method in which a cylindrical ground electrode having the same central axis as that of the high-frequency applying electrode is grounded, and a divergent magnetic field is formed from the high-frequency applying electrode and the ground electrode to the substrate to be processed.
【請求項3】 接地した処理室内の制御用平板電極に被
処理基板を設置し、前記被処理基板と中心軸が垂直にな
るように配置した筒状の高周波印加電極に高周波電力を
印加し、前記高周波印加電極と中心軸を同一にする筒状
の接地電極を接地し、前記高周波印加電極および接地電
極から前記被処理基板に対して平行磁界を形成するプラ
ズマ処理方法。
3. A substrate to be processed is placed on a control plate electrode in a grounded processing chamber, and high-frequency power is applied to a cylindrical high-frequency applying electrode arranged so that its central axis is perpendicular to the substrate to be processed, A plasma processing method in which a cylindrical ground electrode having the same central axis as that of the high-frequency applying electrode is grounded, and a parallel magnetic field is formed from the high-frequency applying electrode and the ground electrode to the substrate to be processed.
【請求項4】 接地した処理室内の制御用平板電極に被
処理基板を設置し、前記被処理基板と中心軸が垂直にな
るように配置した筒状の高周波印加電極に高周波電力を
印加し、前記高周波印加電極と中心軸を同一にする筒状
の接地電極を接地し、前記高周波印加電極および接地電
極と前記被処理基板との間にカスプ磁界を形成するプラ
ズマ処理方法。
4. A substrate to be processed is placed on a control plate electrode in a grounded processing chamber, and high frequency power is applied to a cylindrical high frequency applying electrode arranged so that the central axis is perpendicular to the substrate to be processed, A plasma processing method in which a cylindrical ground electrode having the same central axis as that of the high-frequency applying electrode is grounded, and a cusp magnetic field is formed between the high-frequency applying electrode and the ground electrode and the substrate to be processed.
【請求項5】 接地した処理室と、被処理基板に対向配
置し高周波電力が印加される平板型の高周波印加電極
と、前記被処理基板を介して前記高周波印加電極に対向
配置するとともに前記被処理基板を設置する制御用平板
電極と、前記高周波印加電極の平板面に平行な磁界を発
生する磁界発生器とを備えたプラズマ処理装置。
5. A grounded processing chamber, a flat plate-type high-frequency applying electrode which is arranged to face the substrate to be processed and to which high-frequency power is applied, and which is arranged to face the high-frequency applying electrode through the substrate to be processed and which is to be treated. A plasma processing apparatus comprising: a control flat plate electrode on which a processing substrate is installed; and a magnetic field generator that generates a magnetic field parallel to the flat plate surface of the high frequency applying electrode.
【請求項6】 接地した処理室と、被処理基板と中心軸
が垂直になるように配置し高周波電力が印加される筒状
の高周波印加電極と、この高周波印加電極と中心軸を同
一にする筒状の接地電極と、前記被処理基板を設置する
制御用平板電極と、前記高周波印加電極および接地電極
の近傍に配置し前記高周波印加電極および接地電極の中
心軸と平行な方向に磁界を発生する筒状電極側磁界発生
器とを備えたプラズマ処理装置。
6. A grounded processing chamber, a cylindrical high-frequency applying electrode to which a high-frequency power is applied and arranged so that the central axis is perpendicular to the substrate to be processed, and the central axis is the same as the high-frequency applying electrode. A cylindrical ground electrode, a control plate electrode on which the substrate to be processed is placed, and a magnetic field generated in a direction parallel to the central axes of the high-frequency applying electrode and the ground electrode, which are arranged in the vicinity of the high-frequency applying electrode and the ground electrode. And a cylindrical electrode-side magnetic field generator for plasma processing.
【請求項7】 被処理基板の近傍に配置し高周波印加電
極および接地電極の中心軸と平行な方向に磁界を発生す
る被処理基板側磁界発生器を設けた請求項6記載のプラ
ズマ処理装置。
7. The plasma processing apparatus according to claim 6, further comprising a substrate-side magnetic field generator which is disposed near the substrate to be processed and generates a magnetic field in a direction parallel to the central axes of the high-frequency applying electrode and the ground electrode.
JP3288888A 1991-11-05 1991-11-05 Plasma processing method and processing apparatus Expired - Fee Related JP2947995B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3288888A JP2947995B2 (en) 1991-11-05 1991-11-05 Plasma processing method and processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3288888A JP2947995B2 (en) 1991-11-05 1991-11-05 Plasma processing method and processing apparatus

Publications (2)

Publication Number Publication Date
JPH05129094A true JPH05129094A (en) 1993-05-25
JP2947995B2 JP2947995B2 (en) 1999-09-13

Family

ID=17736077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3288888A Expired - Fee Related JP2947995B2 (en) 1991-11-05 1991-11-05 Plasma processing method and processing apparatus

Country Status (1)

Country Link
JP (1) JP2947995B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110729161A (en) * 2019-10-21 2020-01-24 上海华虹宏力半导体制造有限公司 Plasma etching device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110729161A (en) * 2019-10-21 2020-01-24 上海华虹宏力半导体制造有限公司 Plasma etching device

Also Published As

Publication number Publication date
JP2947995B2 (en) 1999-09-13

Similar Documents

Publication Publication Date Title
US4963242A (en) Plasma etching apparatus
JP3987131B2 (en) Induction enhanced reactive ion etching
JP5219479B2 (en) Uniformity control method and system in ballistic electron beam enhanced plasma processing system
US6433297B1 (en) Plasma processing method and plasma processing apparatus
KR0127663B1 (en) Apparatus & method for generating plasma of uniform flux density
JPH08288096A (en) Plasma treatment device
KR100390540B1 (en) Magnetron plasma etching apparatus
US6167835B1 (en) Two chamber plasma processing apparatus
JPH0812856B2 (en) Plasma processing method and apparatus
JP3037848B2 (en) Plasma generating apparatus and plasma generating method
JPS59144133A (en) Plasma dry processing apparatus
JP2947995B2 (en) Plasma processing method and processing apparatus
KR920008123B1 (en) Plasma etching apparatus
JP2851765B2 (en) Plasma generation method and apparatus
JPH0781187B2 (en) Vacuum process equipment
JPH07263192A (en) Etching device
JP2877398B2 (en) Dry etching equipment
JP3113344B2 (en) Dual frequency excitation plasma device using rotating magnetic field
JP2004349717A (en) Plasma-etching trearment apparatus
JP2750430B2 (en) Plasma control method
JP2879302B2 (en) Magnetic field generator for magnetron plasma etching
JPH02156526A (en) Microwave plasma treating system
JPH09270299A (en) Plasma treating device
JPH05315096A (en) Plasma generating device
JP3686563B2 (en) Semiconductor device manufacturing method and plasma processing apparatus

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees