JPH05129030A - Simulation fuel cell - Google Patents

Simulation fuel cell

Info

Publication number
JPH05129030A
JPH05129030A JP3313242A JP31324291A JPH05129030A JP H05129030 A JPH05129030 A JP H05129030A JP 3313242 A JP3313242 A JP 3313242A JP 31324291 A JP31324291 A JP 31324291A JP H05129030 A JPH05129030 A JP H05129030A
Authority
JP
Japan
Prior art keywords
fuel cell
gas
heater
fuel gas
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3313242A
Other languages
Japanese (ja)
Other versions
JP3413524B2 (en
Inventor
Kenichi Mochizuki
健一 望月
Kazunori Kobayashi
和典 小林
Mutsumi Ogose
睦美 生越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP31324291A priority Critical patent/JP3413524B2/en
Publication of JPH05129030A publication Critical patent/JPH05129030A/en
Application granted granted Critical
Publication of JP3413524B2 publication Critical patent/JP3413524B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04225Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To facilitate an equipment adjusting work and save an adjusting time by using a simulation fuel cell by which the adjusting work for a fuel cell power generation equipment can be completed before a fuel cell body is incorporated into the equipment. CONSTITUTION:When assembly of a power generation equipment is completed except a fuel cell main body, a simulation fuel cell 1 is installed instead of the main body, and an adjusting work and a trial operation of the equipment are carried out. That is, an external output command 36 is sent to a control device, and an operation of the equipment is started, and oxidating agent gas 2 is supplied to an oxidating agent passage 8, and fuel gas 4 is supplied to a fuel gas passage 11. A density 18 of the oxidating agent gas, a density 20 of the fuel gas 4, an input side temperature 22 of the fuel gas 4 and a temperature 24 and a pressure 26 of anode discharge gas 60 are detected, and respective voltage correction values 28, 30, 32 and 34 are sent to an operation control device 44, and an output 39 is simulated together with an electric current value 37. Simultaneously, a calorific value and a quantity of the fuel gas 4 is also simulated. Thereby, the main body can be incorporated into the equipment in a short time without damaging the fuel cell body.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、模擬燃料電池に関する
ものである。
FIELD OF THE INVENTION The present invention relates to a simulated fuel cell.

【0002】[0002]

【従来の技術】現在、次世代の発電設備として燃料電池
発電設備の開発が進められている。
2. Description of the Related Art Currently, fuel cell power generation equipment is under development as a next-generation power generation equipment.

【0003】該燃料電池発電設備は、現場において燃料
電池本体を除く燃料電池発電設備全体を組み立て、該燃
料電池発電設備が完成したら、燃料電池発電設備に工場
などで別に製造された燃料電池本体を組込み、その後、
試運転を行いながら調整作業を進めていくようにして構
築するようになっている。
In the fuel cell power generation equipment, the entire fuel cell power generation equipment excluding the fuel cell main body is assembled on site, and when the fuel cell power generation equipment is completed, the fuel cell main body separately manufactured in the factory etc. Embedded, then
It is constructed so that adjustment work can be carried out while performing test runs.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記し
た燃料電池発電設備には、以下のような問題があった。
However, the above-mentioned fuel cell power generation facility has the following problems.

【0005】即ち、燃料電池本体を除いて完成された燃
料電池発電設備の調整が不十分なまま燃料電池本体を組
込んで試運転を行うと、燃料電池本体を損傷するおそれ
があるので、燃料電池本体を組込む前の段階で燃料電池
発電設備の調整を完了しておく必要がある反面、燃料電
池本体を組込まないことには燃料電池発電設備の調整作
業を行うことができないという矛盾があって、燃料電池
発電設備の調整に困難を生じていると共に、燃料電池発
電設備の調整作業のために無用の時間を費やすおそれが
ある。
That is, if the fuel cell main body is assembled with the fuel cell power generation equipment completed except for the fuel cell main body and the trial run is performed, the fuel cell main body may be damaged. While it is necessary to complete the adjustment of the fuel cell power generation equipment at the stage before incorporating the main body, there is a contradiction that the adjustment work of the fuel cell power generation equipment cannot be performed if the fuel cell main body is not incorporated, It is difficult to adjust the fuel cell power generation facility, and there is a risk of spending unnecessary time for the adjustment work of the fuel cell power generation facility.

【0006】本発明は、上述の実情に鑑み、燃料電池本
体を組込む前に燃料電池発電設備の調整作業を完了させ
ることができるようにした模擬燃料電池を提供すること
を目的とするものである。
In view of the above situation, it is an object of the present invention to provide a simulated fuel cell in which the adjustment work of the fuel cell power generation equipment can be completed before the fuel cell body is assembled. ..

【0007】[0007]

【課題を解決するための手段】本発明は、内部に酸化剤
ガス2を流通可能なカソードヒータ3、及び、内部に燃
料ガス4を流通可能なアノードヒータ5を設け、アノー
ドヒータ5の燃料ガス4入側に水蒸気59を供給可能な
蒸気供給路15を接続すると共に、アノードヒータ5の
燃料ガス4出側にアノード排出ガス60の一部を系外へ
排出可能な燃料ガス排出路17を設け、更に、カソード
ヒータ3の酸化剤ガス2入側に酸化剤ガス2の組成ある
いは濃度18を検出可能な分析計19を設けると共に、
アノードヒータ5の燃料ガス4入側に燃料ガス4の組成
あるいは濃度20を検出可能な分析計21及び燃料ガス
4の温度22を検出可能な温度検出計23を設け、且
つ、アノードヒータ5の燃料ガス4出側にアノード排出
ガス60の温度24を検出可能な温度検出計25及びア
ノード排出ガス60の圧力26を検出可能な圧力検出計
27を設け、外部の出力指令36及び各検出計19,2
1,23,25,27からの検出信号18,20,2
2,24,26を入力してカソードヒータ3とアノード
ヒータ5のヒータ電源10,13、及び、蒸気供給路1
5の流量調整弁14、並びに、燃料ガス排出路17の流
量調整弁16に制御指令40,41,42,43を送る
演算制御装置44を設けたことを特徴とする模擬燃料電
池にかかるものである。
According to the present invention, a cathode heater 3 through which an oxidant gas 2 can flow, and an anode heater 5 through which a fuel gas 4 can flow are provided inside. A steam supply passage 15 capable of supplying water vapor 59 is connected to the 4th inlet side, and a fuel gas discharge passage 17 capable of discharging a part of the anode exhaust gas 60 to the outside of the system is provided at the fuel gas 4 outlet side of the anode heater 5. Further, an analyzer 19 capable of detecting the composition or concentration 18 of the oxidant gas 2 is provided on the oxidant gas 2 inlet side of the cathode heater 3, and
An analyzer 21 capable of detecting the composition or concentration 20 of the fuel gas 4 and a temperature detector 23 capable of detecting the temperature 22 of the fuel gas 4 are provided on the fuel gas 4 inlet side of the anode heater 5, and the fuel of the anode heater 5 is provided. A temperature detector 25 capable of detecting the temperature 24 of the anode exhaust gas 60 and a pressure detector 27 capable of detecting the pressure 26 of the anode exhaust gas 60 are provided on the gas 4 outlet side, and an external output command 36 and each detector 19, Two
Detection signals 18, 20, 2 from 1, 23, 25, 27
2, 24 and 26 are input to the heater power sources 10 and 13 for the cathode heater 3 and the anode heater 5, and the vapor supply path 1
The flow rate control valve 14 of No. 5 and the flow rate control valve 16 of the fuel gas discharge path 17 are provided with an arithmetic and control unit 44 for sending control commands 40, 41, 42, 43. is there.

【0008】[0008]

【作用】本発明によれば、演算制御装置44が演算部3
8からの電流値37と、分析計19からの酸化剤ガス2
の濃度18と、分析計21からの燃料ガス4の濃度20
と、温度検出計23からの燃料ガス4の温度22と、温
度検出計25からのアノード排出ガス60の温度24
と、圧力検出計27からのアノード排出ガス60の圧力
26とを入力して所定の演算を行うことにより、燃料電
池の出力の模擬が行われる。
According to the present invention, the arithmetic and control unit 44 includes the arithmetic unit 3
Current value 37 from 8 and oxidizer gas 2 from analyzer 19
18 of fuel gas and 20 of fuel gas 4 from analyzer 21
And the temperature 22 of the fuel gas 4 from the temperature detector 23 and the temperature 24 of the anode exhaust gas 60 from the temperature detector 25.
And the pressure 26 of the anode exhaust gas 60 from the pressure detector 27 are input and a predetermined calculation is performed to simulate the output of the fuel cell.

【0009】演算制御装置44が上記電流値37と各検
出信号18,20,22,24,26を基に燃料電池の
発熱量を求め、カソードヒータ3とアノードヒータ5の
ヒータ電源10,13へ制御指令40,41を送ってカ
ソードヒータ3とアノードヒータ5を発熱させることに
より、燃料電池の発熱量の模擬が行われる。
The arithmetic and control unit 44 obtains the heat generation amount of the fuel cell based on the current value 37 and the detection signals 18, 20, 22, 24 and 26, and supplies it to the heater power sources 10 and 13 of the cathode heater 3 and the anode heater 5. By sending the control commands 40 and 41 to cause the cathode heater 3 and the anode heater 5 to generate heat, the calorific value of the fuel cell is simulated.

【0010】演算制御装置44が上記電流値37を基に
アノードにおける燃料ガス4の反応量を求め、蒸気供給
路15の流量調整弁14へ制御指令42を送ってアノー
ドヒータ5内部へ水蒸気60を供給させることにより、
アノードでの反応におけるガスの増加量の模擬が行われ
る。
The arithmetic and control unit 44 obtains the reaction amount of the fuel gas 4 in the anode based on the current value 37, and sends a control command 42 to the flow rate adjusting valve 14 of the vapor supply path 15 to send the steam 60 into the anode heater 5. By supplying
A simulation of the increased amount of gas in the reaction at the anode is performed.

【0011】演算制御装置44が上記電流値37を基に
アノードにおける燃料ガス4の反応量を求め、燃料ガス
排出路17の流量調整弁16へ制御指令43を送ってア
ノードヒータ5から排出されるアノードヒータ排出ガス
60の一部を系外へ取り出させることにより、後工程へ
送られるアノードヒータ排出ガス60中の未反応の燃料
ガス4の量の模擬が行われる。
The arithmetic and control unit 44 obtains the reaction amount of the fuel gas 4 at the anode based on the current value 37, sends a control command 43 to the flow rate adjusting valve 16 of the fuel gas discharge passage 17, and discharges it from the anode heater 5. By taking out a part of the anode heater exhaust gas 60 to the outside of the system, the amount of unreacted fuel gas 4 in the anode heater exhaust gas 60 sent to the subsequent process is simulated.

【0012】[0012]

【実施例】以下、本発明の実施例を図面を参照しつつ説
明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0013】図1は本発明の一実施例である。FIG. 1 shows an embodiment of the present invention.

【0014】燃料電池発電設備に、燃料電池本体の代り
として設置することが可能な模擬燃料電池1を設ける。
A simulated fuel cell 1 which can be installed as a substitute for the fuel cell main body is provided in the fuel cell power generation facility.

【0015】該模擬燃料電池1は、内部に酸化剤ガス2
を流通可能なカソードヒータ3と内部に燃料ガス4を流
通可能なアノードヒータ5とを備えた模擬燃料電池本体
6と、模擬燃料電池本体6を制御する制御部7とにより
主に構成されている。
The simulated fuel cell 1 has an oxidant gas 2 inside.
It is mainly configured by a simulated fuel cell main body 6 having a cathode heater 3 capable of circulating the fuel gas and an anode heater 5 capable of circulating the fuel gas 4 therein, and a control unit 7 for controlling the simulated fuel cell main body 6. ..

【0016】模擬燃料電池本体6の前記カソードヒータ
3は、酸化剤ガス流路8の途中に接続されており、且
つ、そのヒータ部9にはヒータ電源10が接続されてい
る。
The cathode heater 3 of the simulated fuel cell main body 6 is connected in the middle of the oxidant gas flow path 8, and a heater power source 10 is connected to the heater portion 9.

【0017】又、前記アノードヒータ5は、燃料ガス流
路11の途中に接続されており、且つ、そのヒータ部1
2にヒータ電源13が接続されている。
Further, the anode heater 5 is connected in the middle of the fuel gas flow path 11 and the heater portion 1 thereof is provided.
The heater power supply 13 is connected to the heater 2.

【0018】更に、アノードヒータ5の燃料ガス4入側
には、流量調整弁14を備えた蒸気供給路15が接続さ
れており、又、アノードヒータ5の燃料ガス4出側に
は、流量調整弁16を備えた燃料ガス排出路17が接続
されている。
Further, a vapor supply passage 15 having a flow rate adjusting valve 14 is connected to the fuel gas 4 inlet side of the anode heater 5, and the flow rate adjusting side is connected to the fuel gas 4 outlet side of the anode heater 5. A fuel gas discharge passage 17 having a valve 16 is connected.

【0019】前記制御部7は、カソードヒータ3の酸化
剤ガス2入側に酸化剤ガス2の組成あるいは濃度18
(以下、単に濃度18という)を検出する分析計19
を、又、アノードヒータ5の燃料ガス4入側に前記と同
様に燃料ガス4の組成あるいは濃度20(以下、単に濃
度20という)を検出する分析計21及び燃料ガス4の
温度22を検出する温度検出計23を、更に、アノード
ヒータ5の燃料ガス4出側にアノード排出ガス60の温
度24を検出する温度検出計25及びアノード排出ガス
60の圧力26を検出する圧力検出計27を備えてい
る。
The control unit 7 controls the composition or concentration of the oxidant gas 2 on the inlet side of the oxidant gas 2 of the cathode heater 3.
Analyzer 19 for detecting (hereinafter, simply referred to as concentration 18)
Also, on the inlet side of the fuel gas 4 of the anode heater 5, an analyzer 21 for detecting the composition or concentration 20 (hereinafter, simply referred to as concentration 20) of the fuel gas 4 and a temperature 22 of the fuel gas 4 are detected in the same manner as described above. The temperature detector 23 is further provided on the outlet side of the fuel gas 4 of the anode heater 5 with a temperature detector 25 for detecting the temperature 24 of the anode exhaust gas 60 and a pressure detector 27 for detecting the pressure 26 of the anode exhaust gas 60. There is.

【0020】又、前記制御部7は、分析計19で検出し
た酸化剤ガス2の濃度18に応じた電圧補正値28を演
算により求める電圧演算部29と、分析計21で検出し
た燃料ガス4の濃度20に応じた電圧補正値30を演算
により求める電圧演算部31と、温度検出計23,25
で検出したアノードヒータ5の燃料ガス4入側と出側の
温度22,24の平均値に応じた電圧補正値32を演算
により求める電圧演算部33と、圧力検出計27で検出
した燃料ガス4の圧力26に応じた電圧補正値34を演
算により求める電圧演算部35とを備えている。
The control unit 7 also calculates the voltage correction value 28 corresponding to the concentration 18 of the oxidant gas 2 detected by the analyzer 19, and the fuel gas 4 detected by the analyzer 21. Voltage correction unit 30 for calculating the voltage correction value 30 according to the density 20 of the
The voltage calculation unit 33 for calculating a voltage correction value 32 according to the average value of the temperatures 22 and 24 on the inlet side and the outlet side of the fuel gas 4 detected by the anode heater 5, and the fuel gas 4 detected by the pressure detector 27. And a voltage calculation unit 35 that calculates a voltage correction value 34 according to the pressure 26 of FIG.

【0021】そして、各電圧演算部29,31,33,
35からの電圧補正値28,30,32,34と、外部
からの出力指令36に基づいて燃料電池本体が出力すべ
き電流値37を求める電流演算部38からの電流値37
とを入力して、所定の演算を行い、燃料電池本体の出力
39を求めると共に、前記ヒータ電源10,13や流量
調整弁14,16に制御指令40,41,42,43を
送る演算制御装置44を備えている。
Then, the voltage calculation units 29, 31, 33,
A current value 37 from a current calculator 38 that obtains a current value 37 to be output by the fuel cell main body based on voltage correction values 28, 30, 32, 34 from 35 and an output command 36 from the outside.
And a predetermined calculation is performed to obtain the output 39 of the fuel cell main body, and the control commands 40, 41, 42, 43 are sent to the heater power supplies 10, 13 and the flow rate adjusting valves 14, 16 as well. 44 are provided.

【0022】図1中59は、蒸気供給路15からアノー
ドヒータ5内部へ供給される水蒸気である。
Reference numeral 59 in FIG. 1 denotes water vapor supplied from the vapor supply path 15 to the inside of the anode heater 5.

【0023】尚、図2は燃料電池発電設備45の概略で
あって、図中46は電解質47をカソード48とアノー
ド49で挟持してなる燃料電池本体、50は燃料電池本
体46を収容する圧力容器、51は原燃料ガス、52は
燃焼側53で発生した熱により改質側54を流れる原燃
料ガス51と水蒸気59を水素と一酸化炭素に転換する
改質器、55はアノード49を出たガスを気水分離する
気水分離器、56は空気57を吸引するコンプレッサ、
58はコンプレッサ56を駆動するタービン、61,6
2はガスを循環させるブロワ、63,64はカソードヒ
ータ3の入出側に設けられた濃度検出計である。
FIG. 2 is a schematic view of the fuel cell power generation facility 45. In the figure, 46 is a fuel cell main body in which an electrolyte 47 is sandwiched between a cathode 48 and an anode 49, and 50 is a pressure for accommodating the fuel cell main body 46. A container, 51 is a raw fuel gas, 52 is a reformer for converting the raw fuel gas 51 and steam 59 flowing through the reforming side 54 into hydrogen and carbon monoxide by the heat generated on the combustion side 53, and 55 is an anode 49. Air-water separator for separating the gas into water, 56 is a compressor for sucking air 57,
Reference numeral 58 designates a turbine for driving the compressor 56, and 61, 6
Reference numeral 2 is a blower that circulates gas, and 63 and 64 are concentration detectors provided on the inlet and outlet sides of the cathode heater 3.

【0024】次に、作動について説明する。Next, the operation will be described.

【0025】燃料電池本体46を除く燃料電池発電設備
45の組み立て作業が完了したら、燃料電池本体46の
代りに模擬燃料電池1を設置して、以下のように、燃料
電池発電設備45の調整作業及び試運転を行う。
When the assembly work of the fuel cell power generation equipment 45 excluding the fuel cell main body 46 is completed, the simulated fuel cell 1 is installed in place of the fuel cell main body 46, and the adjustment work of the fuel cell power generation equipment 45 is performed as follows. And perform a trial run.

【0026】即ち、外部の出力指令36を燃料電池発電
設備45の図示しない制御装置に送って、燃料電池発電
設備45の運転を開始し、酸化剤ガス流路8に酸化剤ガ
ス2が、又、燃料ガス流路11に燃料ガス4が供給され
るようにする。
That is, the external output command 36 is sent to a control device (not shown) of the fuel cell power generation facility 45 to start the operation of the fuel cell power generation facility 45, and the oxidant gas 2 is supplied to the oxidant gas flow path 8. The fuel gas 4 is supplied to the fuel gas passage 11.

【0027】上記を図2により説明すると、原燃料ガス
51と水蒸気59は、先ず、改質器52の改質側54を
通って、燃焼側53で発生した熱により水素と一酸化炭
素に転換され、その後、アノード49(この場合にはア
ノードヒータ5)に供給されて反応に利用される。そし
て、アノード49を出たアノード排出ガス60は、気水
分離器55を通って気水分離されブロワ61によって改
質器52の燃焼側53へ導かれ、アノード排出ガス60
中の未反応の燃料ガス4が改質器52の燃焼側53で燃
焼されることにより熱源として利用された後、コンプレ
ッサ56により吸引された空気57と混合されてから、
酸化剤ガス2としてカソード48(この場合にはカソー
ドヒータ3)へ導入され反応に利用される。カソードヒ
ータ3から出た酸化剤ガス2はその一部がカソード48
の入口へブロワ62によって戻され、その後、タービン
58へ送られて、前記コンプレッサ56を駆動するのに
用いられる。
To explain the above with reference to FIG. 2, the raw fuel gas 51 and the steam 59 first pass through the reforming side 54 of the reformer 52 and are converted into hydrogen and carbon monoxide by the heat generated on the combustion side 53. After that, it is supplied to the anode 49 (in this case, the anode heater 5) and used for the reaction. Then, the anode exhaust gas 60 that has exited the anode 49 is separated into steam and water through the steam / water separator 55, and is guided to the combustion side 53 of the reformer 52 by the blower 61.
The unreacted fuel gas 4 therein is used as a heat source by being burned on the combustion side 53 of the reformer 52, and then mixed with the air 57 sucked by the compressor 56,
The oxidizing gas 2 is introduced into the cathode 48 (in this case, the cathode heater 3) and used for the reaction. Part of the oxidant gas 2 emitted from the cathode heater 3 is the cathode 48.
To the inlet of the turbine by a blower 62 and then sent to a turbine 58 for use in driving the compressor 56.

【0028】この際、カソードヒータ3の酸化剤ガス2
入側では分析計19が酸化剤ガス2の組成あるいは濃度
18を検出し、該濃度18に基づいて電圧演算部29が
濃度18に応じた電圧補正値28(ΔVox)を演算に
より求め、電圧補正値28を演算制御装置44へ送る。
At this time, the oxidant gas 2 of the cathode heater 3
On the inlet side, the analyzer 19 detects the composition or concentration 18 of the oxidant gas 2, and the voltage calculation unit 29 calculates the voltage correction value 28 (ΔVox) corresponding to the concentration 18 based on the concentration 18 to correct the voltage. The value 28 is sent to the arithmetic and control unit 44.

【0029】同様に、アノードヒータ5の燃料ガス4入
側では分析計21が燃料ガス4の組成あるいは濃度20
を検出し、該濃度20に基づいて電圧演算部31が濃度
20に応じた電圧補正値30(ΔVf)を演算により求
め、電圧補正値30を演算制御装置44へ送る。
Similarly, on the fuel gas 4 inlet side of the anode heater 5, the analyzer 21 indicates that the composition or concentration of the fuel gas 4 is 20.
Is detected, the voltage calculation unit 31 calculates the voltage correction value 30 (ΔVf) corresponding to the density 20 based on the density 20, and sends the voltage correction value 30 to the calculation control device 44.

【0030】又、アノードヒータ5の燃料ガス4入側で
は温度検出計23が燃料ガス4の温度22を検出し、ア
ノードヒータ5の燃料ガス4出側では温度検出計25が
アノード排出ガス60の温度24を検出し、該温度2
2,24に基づいて電圧演算部33が温度22,24の
平均値を取り、該平均値に応じた電圧補正値32(ΔV
t)を演算により求め、電圧補正値32を演算制御装置
44へ送る。
On the fuel gas 4 inlet side of the anode heater 5, the temperature detector 23 detects the temperature 22 of the fuel gas 4, and on the fuel gas 4 outlet side of the anode heater 5, the temperature detector 25 detects the anode exhaust gas 60. The temperature 24 is detected, and the temperature 2
2 and 24, the voltage calculation unit 33 takes the average value of the temperatures 22 and 24, and the voltage correction value 32 (ΔV
t) is obtained by calculation, and the voltage correction value 32 is sent to the calculation control device 44.

【0031】更に、アノードヒータ5の燃料ガス4出側
では圧力検出計27がアノード排出ガス60の圧力26
を検出し、該圧力26に基づいて電圧演算部35が圧力
26に応じた電圧補正値34(ΔVp)を演算により求
め、電圧補正値34を演算制御装置44へ送る。
Further, on the outlet side of the fuel gas 4 of the anode heater 5, the pressure detector 27 detects the pressure 26 of the anode exhaust gas 60.
The voltage calculation unit 35 calculates the voltage correction value 34 (ΔVp) corresponding to the pressure 26 based on the pressure 26, and sends the voltage correction value 34 to the calculation control device 44.

【0032】演算制御装置44は、出力指令36に基づ
いて電流演算部38が演算により求めた燃料電池本体4
6が出力すべき電流値37(I)を入力して、電流値3
7に応じた電圧補正値ΔViを求め、基準電圧Vaに各
電圧補正値ΔVoxとΔVfとΔVtとΔVpとΔVi
とを以下の式に従って加えることにより、燃料電池本体
46が新たに出力すべき電圧値(V)を求める。
The arithmetic and control unit 44 uses the fuel cell main body 4 which is calculated by the current calculator 38 based on the output command 36.
6 inputs the current value 37 (I) to be output, and the current value 3
The voltage correction value ΔVi corresponding to 7 is obtained, and the voltage correction values ΔVox, ΔVf, ΔVt, ΔVp, and ΔVi are added to the reference voltage Va.
By adding and according to the following equation, the voltage value (V) to be newly output by the fuel cell main body 46 is obtained.

【0033】 V=Va+ΔVox+ΔVf+ΔVt+ΔVp+ΔViV = Va + ΔVox + ΔVf + ΔVt + ΔVp + ΔVi

【0034】そして、演算制御装置44は、電圧値
(V)と前記電流値37(I)を掛けることにより燃料
電池本体46の出力39(単位=ワット)を求め、出力
39を燃料電池発電設備45の図示しない制御装置に送
る。これによって、燃料電池本体46の出力39が模擬
される。
Then, the arithmetic and control unit 44 obtains the output 39 (unit = watt) of the fuel cell main body 46 by multiplying the voltage value (V) and the current value 37 (I), and the output 39 is used as the fuel cell power generation equipment. 45 to a control device (not shown). As a result, the output 39 of the fuel cell body 46 is simulated.

【0035】又、燃料電池本体46の出力39が求めら
れれば、該出力39から燃料電池本体46の発熱量(単
位=カロリー)が計算できるので、演算制御装置44は
発熱量を演算し、該発熱量に基づいてヒータ電源10,
13に制御指令40,41を送って、カソードヒータ3
及びアノードヒータ5を発熱させる。これによって、燃
料電池本体46の発熱量が模擬される。
Further, if the output 39 of the fuel cell main body 46 is obtained, the calorific value (unit = calorie) of the fuel cell main body 46 can be calculated from the output 39. Therefore, the arithmetic control unit 44 calculates the calorific value, Heater power supply 10 based on the amount of heat generation,
13 sends control commands 40 and 41 to the cathode heater 3
Also, the anode heater 5 is caused to generate heat. This simulates the amount of heat generated by the fuel cell body 46.

【0036】尚、上記の発熱量は、カソードヒータ3と
アノードヒータ5に熱収支を演算して配分される。
The amount of heat generated is distributed to the cathode heater 3 and the anode heater 5 by calculating the heat balance.

【0037】次に、燃料電池本体46で生じる反応の結
果、アノードヒータ5に供給される燃料ガス4の量に比
べてアノードヒータ5から排出されるアノード排出ガス
60の量が増えるが、電流値37が求められれば燃料電
池本体46の反応量が分るので、演算制御装置44がア
ノード49側におけるガスの増加量を演算し、流量調整
弁14に制御指令42を送って、流量調整弁14の開度
を調整させ、ガスの増加分だけ蒸気供給路15からアノ
ードヒータ5内部へ水蒸気59を供給させる。これによ
って、アノード49側におけるガスの増加量が模擬され
る。
Next, as a result of the reaction occurring in the fuel cell main body 46, the amount of the anode exhaust gas 60 discharged from the anode heater 5 increases as compared with the amount of the fuel gas 4 supplied to the anode heater 5, but the current value is increased. If 37 is obtained, the reaction amount of the fuel cell main body 46 is known, so the arithmetic and control unit 44 calculates the increase amount of the gas on the anode 49 side and sends a control command 42 to the flow rate adjusting valve 14 to send the flow rate adjusting valve 14 The opening degree of is adjusted to supply the steam 59 to the inside of the anode heater 5 from the steam supply passage 15 by the amount of increase in the gas. This simulates the increased amount of gas on the anode 49 side.

【0038】更に、前記したように、アノード49を出
たアノード排出ガス60は、次に、改質器52の燃焼側
53へ送られて、アノード排出ガス60中の未反応の燃
料ガス4分が燃焼されるのであるが、模擬燃料電池1で
は、実際の反応が行われないため、改質器52の燃焼側
53へはアノードヒータ5に供給した燃料ガス4がその
まま送られることになってしまうので、演算制御装置4
4が燃料電池本体46の反応量に基づき、アノード排出
ガス60中に含まれるべき未反応の燃料ガス4の量を演
算し、流量調整弁16に燃料ガス排出路17を送って、
流量調整弁16の開度を調整させ、反応した分の燃料ガ
ス4に見あう量だけアノード排出ガス60を排出させ
る。これによって、改質器52の燃焼側53へ送られる
アノード排出ガス60中に含まれるべき未反応の燃料ガ
ス4の量が模擬される。
Further, as described above, the anode exhaust gas 60 that has exited the anode 49 is then sent to the combustion side 53 of the reformer 52, and the unreacted fuel gas in the anode exhaust gas 60 is separated into 4 minutes. However, in the simulated fuel cell 1, since no actual reaction is performed, the fuel gas 4 supplied to the anode heater 5 is directly sent to the combustion side 53 of the reformer 52. Therefore, the arithmetic and control unit 4
4 calculates the amount of unreacted fuel gas 4 to be contained in the anode exhaust gas 60 based on the reaction amount of the fuel cell main body 46, and sends the fuel gas exhaust passage 17 to the flow rate adjusting valve 16,
The opening degree of the flow rate adjusting valve 16 is adjusted to discharge the anode exhaust gas 60 in an amount corresponding to the reacted fuel gas 4. This simulates the amount of unreacted fuel gas 4 that should be contained in the anode exhaust gas 60 sent to the combustion side 53 of the reformer 52.

【0039】このように、模擬燃料電池1を用いること
により、燃料電池本体46がなくとも燃料電池発電設備
45の調整作業を支障なく行うことができ、以て、燃料
電池本体46を損傷することなく、短時間で燃料電池発
電設備45に組込むことができるようになる。
As described above, by using the simulated fuel cell 1, the adjustment work of the fuel cell power generation facility 45 can be performed without any trouble without the fuel cell main body 46, so that the fuel cell main body 46 is damaged. Instead, it can be incorporated into the fuel cell power generation facility 45 in a short time.

【0040】尚、本発明は、上述の実施例にのみ限定さ
れるものではなく、電圧演算部29,31,33,35
及び電流演算部38は演算制御装置44と一体としても
良いこと、その他、本発明の要旨を逸脱しない範囲内に
おいて種々変更を加え得ることは勿論である。
The present invention is not limited to the above-mentioned embodiment, but the voltage calculation units 29, 31, 33, 35.
It is needless to say that the current calculation unit 38 and the current calculation unit 38 may be integrated with the calculation control device 44, and that various changes may be made without departing from the scope of the present invention.

【0041】[0041]

【発明の効果】以上説明したように、本発明の模擬燃料
電池によれば、燃料電池本体を組込む前に燃料電池発電
設備の調整作業を完了させることができるという優れた
効果を奏し得る。
As described above, according to the simulated fuel cell of the present invention, the excellent effect that the adjustment work of the fuel cell power generation equipment can be completed before the fuel cell main body is assembled can be achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の全体系統図である。FIG. 1 is an overall system diagram of an embodiment of the present invention.

【図2】一般的な燃料電池発電設備の全体概略系統図で
ある。
FIG. 2 is an overall schematic system diagram of a general fuel cell power generation facility.

【符号の説明】[Explanation of symbols]

1 模擬燃料電池 2 酸化剤ガス 3 カソードヒータ 4 燃料ガス 5 アノードヒータ 10,13 ヒータ電源 14,16 流量調整弁 15 蒸気供給路 16 流量調整弁 17 燃料ガス排出路 18,20 濃度 19,21 分析計 21 分析計 22,24 温度 23,25 温度検出計 26 圧力 27 圧力検出計 36 外部の出力指令 40,41,42,43 制御指令 44 演算制御装置 59 水蒸気 60 アノード排出ガス 1 Simulated Fuel Cell 2 Oxidant Gas 3 Cathode Heater 4 Fuel Gas 5 Anode Heater 10,13 Heater Power Supply 14,16 Flow Rate Control Valve 15 Steam Supply Channel 16 Flow Rate Control Valve 17 Fuel Gas Discharge Channel 18,20 Concentration 19,21 Analyzer 21 Analyzer 22, 24 Temperature 23, 25 Temperature Detector 26 Pressure 27 Pressure Detector 36 External Output Command 40, 41, 42, 43 Control Command 44 Arithmetic Control Device 59 Water Vapor 60 Anode Exhaust Gas

───────────────────────────────────────────────────── フロントページの続き (72)発明者 生越 睦美 東京都江東区豊洲三丁目1番15号 石川島 播磨重工業株式会社東二テクニカルセンタ ー内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Mutsumi Ikukoshi 3-15-1, Toyosu, Koto-ku, Tokyo Ishikawajima Harima Heavy Industries Co., Ltd. Toni Technical Center

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 内部に酸化剤ガス2を流通可能なカソー
ドヒータ3、及び、内部に燃料ガス4を流通可能なアノ
ードヒータ5を設け、アノードヒータ5の燃料ガス4入
側に水蒸気59を供給可能な蒸気供給路15を接続する
と共に、アノードヒータ5の燃料ガス4出側にアノード
排出ガス60の一部を系外へ排出可能な燃料ガス排出路
17を設け、更に、カソードヒータ3の酸化剤ガス2入
側に酸化剤ガス2の組成あるいは濃度18を検出可能な
分析計19を設けると共に、アノードヒータ5の燃料ガ
ス4入側に燃料ガス4の組成あるいは濃度20を検出可
能な分析計21及び燃料ガス4の温度22を検出可能な
温度検出計23を設け、且つ、アノードヒータ5の燃料
ガス4出側にアノード排出ガス60の温度24を検出可
能な温度検出計25及びアノード排出ガス60の圧力2
6を検出可能な圧力検出計27を設け、外部の出力指令
36及び各検出計19,21,23,25,27からの
検出信号18,20,22,24,26を入力してカソ
ードヒータ3とアノードヒータ5のヒータ電源10,1
3、及び、蒸気供給路15の流量調整弁14、並びに、
燃料ガス排出路17の流量調整弁16に制御指令40,
41,42,43を送る演算制御装置44を設けたこと
を特徴とする模擬燃料電池。
1. A cathode heater 3 which can circulate an oxidant gas 2 inside, and an anode heater 5 which can circulate a fuel gas 4 inside are provided, and steam 59 is supplied to the fuel gas 4 inlet side of the anode heater 5. A fuel gas discharge passage 17 capable of discharging a part of the anode exhaust gas 60 to the outside of the system is provided on the fuel gas 4 outlet side of the anode heater 5, and the oxidation of the cathode heater 3 is further performed. An analyzer 19 capable of detecting the composition or concentration 18 of the oxidant gas 2 is provided on the inlet side of the agent gas 2, and an analyzer capable of detecting the composition or concentration 20 of the fuel gas 4 on the inlet side of the fuel gas 4 of the anode heater 5. 21 and a temperature detector 23 capable of detecting the temperature 22 of the fuel gas 4, and a temperature detector 25 capable of detecting the temperature 24 of the anode exhaust gas 60 on the outlet side of the fuel gas 4 of the anode heater 5. And the pressure 2 of the anode exhaust gas 60
6, a pressure detector 27 capable of detecting 6 is provided, and the output signal 36 from the outside and the detection signals 18, 20, 22, 24, 26 from the detectors 19, 21, 23, 25, 27 are input to the cathode heater 3. And the heater power supply 10, 1 for the anode heater 5
3, and the flow rate adjusting valve 14 of the steam supply path 15, and
A control command 40 is issued to the flow rate adjusting valve 16 of the fuel gas discharge path 17,
A simulated fuel cell comprising an arithmetic control unit 44 for sending 41, 42, 43.
JP31324291A 1991-11-01 1991-11-01 Simulated fuel cell Expired - Fee Related JP3413524B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31324291A JP3413524B2 (en) 1991-11-01 1991-11-01 Simulated fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31324291A JP3413524B2 (en) 1991-11-01 1991-11-01 Simulated fuel cell

Publications (2)

Publication Number Publication Date
JPH05129030A true JPH05129030A (en) 1993-05-25
JP3413524B2 JP3413524B2 (en) 2003-06-03

Family

ID=18038835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31324291A Expired - Fee Related JP3413524B2 (en) 1991-11-01 1991-11-01 Simulated fuel cell

Country Status (1)

Country Link
JP (1) JP3413524B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7009355B2 (en) 2003-09-03 2006-03-07 Hyundai Motor Company Wiper control system for a vehicle and a method thereof
US9496566B2 (en) 2012-08-29 2016-11-15 Hyundai Motor Company Stack for simulating cell voltage reversal behavior in fuel cell
CN106168641A (en) * 2016-07-07 2016-11-30 苏州氢洁电源科技有限公司 A kind of membrane electrode test equipment of high temperature methanol fuel cell

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7009355B2 (en) 2003-09-03 2006-03-07 Hyundai Motor Company Wiper control system for a vehicle and a method thereof
US9496566B2 (en) 2012-08-29 2016-11-15 Hyundai Motor Company Stack for simulating cell voltage reversal behavior in fuel cell
US9819034B2 (en) 2012-08-29 2017-11-14 Hyundai Motor Company Stack for simulating cell voltage reversal behavior in fuel cell
CN106168641A (en) * 2016-07-07 2016-11-30 苏州氢洁电源科技有限公司 A kind of membrane electrode test equipment of high temperature methanol fuel cell

Also Published As

Publication number Publication date
JP3413524B2 (en) 2003-06-03

Similar Documents

Publication Publication Date Title
JP2008505450A (en) Fuel purge control of a fuel cell in response to operating conditions of a recirculating fuel blower
US20150244007A1 (en) Power generation system and method of operating power generation system
JPH09213353A (en) Fuel cell generating apparatus
WO2014069414A1 (en) Power generation system and method for operating power generation system
US20150263368A1 (en) Power generation system and method of operating power generation system
JPH07240220A (en) Fuel cell system
US20040110047A1 (en) Functional test and demonstration apparatus for fuel cell power system
JPH05129030A (en) Simulation fuel cell
JP2003068334A (en) Fuel circulating fuel cell system
JPS58166673A (en) Temperature-humidity exchanger of fuel cell
JP2006032205A (en) Fuel cell system
KR100551420B1 (en) Test system for Balance of Plant of Fuel Cell Automobile
JPH0714595A (en) Operating method of power generating device of fuel cell type
JPH01251561A (en) Control of combustor for fuel cell reformer
JP2004342389A (en) Fuel cell device
JPS58163183A (en) Fuel cell generating system
JPS6224570A (en) Fuel cell power generating system
JP2814706B2 (en) Fuel cell generator
JPH05343090A (en) Fuel cell power generation system
JP2005135661A (en) Mock fuel cell
JPH06188016A (en) Fuel battery power generation plant
KR20060070091A (en) Mock-up stack for valuation of a fuel cell balance of plant
JP2006107998A (en) Fuel cell system
JPH11260386A (en) Fuel cell power generating plant and its operation control method
JPH02213056A (en) Fuel cell power generating plant

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees