JPH05127125A - Optical receiver for coherent light wave communication - Google Patents

Optical receiver for coherent light wave communication

Info

Publication number
JPH05127125A
JPH05127125A JP3291509A JP29150991A JPH05127125A JP H05127125 A JPH05127125 A JP H05127125A JP 3291509 A JP3291509 A JP 3291509A JP 29150991 A JP29150991 A JP 29150991A JP H05127125 A JPH05127125 A JP H05127125A
Authority
JP
Japan
Prior art keywords
light
plane
optical receiver
light receiving
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3291509A
Other languages
Japanese (ja)
Inventor
Yoshito Onoda
義人 小野田
Terumi Chikama
輝美 近間
Joji Ishikawa
丈二 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP3291509A priority Critical patent/JPH05127125A/en
Publication of JPH05127125A publication Critical patent/JPH05127125A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To hardly occur crosstalk and to facilitate the optimization of branching ratio for an optical coupler by slanting a polarized light separation direction at a specific angle to a yz plane. CONSTITUTION:The optical receiver for coherent light wave communication provided with an optical coupler 2, a polarization beam splitter 18, and a photodetector 28 having 1st-4th photodetection parts 20, 22, 24, and 26 is constituted so that a plane containing the main axes of 1st and 2nd mutually parallel polarized light beams 106 and 108 and a plane containing the main axes of 3rd and 4th mutually parallel polarized light beams 110 and 112 slant at almost 45 to a plane (yz plane) containing the main axes of 1st and 2nd branch light beams 102 and 104. The four photodetection parts 20, 22, 24, and 26 are therefor positioned at the respective vertices of a parallelogram having no 90 vertical angle. Consequently, when two double balanced type photodetectors are constituted, their signal lead-out points do not face each other, crosstalk is hardly generated, and the branching ratio is optimized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は偏波ダイバーシティ受信
方式の実施に適し且つ受光器を二重平衡型に構成するの
に適したコヒーレント光波通信用光受信機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical receiver for coherent lightwave communication which is suitable for implementing a polarization diversity receiving system and which is suitable for constructing a photodetector in a double balanced type.

【0002】コヒーレント光波通信方式は、強度変調/
直線検波方式に比べて受信感度を高めることができるの
で、長距離伝送に適しており、しかも、光領域での高密
度な周波数分割多重が可能なので大容量伝送に適してい
る。
The coherent lightwave communication system uses intensity modulation /
It is suitable for long-distance transmission because it can increase the receiving sensitivity compared to the linear detection method, and is also suitable for large-capacity transmission because it enables high-density frequency division multiplexing in the optical region.

【0003】この方式が適用されるシステムにおいて、
伝送情報は次のように再生される。送信部で角度変調等
された信号光は、光伝送路を介して受信部に伝送され、
受信部で局発光源からの局部発振光(局発光)と加え合
わされた後受光器に入射する。信号光及び局発光が受光
器に入射すると、受光器の自乗特性によってその受光面
上で所謂光混合が起こり、信号光の周波数と局発光の周
波数の差の周波数を有する中間周波信号又はベースバン
ド信号(いずれも一般的にはマイクロ波領域の電気信
号)が得られるので、この信号に基づいて復調を行うこ
とによって伝送情報が再生されるものである。
In a system to which this method is applied,
The transmission information is reproduced as follows. The signal light whose angle is modulated in the transmitter is transmitted to the receiver through the optical transmission line,
The light is added to the locally oscillated light (local light) from the local light source at the receiver, and then enters the light receiver. When the signal light and the local light are incident on the light receiver, so-called light mixing occurs on the light receiving surface due to the square characteristic of the light receiver, and an intermediate frequency signal or a baseband signal having a frequency that is the difference between the frequency of the signal light and the frequency of the local light. Since a signal (all are generally electric signals in the microwave region) is obtained, the transmission information is reproduced by performing demodulation based on this signal.

【0004】この種のシステムにおいて使用される光受
信機にあっては、上述した動作原理上次のようなことが
要求される。 (イ)信号光及び局発光の偏光面が受光器の受光面上で
一致していないと、中間周波信号或いはベースバンド信
号の振幅が小さくなり、最悪の場合受信不能になるか
ら、この問題に対処する必要がある。そのための技術の
一つに偏波ダイバーシティ受信方式がある。
An optical receiver used in this type of system is required to have the following in principle of operation. (B) If the polarization planes of the signal light and the local light do not match on the light receiving surface of the light receiver, the amplitude of the intermediate frequency signal or the baseband signal becomes small, and in the worst case, reception becomes impossible. I need to deal with it. One of the technologies for that purpose is the polarization diversity reception system.

【0005】(ロ)コヒーレント光波通信用光受信機に
おいては、受けた信号光に比べて極めてハイパワーな局
発光を取り扱うので、局発光の強度雑音に対処する必要
がある。受光器を二重平衡型に構成するのはこのための
技術である。
(B) Since the coherent lightwave communication optical receiver handles extremely high power local light as compared with the received signal light, it is necessary to deal with the intensity noise of the local light. It is a technique for this that the photoreceiver is constructed in a double-balanced type.

【0006】[0006]

【従来の技術】図5は、偏波ダイバーシティ受信方式の
実施に適し且つ受光器を二重平衡型に構成するのに適し
た従来のコヒーレント光波通信用光受信機の構成例を示
す図である。2は光導波路におけるエバネッセント波結
合による光カプラであり、この光カプラ2は第1、第2
入力ポート4,6と第1、第2出力ポート8,10を有
している。第1入力ポート4には、信号光を伝送する光
ファイバ12が接続されており、第2入力ポート6には
局発光を伝送する偏波面保存光ファイバ14′が接続さ
れている。光カプラ2は、入力した信号光及び局発光を
加え合わせるとともに所定の分岐比(通常は1:1)で
分岐してこれら第1、第2分岐光102,104をそれ
ぞれ第1、第2出力ポート8,10から出力する。
2. Description of the Related Art FIG. 5 is a diagram showing a configuration example of a conventional optical receiver for coherent lightwave communication, which is suitable for implementing a polarization diversity receiving system and is suitable for constructing a photodetector in a double balanced type. .. Reference numeral 2 is an optical coupler based on evanescent wave coupling in the optical waveguide.
It has input ports 4 and 6 and first and second output ports 8 and 10. An optical fiber 12 for transmitting signal light is connected to the first input port 4, and a polarization-maintaining optical fiber 14 'for transmitting local light is connected to the second input port 6. The optical coupler 2 adds the input signal light and local light and branches them at a predetermined branching ratio (usually 1: 1) to output the first and second branched lights 102 and 104 to the first and second outputs, respectively. Output from ports 8 and 10.

【0007】16は第1、第2分岐光を平行光ビームに
するための平板マイクロレンズ等のレンズである。1
8′は偏光ビームスプリッタとして用いられる複屈折結
晶板であり、この複屈折結晶板18′は、第1分岐光1
02を偏光面が互いに直交する第1、第2偏光ビーム1
06′,108′に偏光分離すると共に、第2分岐光1
04を偏光面が互いに直交する第3、第4偏光ビーム1
10′,112′に偏光分離する。
Reference numeral 16 is a lens such as a flat plate microlens for converting the first and second branched lights into a parallel light beam. 1
Reference numeral 8'denotes a birefringent crystal plate used as a polarization beam splitter, and this birefringent crystal plate 18 'is used for the first branched light 1
02 is the first and second polarized beams 1 whose polarization planes are orthogonal to each other
06 'and 108' are polarized and separated, and the second branched light 1
04 is the third and fourth polarized beams 1 whose polarization planes are orthogonal to each other
The polarized light is separated into 10 'and 112'.

【0008】20′,22′,24′,26′はそれぞ
れ第1乃至第4偏光ビーム106′,108′,11
0′,112′を受光する第1乃至第4受光部であり、
これらの受光部は受光素子28′上に一体化して構成さ
れている。
Reference numerals 20 ', 22', 24 'and 26' denote first to fourth polarized beams 106 ', 108' and 11 respectively.
First to fourth light receiving portions for receiving 0 ', 112',
These light receiving portions are integrally formed on the light receiving element 28 '.

【0009】以下、各部材の位置関係等を説明するため
に、光カプラ2から互いに平行に出射した第1又は第2
分岐光102,104の光ビームの主軸(円筒光ビーム
である場合にはその中心に位置する光線の方向に相当)
をz軸とし、第1、第2分岐光102,104の主軸を
含む平面に平行で且つこれらの主軸に垂直な方向をy軸
とし、z軸及びy軸に垂直な方向をx軸とする3次元座
標系を設定する。尚、x軸は紙面の裏面側から表面側に
向い、y軸は図の下側から上側に向い、z軸は図の左側
から右側に向かうものとする。
Hereinafter, in order to explain the positional relationship of each member, etc., the first or second light emitted from the optical coupler 2 in parallel with each other.
Principal axes of the light beams of the branched lights 102 and 104 (in the case of a cylindrical light beam, correspond to the direction of the light beam located at the center)
Is the z-axis, the direction parallel to the plane including the principal axes of the first and second branched lights 102 and 104 and perpendicular to these principal axes is the y-axis, and the direction perpendicular to the z-axis and the y-axis is the x-axis. Set a three-dimensional coordinate system. The x-axis is directed from the back side to the front side of the paper, the y-axis is directed from the lower side to the upper side in the figure, and the z-axis is directed from the left side to the right side in the figure.

【0010】図6は図5の複屈折結晶板18′の光学軸
の説明図である。(A)は複屈折結晶板18′をz軸の
正側に向かって見た図、つまり複屈折結晶板18′を図
5における左側から右側に向かって見た図であり、
(B)は複屈折結晶板18′をy軸の正側に向かって見
た図である。複屈折結晶板18′の光学軸c′はy軸に
対して垂直であり、且つ、光学軸c′はx=zで表され
る平面に対して平行である。
FIG. 6 is an explanatory view of the optical axis of the birefringent crystal plate 18 'of FIG. (A) is a view of the birefringent crystal plate 18 'viewed from the positive side of the z-axis, that is, a view of the birefringent crystal plate 18' viewed from the left side to the right side in FIG.
(B) is a view of the birefringent crystal plate 18 'as viewed toward the positive side of the y-axis. The optical axis c'of the birefringent crystal plate 18 'is perpendicular to the y axis, and the optical axis c'is parallel to the plane represented by x = z.

【0011】この場合、互いに平行な第1、第2偏光ビ
ーム106′,108′の主軸を含む平面はxz平面と
平行であり、同じく、互いに平行な第3、第4偏光ビー
ム110′,112′の主軸を含む平面もxz平面に平
行である。従って、4つの受光部20′,22′,2
4′,26′は長方形の各頂点に位置することとなる。
In this case, the planes containing the principal axes of the first and second polarized beams 106 'and 108' which are parallel to each other are parallel to the xz plane, and the third and fourth polarized beams 110 'and 112 which are also parallel to each other. The plane including the principal axis of 'is also parallel to the xz plane. Therefore, the four light receiving parts 20 ', 22', 2
4'and 26 'are located at each vertex of the rectangle.

【0012】図7は図5の各受光部の平面的な位置関係
及び接続状態を説明するための図である。第1受光部2
0′と第3受光部24′は直列接続されており、接続点
の電位変化を増幅器32により増幅して中間周波信号又
はベースバンド信号として取り出すようにしたものであ
る。また、第2受光部22′と第4受光部26′も直列
接続されており、接続点の電位変化が増幅器34により
増幅されて取り出される。
FIG. 7 is a diagram for explaining the planar positional relationship and connection state of the respective light receiving portions of FIG. First light receiving section 2
0'and the third light receiving portion 24 'are connected in series, and the potential change at the connection point is amplified by the amplifier 32 to be extracted as an intermediate frequency signal or a baseband signal. Further, the second light receiving portion 22 'and the fourth light receiving portion 26' are also connected in series, and the potential change at the connection point is amplified by the amplifier 34 and taken out.

【0013】以上説明した従来構成によると、信号光の
偏光状態の揺らぎが大きい場合でも、第1受光部20′
及び第3受光部24′の組或いは第2受光部22′及び
第4受光部26′の組のいずれかから信号を得ることが
できるので、受信不能となることはない(偏波ダイバー
シティ受信方式)。
According to the conventional configuration described above, the first light receiving portion 20 'is provided even if the fluctuation of the polarization state of the signal light is large.
And a signal can be obtained from either the set of the third light receiving unit 24 'or the set of the second light receiving unit 22' and the fourth light receiving unit 26 ', so that reception is not possible (polarization diversity reception system). ).

【0014】一方、光カプラ2から各受光部に至る光路
長を適当に設定しておくと、光カプラ2における非対称
的な位相反転の結果、例えば第1受光部20′及び第3
受光部24′の組については、これらに入射する光の信
号成分は逆相となり、局発光の強度雑音成分は同相とな
る。従って、信号成分は相加され、強度雑音成分は相殺
され、局発光の強度雑音の影響が抑制される(二重平衡
型受光器)。
On the other hand, if the optical path length from the optical coupler 2 to each light receiving portion is set appropriately, as a result of asymmetrical phase inversion in the optical coupler 2, for example, the first light receiving portion 20 'and the third light receiving portion.
With respect to the set of the light receiving sections 24 ', the signal components of the light incident on them are in the opposite phase, and the intensity noise components of the local light are in the same phase. Therefore, the signal components are added, the intensity noise component is canceled, and the influence of the intensity noise of the local light is suppressed (double balanced type photoreceiver).

【0015】[0015]

【発明が解決しようとする課題】従来のコヒーレント光
波通信用光受信機においては、図7に示したように、4
つの受光部が長方形の頂点に位置するように配置されて
いるので、2つの信号取り出し点が向い合うような形と
なり、クロストークが発生しやすいという問題があっ
た。
In the conventional optical receiver for coherent lightwave communication, as shown in FIG.
Since the two light receiving portions are arranged so as to be located at the vertices of the rectangle, the two signal extraction points face each other, and there is a problem that crosstalk is likely to occur.

【0016】ところで、二重平衡型受光器において、局
発光強度雑音の抑圧を効果的に行うためには、光カプラ
における局発光の分岐比が正確に1:1であるのが望ま
しい。具体的には、従来構成においては、光カプラ2に
入射する局発光の偏光面がx=yで表される平面に平行
或いはx=−yで表される平面に平行となるように偏波
面保存光ファイバ14′が光カプラ2に接続されている
ので、yz平面と平行な偏光面を有する局発光の偏光成
分とxz平面と平行な偏光面を有する局発光の偏光成分
の双方について、光カプラ2における分岐比が正確に
1:1になっていることが要求される。
In the double-balanced photodetector, in order to effectively suppress the local oscillation intensity noise, it is desirable that the branching ratio of the local oscillation light in the optical coupler is exactly 1: 1. Specifically, in the conventional configuration, the polarization plane is set so that the polarization plane of the local light incident on the optical coupler 2 is parallel to the plane represented by x = y or the plane represented by x = −y. Since the storage optical fiber 14 'is connected to the optical coupler 2, both the local polarization component having the polarization plane parallel to the yz plane and the polarization component of the local light polarization having the polarization plane parallel to the xz plane are transmitted. It is required that the branching ratio in the coupler 2 be exactly 1: 1.

【0017】しかしながら、導波路型に構成された光カ
プラにあっては、一般に分岐比が偏光状態に依存して変
化するので、上記条件を満足するのが容易でない。本発
明はこのような技術的課題に鑑みて創作されたもので、
クロストークが生じにくいコヒーレント光波通信用光受
信機の提供を目的としている。
However, in a waveguide type optical coupler, the branching ratio generally changes depending on the polarization state, so that it is not easy to satisfy the above condition. The present invention was created in view of such technical problems,
It is an object of the present invention to provide an optical receiver for coherent lightwave communication in which crosstalk is unlikely to occur.

【0018】また、光カプラにおける分岐比を最適化す
るのが容易なコヒーレント光波通信用光受信機の提供も
この発明の目的である。
It is also an object of the present invention to provide an optical receiver for coherent lightwave communication in which the branching ratio in the optical coupler can be easily optimized.

【0019】[0019]

【課題を解決するための手段】本発明のコヒーレント光
波通信用光受信機は、第1及び第2入力ポートにそれぞ
れ入力した信号光及び局発光を加え合わせると共に所定
の分岐比で分岐してこれら第1及び第2分岐光をそれぞ
れ第1及び第2出力ポートから出力する光カプラと、上
記第1分岐光を偏光面が互いに直交する第1及び第2偏
光ビームに偏光分離すると共に上記第2分岐光を偏光面
が互いに直交する第3及び第4偏光ビームに偏光分離す
る偏光ビームスプリッタと、上記第1乃至第4偏光ビー
ムをそれぞれ受光する第1乃至第4受光部を有する受光
素子とを備えたコヒーレント光波通信用光受信機におい
て、互いに平行な上記第1及び第2偏光ビームの主軸を
含む平面並びに互いに平行な上記第3及び第4偏光ビー
ムの主軸を含む平面が上記第1及び第2分岐光の主軸を
含む平面に対して概略45°傾斜するようにして構成さ
れる。
In the optical receiver for coherent lightwave communication of the present invention, the signal light and the local light which are respectively input to the first and second input ports are added together and branched at a predetermined branching ratio. An optical coupler that outputs the first and second branched lights from the first and second output ports, respectively, and the first branched light is polarized and separated into first and second polarized beams whose polarization planes are orthogonal to each other. A polarization beam splitter for splitting and splitting the branched light into third and fourth polarized beams whose polarization planes are orthogonal to each other, and a light receiving element having first to fourth light receiving portions for respectively receiving the first to fourth polarized beams are provided. In an optical receiver for coherent lightwave communication, the plane including the principal axes of the first and second polarized beams parallel to each other and the plane including the principal axes of the third and fourth polarized beams parallel to each other. There configured so as to outline 45 ° inclined relative to a plane including the principal axis of the first and second branch light.

【0020】[0020]

【作用】本発明によると、第1及び第2偏光ビームの主
軸を含む平面と第3及び第4偏光ビームの主軸を含む平
面とが第1及び第2分岐光の主軸を含む平面に対して概
略45°傾斜するようにしているので、4つの受光部は
頂角が90°でない平行四辺形の各頂点に位置するよう
になる。その結果、2組の二重平衡型受光器を構成した
場合に、それぞれの信号取り出し点が向い合うことがな
くなり、クロストークが生じにくくなる。また、光カプ
ラにおける分岐比を最適化するのが容易になる点につい
ては実施例において詳細に説明する。
According to the present invention, the plane containing the principal axes of the first and second polarized beams and the plane containing the principal axes of the third and fourth polarized beams with respect to the plane containing the principal axes of the first and second branched beams. Since the light receiving portions are inclined at about 45 °, the four light receiving portions are located at the vertices of the parallelogram whose apex angle is not 90 °. As a result, when two sets of double-balanced optical receivers are configured, the signal extraction points do not face each other, and crosstalk is less likely to occur. Further, the fact that it becomes easy to optimize the branching ratio in the optical coupler will be described in detail in the embodiments.

【0021】[0021]

【実施例】以下本発明の望ましい実施例を説明する。図
1は本発明の望ましい実施例を示すコヒーレント光波通
信用光受信機の全体斜視図である。従来例におけるもの
と実質的に同一の部分には同一の符号を付しその説明を
一部省略する。また、各部材の配置関係等を説明する上
で前述のx,y,z座標軸を使用する。
The preferred embodiments of the present invention will be described below. FIG. 1 is an overall perspective view of an optical receiver for coherent lightwave communication showing a preferred embodiment of the present invention. The parts substantially the same as those in the conventional example are designated by the same reference numerals, and the description thereof is partially omitted. Further, the above-mentioned x, y, z coordinate axes are used in describing the arrangement relationship of each member and the like.

【0022】この実施例の構成が従来構成と異なる点は
次の通りである。 光カプラ2の第2入力ポート6に入射する局発光の偏
光面がyz平面と平行又は垂直になるように、局発光用
の偏波面保存光ファイバ14を光カプラ2に接続してい
る。
The structure of this embodiment is different from the conventional structure in the following points. A polarization-maintaining optical fiber 14 for local light is connected to the optical coupler 2 such that the polarization plane of the local light incident on the second input port 6 of the optical coupler 2 is parallel or perpendicular to the yz plane.

【0023】第1、第2偏光ビーム106,108の
主軸を含む平面と第3、第4偏光ビーム110,112
の主軸を含む平面とが第1、第2分岐光102,104
の主軸を含む平面(yz平面)に対して概略45°傾斜
するような複屈折結晶板18を用いている。このような
複屈折結晶板の構成例については後述する。
A plane including the principal axes of the first and second polarized beams 106 and 108 and the third and fourth polarized beams 110 and 112.
The plane including the principal axis of the first and second branched lights 102, 104
The birefringent crystal plate 18 that is inclined by about 45 ° with respect to the plane including the principal axis of (1) (yz plane) is used. A configuration example of such a birefringent crystal plate will be described later.

【0024】第1乃至第4偏光ビーム106,10
8,110,112をそれぞれ受光する第1乃至第4受
光部20,22,24,26は、頂角が90°でない平
行四辺形の各頂点に各々の中心部が位置するように形成
されている。
First to fourth polarized beams 106, 10
The first to fourth light receiving parts 20, 22, 24, 26 for receiving the light of 8, 110, 112 respectively are formed such that their respective central parts are located at the respective vertices of the parallelogram whose apex angle is not 90 °. There is.

【0025】図2は各受光部の断面構成を示す図であ
る。各受光部はPINフォトダイオードからなり、これ
らの受光部はInPからなる基板36上に一体に形成さ
れている。38は基板36における光が入射する側の面
に形成された凸型のレンズ部、40は基板36のレンズ
部38と反対の側に形成されたn+ −InP層、42は
+ −InP層40上に形成されたGaInAs層、4
4はGaInAs層42上に形成されたn- −InP
層、46はn- −InP層44に形成されたZn拡散
層、48はn+ −InP層40に接触するn電極、50
はZn拡散層46に接触するp電極である。各受光部の
径は約20μmであり、受光部間の寸法は約125μm
とした。
FIG. 2 is a diagram showing a sectional structure of each light receiving portion. Each light receiving portion is composed of a PIN photodiode, and these light receiving portions are integrally formed on a substrate 36 made of InP. Reference numeral 38 denotes a convex lens portion formed on the surface of the substrate 36 on which light is incident, 40 is an n + -InP layer formed on the opposite side of the lens portion 38 of the substrate 36, and 42 is n + -InP. GaInAs layer formed on the layer 40, 4
4 is an n -InP formed on the GaInAs layer 42.
Layer, 46 is a Zn diffusion layer formed in the n -InP layer 44, 48 is an n electrode in contact with the n + -InP layer 40, 50
Is a p electrode in contact with the Zn diffusion layer 46. The diameter of each light receiving part is about 20 μm, and the dimension between the light receiving parts is about 125 μm.
And

【0026】本実施例によると、各受光部を基板36上
に一体に形成し、しかもレンズ部38を基板36と一体
に形成しているので、受光素子を小型に形成することが
できる。
According to this embodiment, since each light receiving portion is formed integrally on the substrate 36 and the lens portion 38 is formed integrally with the substrate 36, the light receiving element can be formed in a small size.

【0027】図3は図1の複屈折結晶板18の光学軸の
説明図である。図3(A),(B)はそれぞれ図6
(A),(B)に対応している。この実施例では、複屈
折結晶板18の光学軸cの主面(複屈折結晶板の第1及
び第2分岐光102,104が入射する面)18Aへの
投影は、第1及び第2分岐光102,104の主軸を含
む平面(yz平面)に対して概略45°傾斜している。
また、光学軸cの複屈折結晶板底面18Bへの投影は、
同じく第1、第2分岐光102,104の主軸を含む平
面(yz平面)に対して概略45°傾斜している。具体
的には、複屈折結晶板18の光学軸cは、x=−y=z
で表される直線と平行である。
FIG. 3 is an explanatory view of the optical axis of the birefringent crystal plate 18 of FIG. 3 (A) and 3 (B) are shown in FIG.
It corresponds to (A) and (B). In this embodiment, the projection of the optical axis c of the birefringent crystal plate 18 onto the main surface (the surface of the birefringent crystal plate on which the first and second branched lights 102 and 104 are incident) 18A is performed by the first and second branched lights. It is inclined at approximately 45 ° with respect to a plane (yz plane) including the principal axes of the lights 102 and 104.
The projection of the optical axis c on the bottom surface 18B of the birefringent crystal plate is
Similarly, it is inclined at approximately 45 ° with respect to a plane (yz plane) including the principal axes of the first and second branched lights 102 and 104. Specifically, the optical axis c of the birefringent crystal plate 18 is x = −y = z
It is parallel to the straight line represented by.

【0028】このような複屈折結晶板18は、図5に示
された複屈折結晶板18′をz軸に対して45°回転さ
せることにより得ることができるが、各部材をモジュー
ルに組み立てる場合には、図1に示すように、直方体形
状の複屈折結晶板18を他の直方体形状の部材と平行に
配置しておくのが望ましい。
Such a birefringent crystal plate 18 can be obtained by rotating the birefringent crystal plate 18 'shown in FIG. 5 by 45 ° with respect to the z-axis. When assembling each member into a module, For this purpose, as shown in FIG. 1, it is desirable to dispose the rectangular parallelepiped birefringent crystal plate 18 in parallel with other rectangular parallelepiped members.

【0029】このような光学軸を有する複屈折結晶板を
用いた場合、第1、第2偏光ビーム106,108の主
軸を含む平面と第3、第4偏光ビーム110,112の
主軸を含む平面はそれぞれxz平面に対して概略45°
傾斜するようになる。
When a birefringent crystal plate having such an optical axis is used, a plane including the principal axes of the first and second polarized beams 106 and 108 and a plane including the principal axes of the third and fourth polarized beams 110 and 112. Is approximately 45 ° with respect to the xz plane
It becomes inclined.

【0030】図4は各受光部を受光素子28の裏面側か
ら見たときの配置(z軸の正側から負側に見たときの配
置)及び接続関係を説明するための図である。接続関係
については図7と同様であるのでその説明を省略する。
FIG. 4 is a diagram for explaining the arrangement of the respective light receiving portions when viewed from the back surface side of the light receiving element 28 (the arrangement when viewed from the positive side to the negative side of the z-axis) and the connection relationship. The connection relationship is the same as that in FIG. 7, and the description thereof will be omitted.

【0031】この実施例では、上述のような特定構成の
複屈折結晶板18を用いているので、第1乃至第4偏光
ビーム106,108,110,112がそれぞれ入射
する第1乃至第4受光部20,22,24,26は受光
素子の基板面上の頂角が90°でない平行四辺形の各頂
点に位置するようになるので、第1、第3受光部20,
24の信号取り出し点と第2、第4受光部22,26の
信号取り出し点は向い合うことがなくなり、クロストー
クの発生が抑制される。
In this embodiment, since the birefringent crystal plate 18 having the above-mentioned specific structure is used, the first to fourth light receiving beams on which the first to fourth polarized beams 106, 108, 110 and 112 respectively enter. Since the portions 20, 22, 24, and 26 are located at the vertices of the parallelogram whose vertex angle on the substrate surface of the light receiving element is not 90 °, the first and third light receiving portions 20,
The signal extraction point of 24 and the signal extraction points of the second and fourth light receiving portions 22 and 26 do not face each other, and the occurrence of crosstalk is suppressed.

【0032】本実施例においては、光カプラ2に入射す
る局発光の偏光面がyz平面に対して平行又は垂直とな
るようにしているので、光カプラ2の分岐比が入射光の
偏光面に依存して変化することは、局発光についての分
岐比を所望の値にする上で何ら問題とはならない。この
ため、局発光の分岐比を正確に1:1として、局発光の
強度雑音の影響を有効に防止することができるようにな
る。
In this embodiment, since the polarization plane of the local light incident on the optical coupler 2 is parallel or perpendicular to the yz plane, the branching ratio of the optical coupler 2 is the polarization plane of the incident light. The dependent change does not cause any problem in setting the branching ratio for local light to a desired value. Therefore, it is possible to effectively prevent the influence of the intensity noise of the local light by setting the branching ratio of the local light to 1: 1.

【0033】また、光カプラ2に入射する局発光の偏光
面がyz平面に対して45°傾斜するようにする場合と
比較して、本実施例によると、偏波面保存光ファイバ1
4を光カプラ2に接続する作業が容易である。このよう
に本実施例によると、偏波ダイバーシティ受信方式の実
施に適し且つ受信機を二重平衡型に構成するのに適した
コヒーレント光波通信用光受信機において、光カプラの
分岐比の最適化を容易にすることができるようになると
ともに、クロストークを生じにくくさせることができ
る。
According to the present embodiment, the polarization-maintaining optical fiber 1 is compared with the case where the polarization plane of the local light incident on the optical coupler 2 is inclined by 45 ° with respect to the yz plane.
It is easy to connect 4 to the optical coupler 2. As described above, according to the present embodiment, in the optical receiver for coherent lightwave communication, which is suitable for implementing the polarization diversity receiving method and suitable for configuring the receiver in the double balanced type, the optimization of the branching ratio of the optical coupler is performed. It is possible to facilitate the above, and it is possible to prevent crosstalk from occurring easily.

【0034】尚、本実施例において、局発光を円偏光と
して光カプラ2に入射させた場合には、イメージ除去型
のコヒーレント光波通信用光受信機の実現が可能にな
る。フロントエンド増幅用の増幅器32,34を、受光
素子28が固着される基板30上に形成することによ
り、装置の小型化が容易になる。この場合受光部と増幅
器間の電気的接続を最短距離で行うことができるように
なり、広帯域な光信号の受信が可能になる。
In this embodiment, when local light is made incident on the optical coupler 2 as circularly polarized light, an image-removal type optical receiver for coherent lightwave communication can be realized. By forming the amplifiers 32 and 34 for front-end amplification on the substrate 30 to which the light receiving element 28 is fixed, it is easy to downsize the device. In this case, the electrical connection between the light receiving section and the amplifier can be made in the shortest distance, and the broadband optical signal can be received.

【0035】受光素子28及び基板30を、例えばサフ
ァイアを透過窓とするキャップによって気密封止してア
センブリ化することにより、受光部の光学的劣化を抑制
することができる。パッケージの透過窓としては、複屈
折結晶板18、レンズ16又は光カプラ2を兼用させる
こともできる。こうすることにより小型な光受信機の実
現が可能になる。
Optical deterioration of the light receiving portion can be suppressed by hermetically assembling the light receiving element 28 and the substrate 30 with a cap having, for example, sapphire as a transmission window. The birefringent crystal plate 18, the lens 16 or the optical coupler 2 can also be used as the transmission window of the package. This makes it possible to realize a compact optical receiver.

【0036】[0036]

【発明の効果】以上説明したように、本発明によると、
クロストークが少ないコヒーレント光波通信用光受信機
の提供が可能になるという効果を奏する。また、本発明
の望ましい実施態様によると、上記効果に加えて光カプ
ラにおける分岐比の最適化が容易になるという効果も生
じる。
As described above, according to the present invention,
It is possible to provide an optical receiver for coherent lightwave communication with less crosstalk. Further, according to the preferred embodiment of the present invention, in addition to the above effects, there is an effect that the branching ratio in the optical coupler can be easily optimized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の望ましい実施例を示すコヒーレント光
波通信用光受信機の全体斜視図である。
FIG. 1 is an overall perspective view of an optical receiver for coherent lightwave communication showing a preferred embodiment of the present invention.

【図2】図1の受光部の断面構成を示す図である。FIG. 2 is a diagram showing a cross-sectional configuration of a light receiving unit of FIG.

【図3】図1の複屈折結晶板の光学軸の説明図である。FIG. 3 is an explanatory diagram of an optical axis of the birefringent crystal plate of FIG.

【図4】図1の受光部の配置及び接続を説明するための
図である。
FIG. 4 is a diagram for explaining the arrangement and connection of the light receiving units of FIG.

【図5】従来のコヒーレント光波通信用光受信機の全体
斜視図である。
FIG. 5 is an overall perspective view of a conventional optical receiver for coherent lightwave communication.

【図6】図5の複屈折結晶板の光学軸の説明図である。6 is an explanatory diagram of an optical axis of the birefringent crystal plate of FIG.

【図7】図5の受光部の配置及び接続を説明するための
図である。
FIG. 7 is a diagram for explaining the arrangement and connection of the light receiving units of FIG.

【符号の説明】[Explanation of symbols]

2 光カプラ 18 偏光ビームスプリッタ(複屈折結晶板) 28 受光素子 2 Optical Coupler 18 Polarizing Beam Splitter (Birefringent Crystal Plate) 28 Photodetector

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 第1及び第2入力ポート(4,6) にそれぞ
れ入力した信号光及び局発光を加え合わせると共に所定
の分岐比で分岐してこれら第1及び第2分岐光をそれぞ
れ第1及び第2出力ポート(8,10)から出力する光カプラ
(2) と、 上記第1分岐光を偏光面が互いに直交する第1及び第2
偏光ビームに偏光分離すると共に上記第2分岐光を偏光
面が互いに直交する第3及び第4偏光ビームに偏光分離
する偏光ビームスプリッタ(18)と、 上記第1乃至第4偏光ビームをそれぞれ受光する第1乃
至第4受光部(20,22,24,26) を有する受光素子(28)とを
備えたコヒーレント光波通信用光受信機において、 互いに平行な上記第1及び第2偏光ビームの主軸を含む
平面並びに互いに平行な上記第3及び第4偏光ビームの
主軸を含む平面が上記第1及び第2分岐光の主軸を含む
平面に対して概略45°傾斜していることを特徴とする
コヒーレント光波通信用光受信機。
1. The signal light and the local light input to the first and second input ports (4, 6) are added together and branched at a predetermined branching ratio, and these first and second branched lights are respectively divided into first and second beams. And optical coupler that outputs from the second output port (8,10)
(2) and the first and second split light beams whose polarization planes are orthogonal to each other
A polarization beam splitter (18) that splits the polarized beam into polarized beams and splits the second branched light into third and fourth polarized beams whose polarization planes are orthogonal to each other, and receives the first to fourth polarized beams, respectively. An optical receiver for coherent lightwave communication comprising a light receiving element (28) having first to fourth light receiving parts (20, 22, 24, 26), wherein the principal axes of the first and second polarized beams parallel to each other are A coherent lightwave characterized in that a plane including the planes including the main axes of the third and fourth polarized beams parallel to each other and a plane including the main axes of the first and second branched lights are substantially 45 ° with respect to each other. Optical receiver for communication.
【請求項2】 上記第1乃至第4受光部(20,22,24,26)
は同一基板(36)上に形成され、該基板面上の頂角が90
°でない平行四辺形の各頂点に上記各受光部の中心が位
置することを特徴とする請求項1に記載のコヒーレント
光波通信用光受信機。
2. The first to fourth light receiving parts (20, 22, 24, 26)
Are formed on the same substrate (36), and the apex angle on the substrate surface is 90.
The optical receiver for coherent lightwave communication according to claim 1, wherein the center of each of the light receiving portions is located at each vertex of a parallelogram that is not °.
【請求項3】 上記偏光ビームスプリッタは複屈折結晶
板(18)であり、該複屈折結晶板における光学軸の主面(1
8A) への投影は上記第1及び第2分岐光の主軸を含む平
面に対して概略45°傾斜していることを特徴とする請
求項2に記載のコヒーレント光波通信用光受信機。
3. The polarization beam splitter is a birefringent crystal plate (18), and a principal plane (1) of an optical axis in the birefringent crystal plate (1).
8. The optical receiver for coherent lightwave communication according to claim 2, wherein the projection onto 8A) is inclined by about 45 ° with respect to the plane including the principal axes of the first and second branched lights.
【請求項4】 上記局発光が円偏光であることを特徴と
する請求項1乃至3のいずれかに記載のコヒーレント光
波通信用光受信機。
4. The optical receiver for coherent lightwave communication according to claim 1, wherein the local light is circularly polarized light.
【請求項5】 上記局発光は直線偏光でありその偏光面
は上記第1及び第2分岐光の主軸を含む平面に対して垂
直又は平行であることを特徴とする請求項1乃至3のい
ずれかに記載のコヒーレント光波通信用光受信機。
5. The local light is linearly polarized light, and its polarization plane is perpendicular or parallel to the plane containing the principal axes of the first and second branched lights. An optical receiver for coherent lightwave communication according to Crab.
JP3291509A 1991-11-07 1991-11-07 Optical receiver for coherent light wave communication Withdrawn JPH05127125A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3291509A JPH05127125A (en) 1991-11-07 1991-11-07 Optical receiver for coherent light wave communication

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3291509A JPH05127125A (en) 1991-11-07 1991-11-07 Optical receiver for coherent light wave communication

Publications (1)

Publication Number Publication Date
JPH05127125A true JPH05127125A (en) 1993-05-25

Family

ID=17769816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3291509A Withdrawn JPH05127125A (en) 1991-11-07 1991-11-07 Optical receiver for coherent light wave communication

Country Status (1)

Country Link
JP (1) JPH05127125A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06237223A (en) * 1993-02-10 1994-08-23 Nec Corp Optical receiving circuit
JP2013128272A (en) * 2011-11-18 2013-06-27 Asahi Glass Co Ltd Optical receiving device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06237223A (en) * 1993-02-10 1994-08-23 Nec Corp Optical receiving circuit
JP2013128272A (en) * 2011-11-18 2013-06-27 Asahi Glass Co Ltd Optical receiving device

Similar Documents

Publication Publication Date Title
EP0409260B1 (en) Receiver for coherent optical communication
CN107925484B (en) Monolithic integrated coherent light receiver chip
EP0251062B1 (en) Dual balanced optical signal receiver
US20100158521A1 (en) Optical mixer for coherent detection of polarization-multiplexed signals
JPH0828682B2 (en) Optical hybrid device and polarization independent coherent lightwave detector
US8204378B1 (en) Coherent optical signal processing
EP0245026B1 (en) Optical heterodyne mixers providing image-frequency rejection
CA1308440C (en) Optical receiving method utilizing polarization diversity and apparatus for carrying out the same
EP0322893A2 (en) A polarization diversity optical receiving apparatus
US11435594B2 (en) Method for adjusting optical source
JPH0333726A (en) Polarized wave separating optical circuit
JPH05158096A (en) Optical receiver for coherent light wave communication
JPH05127125A (en) Optical receiver for coherent light wave communication
JPS63135829A (en) Optical heterodyne detector
JP2016045256A (en) Polarized wave multiplexer and optical transmitter using the same
JPS63205611A (en) Dual balance type photodetector
JP2758221B2 (en) Receiver for coherent optical communication
JPH05316052A (en) Polarized wave diversity optical receiver
US11456805B2 (en) Dual polarization unit for coherent transceiver or receiver
JPH06118344A (en) Polarization beam splitter module
JPH0643411A (en) Method and device for controlling operating point of optical modulator
JP2974077B2 (en) Receiver for coherent optical communication
JPS6221128A (en) Optical heterodyne detecting device
SU296271A1 (en) ALL-UNION PATENT-KXHHHEGKAR LIBRARY
JPH0671232B2 (en) Double balanced polarization diversity receiver

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990204