JPH05127097A - Microscope optical system - Google Patents

Microscope optical system

Info

Publication number
JPH05127097A
JPH05127097A JP3284979A JP28497991A JPH05127097A JP H05127097 A JPH05127097 A JP H05127097A JP 3284979 A JP3284979 A JP 3284979A JP 28497991 A JP28497991 A JP 28497991A JP H05127097 A JPH05127097 A JP H05127097A
Authority
JP
Japan
Prior art keywords
light
incident
beam splitter
light flux
optical axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3284979A
Other languages
Japanese (ja)
Other versions
JP3048267B2 (en
Inventor
Minoru Sukegawa
実 祐川
Takaaki Tanaka
隆明 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP3284979A priority Critical patent/JP3048267B2/en
Publication of JPH05127097A publication Critical patent/JPH05127097A/en
Application granted granted Critical
Publication of JP3048267B2 publication Critical patent/JP3048267B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Microscoopes, Condenser (AREA)

Abstract

PURPOSE:To remove ghost images out of sight and to observe clear images by arranging the beam splitter prism tilting at the prescribed angles. CONSTITUTION:A beam splitter prism 6 with a beam splitter surface 6a to divide light flux is arranged in the area of parallel light flux between objective lens 1 and image formation lens 3. A light flux incident surface 6b of the beam splitter prism 6 is flat and tilted by the angle theta against the plane crossed orthogonally to the optical axis of the incident light flux from the objective lens 1. In this case, the focusing distance of the image formation lens is taken as 'F' and the number of sights as 'S', the angle theta whose light flux incident surface is vertical to the incident light flux shall be a formula I. Further, when the distance between the transparent light emitting surface and the light flux incident surface is taken as '1', the image formation lens is located at the position where the light axis is deviated by distance (d) represented by formula II against the incident light flux.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、顕微鏡の平行光束領域
内に、この平行光束を透過光と反射光に2分割するビー
ムスプリッター面を有するビームスプリッタープリズム
が配設されている、顕微鏡光学系に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a microscope optical system in which a beam splitter prism having a beam splitter surface for splitting a parallel light beam into a transmitted light beam and a reflected light beam is arranged in a parallel light beam region of a microscope. Regarding

【0002】[0002]

【従来の技術】従来のこの種の顕微鏡光学系の一例とし
て、図8に示すものがある。この光学系では、物体面O
の光束は対物レンズ1を介して平行光束となる。そし
て、その前方に配設されたビームスプリッター面2aを
有するビームスプリッタープリズム2は、光束入射面2
bが平行光束の入射光軸に対して垂直な平面を成してお
り、この光束入射面2bから入射した光束は、ビームス
プリッター面2aで一部が反射して反射光射出面2cか
ら射出させられ、残りの光束はビームスプリッター面2
aを透過して透過光射出面2dから射出して、結像レン
ズ3を通過して結像面に像Iを結像する。
2. Description of the Related Art An example of a conventional microscope optical system of this type is shown in FIG. In this optical system, the object plane O
The light flux of is a parallel light flux via the objective lens 1. The beam splitter prism 2 having the beam splitter surface 2a arranged in front of the beam splitter surface 2a
b forms a plane perpendicular to the incident optical axis of the parallel light flux, and the light flux incident from the light flux incidence surface 2b is partially reflected by the beam splitter surface 2a and emitted from the reflected light emission surface 2c. And the rest of the light flux is the beam splitter surface 2
After passing through a, the light is emitted from the transmitted light exit surface 2d, passes through the imaging lens 3, and an image I is formed on the imaging surface.

【0003】しかしながら、このような光学系では、ビ
ームスプリッタープリズム2の光束入射面2bで反射さ
れた光束が物体面O上で反射され、再び対物レンズ1に
入射し、ビームスプリッタープリズム2及び結像レンズ
3を介して、等倍のゴースト像が視野中心に対して正規
の像点Iと点対称な位置に形成される。そのため、観察
すべき像Iのコントラストが悪くなり、鮮明な像を観察
することができなくなる。このようなゴースト像を防止
するために、プリズム面に多層膜コーティングを施した
ものもあるが、多層膜コートの分光特性により、ゴース
ト像に特定の色が現れ、ゴースト像を十分に除去するこ
とが困難であった。
However, in such an optical system, the light beam reflected by the light beam incident surface 2b of the beam splitter prism 2 is reflected on the object plane O and again enters the objective lens 1 to form the beam splitter prism 2 and an image. A 1 × ghost image is formed through the lens 3 at a position symmetrical with respect to the normal image point I with respect to the center of the visual field. Therefore, the contrast of the image I to be observed becomes poor, and it becomes impossible to observe a clear image. In order to prevent such ghost images, some prisms have a multilayer film coating, but due to the spectral characteristics of the multilayer film, a specific color appears in the ghost image, and the ghost image must be sufficiently removed. Was difficult.

【0004】この問題を改善しようとした顕微鏡光学系
として、特開昭54−123044号公報に記載された
ものがある。この光学系は、図9及び図10に示すよう
に、ビームスプリッタープリズム4を入射光軸に対して
所定角度θ′傾けて配置することで、ゴースト像を視野
外に除去するようにしたものである。
As a microscope optical system intended to improve this problem, there is one disclosed in Japanese Patent Laid-Open No. 54-123044. As shown in FIGS. 9 and 10, this optical system is configured to remove the ghost image outside the field of view by arranging the beam splitter prism 4 at a predetermined angle θ ′ with respect to the incident optical axis. is there.

【0005】[0005]

【発明が解決しようとする課題】ところが、この顕微鏡
光学系は、ビームスプリッタープリズム4を傾けてゴー
ストを除去することのみが記載されており、ビームスプ
リッター面4aで反射された光束については触れられて
いない。従って、図8の光学系において、ビームスプリ
ッタープリズム2に代えて、図9や図10に示すよう
に、入射光軸に直交する面に対して光束入射面4bが或
る角度θ′だけ傾いたビームスプリッタープリズム4を
配設した場合、ビームスプリッター面4aで反射された
一部の光束は反射光射出面4cで屈折して、入射光軸に
対して90°+2θ′又は90°−2θ′の角度となっ
て射出する。そのため、入射光軸に対して垂直な光束で
はなくなってしまう。
However, this microscope optical system only describes tilting the beam splitter prism 4 to remove ghosts, and does not mention the light flux reflected by the beam splitter surface 4a. Absent. Therefore, in the optical system of FIG. 8, instead of the beam splitter prism 2, as shown in FIGS. 9 and 10, the light beam incident surface 4b is inclined by a certain angle θ ′ with respect to the surface orthogonal to the incident optical axis. When the beam splitter prism 4 is provided, a part of the light flux reflected by the beam splitter surface 4a is refracted by the reflected light exit surface 4c and is 90 ° + 2θ ′ or 90 ° −2θ ′ with respect to the incident optical axis. Eject at an angle. Therefore, the light flux is not perpendicular to the incident optical axis.

【0006】ところで、このように反射光束が入射光軸
に対して垂直でなくなると、例えば複数の検者が同一の
像を同時に観察できるディスカッション顕微鏡装置等で
は、副検者側に進行する反射光束の光軸が水平でなくな
るから、装置内で余分なスペースが必要になったり、取
り付け部や接合部を傾斜させる必要が生じたりして、製
造時に加工が複雑になって製造コストが上昇し、システ
ム性も悪くなるという不具合が生じる。
By the way, when the reflected light flux is not perpendicular to the incident optical axis in this way, for example, in a discussion microscope apparatus or the like in which a plurality of examiners can observe the same image at the same time, the reflected light flux traveling to the sub-inspector side. Since the optical axis of is not horizontal, extra space is required inside the device, and it is necessary to incline the mounting part and the joint part, which complicates the manufacturing process and increases the manufacturing cost. There is a problem that the system performance also deteriorates.

【0007】本発明は、このような課題に鑑みて、光学
系の平行光束をビームスプリッタープリズムへの入射光
軸に対して平行な光束と垂直な光束とに分割できると共
に、ゴーストを除去して鮮明な像を観察できるようにし
た顕微鏡光学系を提供することを目的とする。
In view of the above problems, the present invention can split the parallel light flux of the optical system into a light flux parallel to the incident optical axis to the beam splitter prism and a light flux perpendicular to the beam splitter prism, and remove the ghost. It is an object of the present invention to provide a microscope optical system capable of observing a clear image.

【0008】[0008]

【課題を解決するための手段】本発明による顕微鏡光学
系は、対物レンズと結像レンズとの間の平行光束領域
に、平行光束分割用のビームスプリッター面を有するビ
ームスプリッタープリズムを配設した、無限遠補正の顕
微鏡光学系において、ビームスプリッタープリズムは、
ビームスプリッター面が光束入射面への入射光束の入射
光軸に対して45°の角度を有し、結像レンズの焦点距
離をfとし、顕微鏡の視野数をSとするとき、光束入射
面が入射光軸に垂直な面となす角度θは、 θ≧(1/2)tan-1(S/f) (1) であり、反射光射出面が入射光軸となす角度が前述のθ
であり、透過光射出面は光束入射面と平行であると共
に、これら透過光射出面と光束入射面との距離をlとす
ると、結像レンズは、その光軸が入射光軸に対して下記
の式で示す距離dだけずれた位置に配設されていること
を特徴とするものである。
In a microscope optical system according to the present invention, a beam splitter prism having a beam splitter surface for splitting a parallel light beam is arranged in a parallel light beam region between an objective lens and an imaging lens. In a microscope optical system with infinity correction, the beam splitter prism is
When the beam splitter surface has an angle of 45 ° with respect to the incident optical axis of the light beam incident on the light beam incident surface, the focal length of the imaging lens is f, and the field number of the microscope is S, the light beam incident surface is The angle θ formed by the plane perpendicular to the incident optical axis is θ ≧ (1/2) tan −1 (S / f) (1), and the angle formed by the reflected light exit surface with the incident optical axis is the above-mentioned θ.
And the transmitted light exit surface is parallel to the light incident surface, and the distance between the transmitted light exit surface and the light incident surface is l, the optical axis of the imaging lens is as follows with respect to the incident optical axis. It is characterized in that it is arranged at a position deviated by a distance d shown by the formula (1).

【0009】 [0009]

【0010】又、本発明による顕微鏡光学系は、ビーム
スプリッタープリズムに関して、結像レンズの焦点距離
をfとし、顕微鏡の視野数をSとするとき、光束入射面
がこの面への入射光束の入射光軸に垂直な面となす角度
θは、 θ≧(1/2)tan-1(S/f) (1) であり、ビームスプリッター面は光束入射面に対して
{45°−sin-1〔(1/n)sinθ〕}の角度を
有し、反射光射出面は光束入射面と直角をなし、透過光
射出面は光束入射面と平行であると共に、これら透過光
射出面と光束入射面との距離をlとすると、結像レンズ
は、その光軸が入射光軸に対して下記の式で示す距離d
だけずれた位置に配設されていることを特徴とするもの
である。
Further, in the microscope optical system according to the present invention, with respect to the beam splitter prism, when the focal length of the imaging lens is f and the field number of the microscope is S, the light beam incident surface is the incidence of the incident light beam on this surface. The angle θ with respect to the plane perpendicular to the optical axis is θ ≧ (1/2) tan −1 (S / f) (1), and the beam splitter surface is {45 ° -sin −1 with respect to the light beam incident surface. Has an angle of [(1 / n) sin θ]}, the reflected light exit surface is perpendicular to the light flux entrance surface, the transmitted light exit surface is parallel to the light flux entrance surface, and the transmitted light exit surface and the light flux entrance surface Assuming that the distance from the surface is l, the optical axis of the image forming lens is a distance d with respect to the incident optical axis expressed by the following formula.
It is characterized in that it is disposed at a position shifted by only.

【0011】 [0011]

【0012】[0012]

【作用】対物レンズを通過した平行光束は、ビームスプ
リッタープリズムの光束入射面に入射角θで進入し、或
る角度屈折するが、ビームスプリッター面で反射された
反射光は反射光射出面へ同一の角度で入射し、更にこの
面を出る際に角度θ屈折することで、入射光軸と垂直に
なり、又ビームスプリッター面を透過する光束は、透過
光射出面から射出する際に角度θ屈折して入射光軸と距
離dだけずれるから、結像レンズの光軸とその光軸が一
致することになり、結像面に物体像が結像する。しか
も、ゴースト像は視野外に結像するため、除去される。
The parallel light flux passing through the objective lens enters the light flux entrance surface of the beam splitter prism at an incident angle θ and is refracted at a certain angle, but the reflected light reflected by the beam splitter surface is the same as the reflected light exit surface. The light beam that is incident at an angle of θ and refracted at an angle θ when exiting this surface becomes a light beam that is perpendicular to the incident optical axis and that is transmitted through the beam splitter surface. Then, since it is displaced from the incident optical axis by the distance d, the optical axis of the imaging lens coincides with that optical axis, and an object image is formed on the imaging surface. Moreover, since the ghost image is formed outside the visual field, it is removed.

【0013】[0013]

【実施例】以下、本発明の第一実施例を図1乃至図4に
基づいて説明するが、上述の従来技術と同様の部材につ
いては同一の符号を用いてその説明を省略する。図1は
顕微鏡光学系の構成図を示すものであり、図中、対物レ
ンズ1と結像レンズ3との間の平行光束の領域に、この
光束を2分割するためのビームスプリッター面6aを有
するビームスプリッタープリズム6が配設されている。
このビームスプリッタープリズム6の光束入射面6bは
平面を成すと共に、対物レンズ1からの入射光束の光軸
(入射光軸)に直交する平面に対して、角度θだけ傾い
ている。
BEST MODE FOR CARRYING OUT THE INVENTION A first embodiment of the present invention will be described below with reference to FIGS. 1 to 4. The same members as those in the above-mentioned conventional art are designated by the same reference numerals and the description thereof is omitted. FIG. 1 shows a configuration diagram of a microscope optical system. In the figure, a beam splitter surface 6a for splitting a light beam into two is provided in a region of a parallel light beam between an objective lens 1 and an imaging lens 3. A beam splitter prism 6 is provided.
The light beam incident surface 6b of the beam splitter prism 6 forms a plane and is inclined by an angle θ with respect to the plane orthogonal to the optical axis (incident optical axis) of the incident light beam from the objective lens 1.

【0014】ここで、この角度θについて、図2の顕微
鏡光学系により考察する。図2は、ビームスプリッター
プリズムを傾斜させた場合の観察像とゴースト像の結像
光路を示す原理図である。図中、対物レンズ1と結像レ
ンズ2との間の平行光束領域に、入射光軸に対して角度
θ″傾いた平行平板形状のプリズム7が配設されてい
る。この光学系で、物体面Oの光束は、実線で示すよう
に、対物レンズ1を通過して平行光束になった後、プリ
ズム7を通過して、結像レンズ3によって結像面上に観
察像Iとして結像させられる。又、対物レンズ1を介し
てプリズム7に入射する平行光束の内、光束入射面7a
で反射する光束を破線で表すと、この反射光は光軸に対
して2θ″だけ傾いて対物レンズ1を通過し、物体面O
の延長面上にゴースト像O′として結像する。そして、
このゴースト像の光束は、そのまま破線の光路を逆行し
て、対物レンズ1及びプリズム7を通過し、結像レンズ
2の光軸に対して角度2θ″傾いて入射する。結像レン
ズ2の焦点距離をfとすると、破線の光束は結像レンズ
2を通過して、結像面上で結像レンズ2の光軸に対して
距離(f・tan2θ″)だけ離れた位置にゴースト像
I′を結像することになる。
Here, the angle θ will be considered with the microscope optical system in FIG. FIG. 2 is a principle diagram showing the image forming optical paths of an observation image and a ghost image when the beam splitter prism is tilted. In the figure, a parallel plate prism 7 inclined by an angle θ ″ with respect to the incident optical axis is arranged in a parallel light flux region between the objective lens 1 and the imaging lens 2. This optical system As indicated by the solid line, the light flux on the surface O passes through the objective lens 1 to become a parallel light flux, and then passes through the prism 7 to be imaged as an observation image I on the imaging surface by the imaging lens 3. Further, among the parallel light fluxes that enter the prism 7 through the objective lens 1, the light flux incidence surface 7a.
When the luminous flux reflected at is represented by a broken line, the reflected light is inclined by 2θ ″ with respect to the optical axis and passes through the objective lens 1, and the object plane O
Is imaged as a ghost image O'on the extended surface of. And
The light flux of this ghost image reverses the optical path of the broken line as it is, passes through the objective lens 1 and the prism 7, and is incident at an angle 2θ ″ with respect to the optical axis of the imaging lens 2. Assuming that the distance is f, the broken line light flux passes through the imaging lens 2 and is located on the imaging plane at a position (f · tan2θ ″) away from the optical axis of the imaging lens 2 by a ghost image I ′. Will be imaged.

【0015】これを考慮して、図1にもどって角度θの
領域を考えると、視野数Sのゴースト像が全て視野外に
結像するようにするためには、 θ≧(1/2)tan-1(S/f) (1) とすればよい。
Considering this, returning to FIG. 1 and considering the area of the angle θ, θ ≧ (1/2) in order to form all ghost images of the field number S outside the field of view. tan -1 (S / f) (1).

【0016】又、図3に示されているように、ビームス
プリッター面6aは入射光軸に対して45°の角度を有
しており、ビームスプリッター面6aで反射された光束
がプリズム6を出射する反射光射出面6cは、入射光軸
に対して角度θだけ傾斜している。光束入射面6bと対
向する位置に形成されていてビームスプリッター面6a
を透過する光束が射出する透過光射出面6dは、光束入
射面6bと平行に形成されている。又、結像レンズ3
は、その光軸が、対物レンズ1を通過した光束の光束入
射面6bへの入射光軸に対して距離dだけずれた位置に
設けられている。
Further, as shown in FIG. 3, the beam splitter surface 6a has an angle of 45 ° with respect to the incident optical axis, and the light beam reflected by the beam splitter surface 6a exits the prism 6. The reflected light exit surface 6c is inclined by an angle θ with respect to the incident optical axis. The beam splitter surface 6a is formed at a position facing the light beam incident surface 6b.
The transmitted light exit surface 6d from which the light flux that passes through is emitted is formed parallel to the light flux entrance surface 6b. Also, the imaging lens 3
Is provided at a position where its optical axis is displaced by a distance d with respect to the incident optical axis of the light flux that has passed through the objective lens 1 to the light flux incident surface 6b.

【0017】この距離dについて、図4により説明す
る。ビームスプリッタープリズム6の光束入射面6bと
透過光射出面6dとの距離をl、光束のビームスプリッ
タープリズム6内での光束入射面6bから透過光射出面
d迄の光路長をl′とすると、d=l′sin{θ−s
in-1〔(1/n)sinθ〕}である。ここで、 であるから、 で表される。
The distance d will be described with reference to FIG. If the distance between the light beam incident surface 6b of the beam splitter prism 6 and the transmitted light exit surface 6d is l, and the optical path length of the light beam from the light beam incident surface 6b in the beam splitter prism 6 to the transmitted light exit surface d is l ', d = l'sin {θ-s
in −1 [(1 / n) sin θ]}. here, Therefore, It is represented by.

【0018】本実施例は上述のように構成されているか
ら、物体面Oから出て対物レンズ1を通過する光束のう
ち、ビームスプリッタープリズム6の光束入射面で反射
される光束は、図2で説明したように、入射光束に対し
て2θの角度で反射して、物体面Oの延長面上の位置に
ゴースト像O′が形成される。そして、このゴースト像
の光束は、同一光路を逆行して対物レンズ1,ビームス
プリッタープリズム6及び結像レンズ3を通過した後、
結像面の延長面上で視野数Sの視野外に結像させられる
ことになる。これによって、ゴーストを除去できる。
Since the present embodiment is configured as described above, among the light fluxes that exit the object plane O and pass through the objective lens 1, the light fluxes reflected by the light flux incidence surface of the beam splitter prism 6 are as shown in FIG. As described above, the incident light beam is reflected at an angle of 2θ, and a ghost image O ′ is formed at a position on the extension surface of the object plane O. Then, the light flux of this ghost image goes through the same optical path backwards and passes through the objective lens 1, the beam splitter prism 6 and the imaging lens 3,
An image is formed outside the visual field number S on the extension surface of the image plane. Thereby, the ghost can be removed.

【0019】一方、光束入射面6bからビームスプリッ
タープリズム6内に入射する光束は、光束入射面6bの
法線に対して入射角θで入射し、屈折角φを以て屈折し
た後、図3に示すように、ビームスプリッター面6aで
その一部が反射させられ、反射光射出面6cに入射す
る。ここで、ビームスプリッタープリズム6の光束入射
面6bと反射光射出面6cは、ビームスプリッター面6
aを底辺とする二等辺三角形の他の2辺を構成してお
り、しかもビームスプリッター面6aに対する入射光の
角度と反射光の角度は互いに等しいことから、反射光射
出面6cに入射する光束の入射角もφとなる。よって、
この反射光射出面6cを射出する光束の屈折角もθとな
る。そのため、この面6cからの射出光束は、光束入射
面6bへの入射光束と垂直になる。
On the other hand, the light beam entering the beam splitter prism 6 from the light beam incident surface 6b enters at an incident angle θ with respect to the normal line of the light beam incident surface 6b, is refracted at a refraction angle φ, and then is shown in FIG. As described above, a part of the beam splitter surface 6a is reflected and enters the reflected light exit surface 6c. Here, the light beam entrance surface 6b and the reflected light exit surface 6c of the beam splitter prism 6 are the beam splitter surface 6
Since the other two sides of the isosceles triangle whose base is a are formed and the angle of the incident light with respect to the beam splitter surface 6a and the angle of the reflected light are equal to each other, the light flux incident on the reflected light exit surface 6c is The incident angle is also φ. Therefore,
The refraction angle of the light beam emitted from the reflected light emission surface 6c is also θ. Therefore, the light flux emitted from this surface 6c is perpendicular to the light flux incident on the light flux incident surface 6b.

【0020】又、ビームスプリッター面6aを通過する
残りの光束は、透過光射出面6dに入射するが、透過光
射出面6dは光束入射面6bと平行であるから、光束入
射面6bでの屈折角と透過光射出面6dでの入射角は等
しい。そのため、透過光射出面6dから射出される光束
の光軸は、光束入射面6bへの入射光軸と平行に射出さ
れることになる。このとき、この光束はビームスプリッ
タープリズム6内で屈折するために、入射光と射出光と
で光軸が距離dだけ光軸と直交する方向にずれるが、結
像レンズ3は予め入射光軸に対して中心が距離dだけず
らして配設してあるから、射出光の光軸は結像レンズ3
の中心と一致することになる。
The rest of the light flux passing through the beam splitter surface 6a is incident on the transmitted light exit surface 6d. Since the transmitted light exit surface 6d is parallel to the light flux entrance surface 6b, refraction at the light flux entrance surface 6b is performed. The angle and the incident angle at the transmitted light exit surface 6d are equal. Therefore, the optical axis of the light flux emitted from the transmitted light exit surface 6d is emitted parallel to the incident optical axis to the light flux entrance surface 6b. At this time, since this light beam is refracted in the beam splitter prism 6, the optical axes of the incident light and the emitted light deviate in the direction orthogonal to the optical axis by a distance d, but the imaging lens 3 is previously aligned with the incident optical axis. On the other hand, since the centers are arranged so as to be displaced by the distance d, the optical axis of the emitted light is the imaging lens 3
Will coincide with the center of.

【0021】上述のように本実施例によれば、ビームス
プリッタープリズム6の光束入射面6bを角度θ傾ける
ことでゴースト像を視野外に除去して、鮮明な像を観察
することができる。しかも、対物レンズ1を通過した平
行光束を、ビームスプリッタープリズム6によってその
入射光軸に対して垂直な光束と平行な光束とに2分割す
ることができる。そのため、この顕微鏡光学系を有する
顕微鏡装置に関して、反射光束を受け入れるための取り
付け部や接合部等を傾斜させる必要がなく、スペース的
にも製造加工の容易性の面からも非常に都合が良く、シ
ステム性が向上するという利点がある。又、本実施例で
は、光束入射面6bから入射して2つの射出面6c,6
dから射出する光束のビームスプリッタープリズム6内
での光路長は、どこを通る光束でも一定であるから、収
差等の影響は受けにくいという利点もある。
As described above, according to this embodiment, the ghost image can be removed out of the visual field by tilting the light beam incident surface 6b of the beam splitter prism 6 by an angle θ, and a clear image can be observed. In addition, the parallel light flux that has passed through the objective lens 1 can be split into two light fluxes, which are perpendicular to the incident optical axis and parallel to the incident optical axis, by the beam splitter prism 6. Therefore, with respect to a microscope apparatus having this microscope optical system, it is not necessary to incline the mounting portion or the joint portion for receiving the reflected light flux, and it is very convenient in terms of space and ease of manufacturing and processing. There is an advantage that the system property is improved. Further, in this embodiment, the two light-exiting surfaces 6c and 6 are incident on the light-incident surface 6b.
Since the optical path length of the light beam emitted from d in the beam splitter prism 6 is constant regardless of the light beam passing anywhere, there is also an advantage that it is unlikely to be affected by aberration or the like.

【0022】次に、本発明の第二実施例を図5乃至図7
に基づいて説明する。図5は顕微鏡光学系の構成図を示
すものであり、対物レンズ1と結像レンズ3の間の平行
光束領域に、ビームスプリッター面8aで光束を2分割
するビームスプリッタープリズム8が配設されている。
このプリズム8の光束入射面8bは、入射光軸と垂直な
平面に対して式(1)で示す上述の第一実施例と同一の
角度θだけ傾いている。又、ビームスプリッター面8a
は平面から成る光束入射面8bに対して角度{45°−
sin-1〔(1/n)sinθ〕}傾けられており、反
射光射出面8cは光束入射面8bと垂直に形成されてい
る(図6参照)。更に、透過光射出面8dは光束入射面
8bと平行に形成されている。
Next, a second embodiment of the present invention will be described with reference to FIGS.
It will be explained based on. FIG. 5 shows a configuration diagram of the microscope optical system. A beam splitter prism 8 for splitting a light beam into two beams by a beam splitter surface 8a is arranged in a parallel light beam region between the objective lens 1 and the imaging lens 3. There is.
The light beam incident surface 8b of the prism 8 is inclined with respect to the plane perpendicular to the incident optical axis by the same angle θ as in the first embodiment shown in the equation (1). Also, the beam splitter surface 8a
Is an angle of {45 °-
sin -1 [(1 / n) sin θ]} is inclined, and the reflected light exit surface 8c is formed perpendicularly to the light beam entrance surface 8b (see FIG. 6). Further, the transmitted light exit surface 8d is formed parallel to the light flux entrance surface 8b.

【0023】又、図7に示すように、結像レンズ3は、
その光軸が、ビームスプリッタープリズム8への入射光
軸と距離dだけ、光軸と直交する方向にずれた位置にあ
るように配設されている。この距離dは、ビームスプリ
ッタープリズム8の光束入射面8bと透過光射出面8d
との距離をl,光束入射面8bと透過光射出面8dとの
間を通過する光束の光路長をl′とすると、上述の式
(2)で得られる。
Further, as shown in FIG. 7, the imaging lens 3 is
The optical axis is arranged so as to be displaced from the incident optical axis to the beam splitter prism 8 by a distance d in a direction orthogonal to the optical axis. This distance d is equal to the light beam entrance surface 8b and the transmitted light exit surface 8d of the beam splitter prism 8.
Is 1 and the optical path length of the light flux passing between the light flux incident surface 8b and the transmitted light exit surface 8d is 1 ', the above equation (2) is obtained.

【0024】本実施例は上述のように構成されているか
ら、ビームスプリッタープリズム8内に入射した光束
は、図6に示すように光束入射面8bの法線に対して角
度{sin-1〔(1/n)sinθ〕}だけ屈折して進
むが、光束入射面8bとビームスプリッター面8aとの
成す角度は{45°−sin-1〔(1/n)sin
θ〕}であるから、ビームスプリッター面8aに入射す
る光束の角度はビームスプリッター面8aに対して45
°になる。そのため、ビームスプリッター面8aに入射
する光束とビームスプリッター面8aで反射して反射光
射出面8cに向かう一部の光束とは、直角になる。しか
も、光束入射面8bと反射光射出面8cとが直交するも
のであるから、ビームスプリッター面8aからの反射光
は、反射光射出面8cにその法線に対して{sin
-1〔(1/n)sinθ〕}の角度で入射し、角度θの
屈折角でこの面8cから射出される。そのため、ビーム
スプリッタープリズム8の光束入射面8bへの入射光と
反射光射出面8cからの射出光とは互いに直交すること
になる。
Is the present embodiment constructed as described above?
Light flux that has entered the beam splitter prism 8
Is an angle with respect to the normal line of the light beam entrance surface 8b as shown in FIG.
Degree {sin-1Refraction by [(1 / n) sin θ]}
However, between the light beam incident surface 8b and the beam splitter surface 8a
The angle formed is {45 ° -sin-1[(1 / n) sin
θ]}, the light beam is incident on the beam splitter surface 8a.
The angle of the luminous flux is 45 with respect to the beam splitter surface 8a.
It becomes °. Therefore, it is incident on the beam splitter surface 8a.
Light that is reflected and reflected by the beam splitter surface 8a
A part of the light flux toward the exit surface 8c is at a right angle. Only
Also, the light beam incident surface 8b and the reflected light emitting surface 8c are orthogonal to each other.
Therefore, the reflected light from the beam splitter surface 8a is
Is {sin to the normal to the reflected light exit surface 8c.
-1Incident at an angle of [(1 / n) sin θ]},
It is emitted from this surface 8c at a refraction angle. Therefore, the beam
The incident light on the light beam incident surface 8b of the splitter prism 8
The light emitted from the reflected light emitting surface 8c should be orthogonal to each other.
become.

【0025】又、ビームスプリッター面8aを透過した
光束は、透過光射出面8dが光束入射面8bと平行であ
るから、光束入射面8bでの屈折角と透過光射出面8d
での入射角とが等しくなり、透過光射出面8dからの射
出光は入射光軸と平行に射出されることになる。この場
合、図7に示すように射出光の光軸は、入射光軸に対し
て距離dだけ光軸と直交する方向にずれているが、結像
レンズ3も距離dだけずらして配設されているので、射
出光束の光軸は結像レンズ3の光軸を通ることになり、
鮮明な像Iが像面上に結像される。
Further, since the transmitted light exit surface 8d of the light beam transmitted through the beam splitter surface 8a is parallel to the light beam entrance surface 8b, the refraction angle at the light beam entrance surface 8b and the transmitted light exit surface 8d.
The incident angle becomes equal to, and the light emitted from the transmitted light emission surface 8d is emitted parallel to the incident optical axis. In this case, the optical axis of the emitted light is displaced from the incident optical axis by a distance d in the direction orthogonal to the optical axis as shown in FIG. 7, but the imaging lens 3 is also displaced by the distance d. Therefore, the optical axis of the emitted light flux passes through the optical axis of the imaging lens 3,
A clear image I is formed on the image plane.

【0026】本実施例では、ビームスプリッタープリズ
ム8の光束入射面8b及び反射光射出面8cが成す角度
とこれに対向する一隅の角度とが、夫々直角に形成され
ているから、ビームスプリッタープリズム8の製造及び
加工が容易であり、製造コストをより低廉にすることが
できる。
In the present embodiment, the angle formed by the light beam entrance surface 8b and the reflected light exit surface 8c of the beam splitter prism 8 and the angle of one corner facing the angle are formed at right angles, so the beam splitter prism 8 Is easy to manufacture and process, and the manufacturing cost can be further reduced.

【0027】[0027]

【発明の効果】上述のように、本発明に係る顕微鏡光学
系は、ビームスプリッタープリズムを角度θ傾斜配置す
ることで、ゴースト像を視野外に除去できて鮮明な像を
観察できる。しかも、ビームスプリッタープリズムで平
行光束を分割する際、入射光軸に対して垂直な光束と平
行な光束に分割できるから、この光学系を有する顕微鏡
装置の製造加工が容易になって、製造コストの低廉化や
システム性の向上を図ることができる。
As described above, in the microscope optical system according to the present invention, the ghost image can be removed out of the field of view by arranging the beam splitter prism at an angle θ, and a clear image can be observed. Moreover, when splitting a parallel light flux by the beam splitter prism, it can be split into a light flux perpendicular to the incident optical axis and a light flux parallel to the incident optical axis, which facilitates the manufacturing and processing of the microscope apparatus having this optical system, thereby reducing the manufacturing cost. It is possible to reduce costs and improve system performance.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第一実施例の顕微鏡光学系の構成を示
す図である。
FIG. 1 is a diagram showing a configuration of a microscope optical system according to a first embodiment of the present invention.

【図2】顕微鏡光学系において、プリズムを傾斜させた
場合の観察像とゴースト像の結像光路を示す原理図であ
る。
FIG. 2 is a principle diagram showing imaging optical paths of an observation image and a ghost image when a prism is tilted in a microscope optical system.

【図3】第一実施例について、ビームスプリッタープリ
ズムによる反射光と透過光の光路を夫々その光軸で示す
図である。
FIG. 3 is a diagram showing the optical paths of reflected light and transmitted light by a beam splitter prism in the first embodiment, with their optical axes respectively.

【図4】第一実施例について、ビームスプリッタープリ
ズムに対する入射光と透過光の光路を夫々その光軸で示
す図である。
FIG. 4 is a diagram showing the optical paths of incident light and transmitted light with respect to the beam splitter prism in the first example, with their optical axes.

【図5】本発明の第二実施例の顕微鏡光学系の構成を示
す図である。
FIG. 5 is a diagram showing a configuration of a microscope optical system according to a second embodiment of the present invention.

【図6】第二実施例について、ビームスプリッタープリ
ズムによる反射光と透過光の光路を夫々その光軸で示す
図である。
FIG. 6 is a diagram showing the optical paths of reflected light and transmitted light by a beam splitter prism in the second example, with their optical axes.

【図7】図1の実施例について、ビームスプリッタープ
リズムに対する入射光と透過光の光路を夫々その光軸で
示す図である。
FIG. 7 is a diagram showing the optical paths of incident light and transmitted light with respect to the beam splitter prism in the embodiment of FIG. 1, respectively.

【図8】従来の顕微鏡光学系の構成を示す図である。FIG. 8 is a diagram showing a configuration of a conventional microscope optical system.

【図9】図8の光学系において、ビームスプリッタープ
リズムを傾斜して配置した他の従来技術の構成図であ
る。
9 is a configuration diagram of another conventional technique in which a beam splitter prism is arranged to be inclined in the optical system of FIG.

【図10】ビームスプリッタープリズムの傾斜方向を反
対にした図9と同様の図である。
10 is a view similar to FIG. 9 in which the tilt directions of the beam splitter prisms are opposite.

【符号の説明】[Explanation of symbols]

1 対物レンズ 3 結像レンズ 7,8 ビームスプリッタープリズム 7a,8a ビームスプリッター面 7b,8b 光束入射面 7c,8c 反射光射出面 7d,8d 透過光射出面 1 Objective Lens 3 Imaging Lens 7,8 Beam Splitter Prism 7a, 8a Beam Splitter Surface 7b, 8b Light Beam Incident Surface 7c, 8c Reflected Light Emission Surface 7d, 8d Transmitted Light Emission Surface

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】対物レンズと結像レンズとの間の平行光束
領域に、該平行光束分割用のビームスプリッター面を有
するビームスプリッタープリズムを配設した、無限遠補
正の顕微鏡光学系において、 前記ビームスプリッタープリズムは、 前記ビームスプリッター面が光束入射面への入射光束の
入射光軸に対して45°の角度を有し、 前記結像レンズの焦点距離をfとし、顕微鏡の視野数を
Sとするとき、前記光束入射面が入射光軸に垂直な面と
なす角度θは、 θ≧(1/2)tan-1(S/f) であり、 反射光射出面が前記入射光軸となす角度は前記θであ
り、 透過光射出面は前記光束入射面と平行であると共に、 該透過光射出面と光束入射面との距離をlすると、前記
結像レンズは、その光軸が前記入射光軸に対して下記の
式で示す距離dだけずれた位置に配設されていることを
特徴とする顕微鏡光学系。
1. A microscope optical system for infinity correction, wherein a beam splitter prism having a beam splitter surface for splitting a parallel light flux is arranged in a parallel light flux region between an objective lens and an imaging lens. In the splitter prism, the beam splitter surface has an angle of 45 ° with respect to the incident optical axis of the light beam incident on the light beam incident surface, the focal length of the imaging lens is f, and the field number of the microscope is S. At this time, the angle θ formed by the light flux incident surface with respect to the surface perpendicular to the incident optical axis is θ ≧ (1/2) tan −1 (S / f), and the angle formed by the reflected light emitting surface with the incident optical axis. Is θ, and the transmitted light exit surface is parallel to the light flux entrance surface, and when the distance between the transmitted light exit surface and the light flux entrance surface is l, the optical axis of the imaging lens is the incident light Distance shown below with respect to axis Microscope optical system characterized in that it is arranged in a position shifted by.
【請求項2】対物レンズと結像レンズとの間の平行光束
領域に、該平行光束分割用のビームスプリッター面を有
するビームスプリッタープリズムを配設した、無限遠補
正の顕微鏡光学系において、 前記ビームスプリッタープリズムは、 前記結像レンズの焦点距離をfとし、顕微鏡の視野数を
Sとするとき、光束入射面が該光束入射面への入射光束
の入射光軸に垂直な面となす角度θは、 θ≧(1/2)tan-1(S/f) であり、 前記ビームスプリッター面は光束入射面に対して{45
°−sin-1〔(1/n)sinθ〕}の角度を有し、 反射光射出面は前記光束入射面と直角をなし、 透過光射出面は前記光束入射面と平行であると共に、 該透過光射出面と光束入射面との距離をlすると、前記
結像レンズは、その光軸が入射光軸に対して下記の式で
示す距離dだけずれた位置に配設されていることを特徴
とする顕微鏡光学系。
2. A microscope optical system for infinity correction, wherein a beam splitter prism having a beam splitter surface for splitting the parallel light flux is arranged in a parallel light flux region between an objective lens and an imaging lens. In the splitter prism, when the focal length of the imaging lens is f and the field number of the microscope is S, the angle θ formed by the light beam incident surface with the plane perpendicular to the incident light axis of the light beam incident on the light beam incident surface is , Θ ≧ (1/2) tan −1 (S / f), and the beam splitter surface is {45
The angle of the angle is −−sin −1 [(1 / n) sin θ]}, the reflected light exit surface is perpendicular to the light flux entrance surface, and the transmitted light exit surface is parallel to the light flux entrance surface. When the distance between the transmitted light exit surface and the light beam entrance surface is l, it is determined that the optical axis of the imaging lens is displaced from the incident light axis by a distance d represented by the following formula. Characteristic microscope optical system.
JP3284979A 1991-10-30 1991-10-30 Microscope optics Expired - Fee Related JP3048267B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3284979A JP3048267B2 (en) 1991-10-30 1991-10-30 Microscope optics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3284979A JP3048267B2 (en) 1991-10-30 1991-10-30 Microscope optics

Publications (2)

Publication Number Publication Date
JPH05127097A true JPH05127097A (en) 1993-05-25
JP3048267B2 JP3048267B2 (en) 2000-06-05

Family

ID=17685563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3284979A Expired - Fee Related JP3048267B2 (en) 1991-10-30 1991-10-30 Microscope optics

Country Status (1)

Country Link
JP (1) JP3048267B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5861984A (en) * 1995-03-31 1999-01-19 Carl Zeiss Jena Gmbh Confocal scanning microscope and beamsplitter therefor
JP2006153587A (en) * 2004-11-26 2006-06-15 Nikon Corp Spectroscope and microspectroscope equipped therewith
JP2013114004A (en) * 2011-11-28 2013-06-10 Olympus Corp Microscope
JP2017006407A (en) * 2015-06-23 2017-01-12 キヤノン株式会社 Ophthalmologic apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5861984A (en) * 1995-03-31 1999-01-19 Carl Zeiss Jena Gmbh Confocal scanning microscope and beamsplitter therefor
JP2006153587A (en) * 2004-11-26 2006-06-15 Nikon Corp Spectroscope and microspectroscope equipped therewith
US7256890B2 (en) * 2004-11-26 2007-08-14 Nikon Corporation Spectroscope and microspectroscope equipped therewith
JP4645173B2 (en) * 2004-11-26 2011-03-09 株式会社ニコン Spectroscope and microspectroscopic device provided with the same
JP2013114004A (en) * 2011-11-28 2013-06-10 Olympus Corp Microscope
JP2017006407A (en) * 2015-06-23 2017-01-12 キヤノン株式会社 Ophthalmologic apparatus

Also Published As

Publication number Publication date
JP3048267B2 (en) 2000-06-05

Similar Documents

Publication Publication Date Title
JP3076122B2 (en) camera
US5212514A (en) Camera having a focus detecting optical system
US4947198A (en) Finder optical system for single reflex cameras
JPS5848033A (en) Finder optical system
JPH071344B2 (en) Light splitting device
JPH05127097A (en) Microscope optical system
JP2014202760A (en) Multi field-of-view lens and multi field-of-view camera
US4097881A (en) Focussing apparatus for cameras
JP3548282B2 (en) Optical branching optical system
JP2003110891A (en) Imaging optical system
US5847866A (en) Lens-barrel optical system and microscope apparatus
JPH0766107B2 (en) Variable viewing angle observation optical system
JPH07333493A (en) Focus detector
JPH06167739A (en) Real image type finder system
JPH08304880A (en) Real image type finder optical system
JPH09269405A (en) Prism
JP2012103303A (en) Imaging apparatus
JP2000121927A (en) Focus detector
JP2000131734A (en) Real image type finder optical system
JPS59129811A (en) Focusing detecting device
JP2706932B2 (en) Focus detection device for camera
US2398020A (en) Range finder
JPH01216309A (en) Focus detection use optical system
JPS58106517A (en) Optical splitter
JPH07110428A (en) Automatic focusing binocular

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000307

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090324

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090324

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100324

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110324

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees