JPH05126604A - Optical position detector and manufacture of scale - Google Patents

Optical position detector and manufacture of scale

Info

Publication number
JPH05126604A
JPH05126604A JP29278691A JP29278691A JPH05126604A JP H05126604 A JPH05126604 A JP H05126604A JP 29278691 A JP29278691 A JP 29278691A JP 29278691 A JP29278691 A JP 29278691A JP H05126604 A JPH05126604 A JP H05126604A
Authority
JP
Japan
Prior art keywords
scale
laser
reflected
beams
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29278691A
Other languages
Japanese (ja)
Inventor
Kenichi Nishiuchi
健一 西内
Michiyoshi Nagashima
道芳 永島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP29278691A priority Critical patent/JPH05126604A/en
Publication of JPH05126604A publication Critical patent/JPH05126604A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To detect the position with high precision by squeezing at least two or more laser beams on a scale formed with periodic diffraction grooves, receiving the reflected rays with two ray detection sections, and processing the sine- wave reception signal having the same cycle as the cycle of the diffraction grooves. CONSTITUTION:The beam from a semiconductor laser 11 is divided into mainly three diffraction beams by a diffraction grating 12, they are made parallel beams by a collimator lens 14 via a half-mirror 13, and they are squeezed on a scale 1 by an objective lens 15. Three laser beams divided by the diffraction grating 12 are squeezed as three laser spots. Reflected beams from the scale 1 are reflected by the half-mirror 13, astigmatism is applied by a cylindrical lens 16, and they are radiated onto a light detection section 17. The radiated reflected beams are focally controlled by the astigmatism method of an optical disk, and the most squeezed portions of the laser spots are automatically radiated on the scale 1. The position signal is detected with the reception quantity of the reflected beam.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光学的に位置を検出する
機器およぼその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical position detecting device and a manufacturing method thereof.

【0002】[0002]

【従来の技術】位置検出には光学スケールやレーザー測
長器が用いられている。
2. Description of the Related Art An optical scale or a laser length measuring device is used for position detection.

【0003】従来の光学スケールは、光源にランプを用
い、ガラスなどのスケールに周期的な格子を形成し、そ
のスケールにランプの光を照射して透過光量を光検出器
で受光する。スケールと光源の相対位置を変化させると
受光量は格子の周期に応じて変化するが、その周期的な
検出信号を用いて位置検出する。検出信号の周期は格子
の周期と同じく約10μmであり、その信号を電気的に
分割して約0.1μmの分解能で位置検出できる。しか
し、そのスケールは光透過性であるから、ランプと光検
出器の間にスケールを配置する必要があり利用場所が限
られる。また、スケールと光検出器を取付た読み取りヘ
ッドの位置関係には高い精度が要求される。
In a conventional optical scale, a lamp is used as a light source, a periodic grating is formed on a scale such as glass, the light of the lamp is applied to the scale, and the amount of transmitted light is received by a photodetector. When the relative position between the scale and the light source is changed, the amount of received light changes according to the period of the grating, but the position is detected using the periodic detection signal. The period of the detection signal is about 10 μm like the period of the grating, and the signal can be electrically divided to detect the position with a resolution of about 0.1 μm. However, since the scale is light-transmissive, it is necessary to dispose the scale between the lamp and the photodetector, and the place of use is limited. Further, the positional relationship between the scale and the read head to which the photodetector is attached requires high accuracy.

【0004】レーザー測長器は、移動物体に反射鏡を取
り付け、レーザーからの光とその反射鏡から反射された
光とを干渉させ、その受光信号から位置検出する。波長
0.633μmのHeNeレーザーを用い、電気的な信
号処理を用いて約0.01μmの分解能で位置検出でき
るが、複雑な干渉光学系を必要とし、光源にも波長安定
化されたレーザーを用いなければならない。
The laser length measuring device has a reflecting mirror attached to a moving object, interferes the light from the laser with the light reflected from the reflecting mirror, and detects the position from the received light signal. A HeNe laser with a wavelength of 0.633 μm can be used to detect position with a resolution of about 0.01 μm using electrical signal processing, but a complicated interference optical system is required, and a wavelength-stabilized laser is also used for the light source. There must be.

【0005】そこで、簡単で正確な位置検出が可能な様
に、周期的な回折溝を形成したスケールにレーザーを絞
って、その反射光を光検出器で受光した信号を用いて位
置を検出する光学的位置検出器のコンセプトが提案され
ている(山下忠興;「半導体レーザーによる反射回折グ
ループ位置エンコーダ」 精密工学会 中国・四国地
区、九州地区連合講演会 1991年11月)。スケー
ルにピッチ1.6μm、深さ0.07μm、幅0.06
5μmの反射回折溝を形成し、波長0.78μmの半導
体レーザーを対物レンズで絞り、その反射光を光検出器
で受光する。スケールを移動させた時には周期1.6μ
mの正弦波の受光信号が得られるが、その信号を電気的
に分解してより小さい分解能で位置検出できる。光ディ
スクの光ヘッドと同様の焦点制御方法を用いれば、自動
的にレーザースポットをスケール上に絞る事ができる。
従って、スケールと光検出器との位置関係はそれほど正
確である必要はない。また、反射光で位置検出できるの
でスケールを移動物体に取り付ける方法も多様になり利
用範囲も広い。
Therefore, in order to enable simple and accurate position detection, a laser is focused on a scale having periodic diffraction grooves, and the position is detected using a signal received by the photodetector of the reflected light. The concept of an optical position detector has been proposed (Tadaoki Yamashita; “Reflection Diffraction Group Position Encoder Using Semiconductor Laser”, Precision Engineering Society, Chugoku / Shikoku area, Kyushu area, Joint lecture, November 1991). 1.6μm pitch, 0.07μm depth, 0.06 width on scale
A reflection diffraction groove of 5 μm is formed, a semiconductor laser having a wavelength of 0.78 μm is stopped by an objective lens, and the reflected light is received by a photodetector. When the scale is moved, the cycle is 1.6μ
Although a received light signal of a sine wave of m is obtained, the signal can be electrically decomposed to detect the position with a smaller resolution. If a focus control method similar to that of an optical head of an optical disk is used, the laser spot can be automatically focused on the scale.
Therefore, the positional relationship between the scale and the photodetector need not be so accurate. Further, since the position can be detected by reflected light, there are various methods for attaching the scale to a moving object, and the range of use is wide.

【0006】[0006]

【発明が解決しようとする課題】スケールとレーザース
ポットの相対位置が変化する時に光検出器が受光する反
射光強度の変化は、回折と干渉の効果によりスポット中
心がスケールの回折溝の中央に照射される時に最小にな
り、溝と溝の中間に照射される時に最大となる様な、回
折溝の周期と同じ周期を持つ正弦波である。それらの中
間の位置関係であるスポット中心が回折溝の端部付近に
照射する時には、少しの相対位置変化で大きく反射光強
度が変化し、正弦波の受光信号は急な勾配を持ち、電気
的に分解して高い分解能を得られる。しかし、正弦波の
最大値または最小値では、相対位置変化に対して受光量
変化は小さく、高い分解能は得られない。すなわち、1
つの周期的な正弦波の受光信号を電気的に分解するだけ
では、相対位置によって分解能が異なる。分解能を常時
高く保つ工夫が必要である。
The change in the intensity of the reflected light received by the photodetector when the relative position between the scale and the laser spot changes is due to the effect of diffraction and interference so that the spot center irradiates the center of the diffraction groove of the scale. It is a sine wave having the same period as the period of the diffractive groove, which becomes the minimum when irradiated and the maximum when irradiated in the middle of the groove. When the center of the spot, which is the intermediate position between them, irradiates the vicinity of the end of the diffraction groove, the reflected light intensity changes greatly with a slight change in the relative position, and the received light signal of the sine wave has a steep slope and the electrical High resolution can be obtained by decomposing into. However, at the maximum or minimum value of the sine wave, the change in the amount of received light is small with respect to the change in relative position, and high resolution cannot be obtained. Ie 1
Only by electrically decomposing two periodic sine wave received signals, the resolution differs depending on the relative position. It is necessary to devise to keep the resolution high.

【0007】[0007]

【課題を解決するための手段】周期的な回折溝を形成し
たスケール上に、少なくとも2つ以上のレーザービーム
を絞り、反射光を少なくとも2つの光検出部で受光す
る。それぞれの受光信号はスケールの回折溝の周期と同
じ周期を持つ正弦波である。
At least two or more laser beams are narrowed on a scale having periodic diffraction grooves, and reflected light is received by at least two photodetection sections. Each received light signal is a sine wave having the same period as the period of the diffraction groove of the scale.

【0008】2つ以上のスポットを溝に垂直な方向には
互いに少しずらして配置する。例えば、各スポットの溝
に垂直な方向の間隔を溝のピッチの4分の1にする。
Two or more spots are arranged in a direction perpendicular to the groove with a slight offset from each other. For example, the interval of each spot in the direction perpendicular to the groove is set to 1/4 of the groove pitch.

【0009】[0009]

【作 用】2つ以上の光検出部からの受光信号はそれぞ
れ正弦波である。各スポットの配置が、溝に垂直な方向
の間隔が溝ピッチの4分の1であれば、各スポットから
の受光信号は4分の1周期位相が異なり、一つの正弦波
が急な勾配を持つ時は他は最大または最小となる。正弦
波の勾配が急な付近では、小さい相対位置変化でも大き
く検出信号は変化する。すなわち、2つ以上の検出信号
の少なくとも1つの正弦波は急な勾配を持ち、小さい相
対位置変化でも大きく変化し、それらの2つ以上の正弦
波を電気的に信号処理すれば、常時精度の高い位置検出
器を構成できる様になる。
[Operation] The received light signals from two or more photodetectors are sine waves. If the arrangement of each spot is such that the interval in the direction perpendicular to the groove is 1/4 of the groove pitch, the received light signals from each spot have different quarter cycle phases, and one sine wave has a steep slope. When you have it, the others are maximum or minimum. In the vicinity of a steep sine wave gradient, a small change in relative position causes a large change in the detection signal. That is, at least one sine wave of two or more detection signals has a steep slope and changes greatly even with a small relative position change. It becomes possible to construct a high position detector.

【0010】[0010]

【実施例】図1に本発明のスケール1の断面図を示す。
凹凸状の溝2が形成されたもので、その溝の上にはアル
ミや金の反射膜3が形成され、更に透明樹脂層4で保護
されている。測定に用いるレーザーの波長をλとすれ
ば、溝のピッチpはレーザー波長λの約2倍とする。透
明樹脂層3の屈折率をnとすれば、溝の深さは約λ/8
nにする。
1 is a sectional view of a scale 1 of the present invention.
An uneven groove 2 is formed, and a reflective film 3 of aluminum or gold is formed on the groove 2 and is further protected by a transparent resin layer 4. When the wavelength of the laser used for the measurement is λ, the groove pitch p is about twice the laser wavelength λ. If the refractive index of the transparent resin layer 3 is n, the depth of the groove is about λ / 8.
set to n.

【0011】このスケールの作製方法を図2に示す。円
盤5の上に溝1が同心円またはスパイラル状に形成され
ている。この円盤5は光ディスク原盤と同様に作製され
るので簡単に説明する。フォトレジストを塗布したガラ
ス盤を回転し、アルゴンレーザーの絞られたスポットを
ガラス盤の半径方向に移動させながら照射する。現像す
ればガラス盤に凹凸状の溝2が形成されることになる。
その原盤の上にアルミや金の反射膜3をスパッタ法など
で設けた後、紫外線硬化樹脂を挟んでアクリルやガラス
などの透明板を貼り合わせ、紫外線を照射して固めて保
護膜4とする。この方法ではガラス原盤を回転させるの
で、スパイラル状の溝が形成される。しかし、図2の様
にこの原盤を半径方向に細長い短冊状に切断すれば、細
い巾では溝が湾曲している事は殆ど影響なくスケールと
して使用できる。
A method of manufacturing this scale is shown in FIG. The groove 1 is formed on the disk 5 in a concentric circle or spiral shape. Since this disk 5 is manufactured in the same manner as the optical disk master, it will be briefly described. Irradiation is performed while rotating the glass plate coated with the photoresist and moving the spot where the argon laser is focused in the radial direction of the glass plate. When developed, the groove 2 having an uneven shape is formed on the glass plate.
After the aluminum or gold reflection film 3 is provided on the master by a sputtering method or the like, a transparent plate such as acrylic or glass is attached with an ultraviolet curable resin sandwiched between them and irradiated with ultraviolet rays to be solidified to form the protective film 4. .. In this method, since the glass master is rotated, a spiral groove is formed. However, if this master is cut into a strip shape elongated in the radial direction as shown in FIG. 2, it can be used as a scale with little influence that the groove is curved with a narrow width.

【0012】例えば、測定用レーザーに波長λが0.6
8μmの半導体レーザーを用いれば、溝のピッチpは
1.36μmとする。紫外線硬化樹脂やアクリル、ガラ
スなどの保護層材料の屈折率nは約1.5であり、凹凸
状の溝の深さは0.057μmである。また、溝の幅は
0.05μm位である。
For example, a measuring laser having a wavelength λ of 0.6
If a semiconductor laser of 8 μm is used, the groove pitch p is 1.36 μm. The refractive index n of the protective layer material such as an ultraviolet curable resin, acryl, or glass is about 1.5, and the depth of the concave-convex groove is 0.057 μm. The width of the groove is about 0.05 μm.

【0013】次に信号検出用の光ヘッドの光学系につい
て図3を用いて説明する。1つのレーザービームを回折
格子を透過させて容易に3つのビームに分割する事がで
きるので、本実施例でも3つのレーザービームを用いる
場合を説明する。11は半導体レーザーであり、その光
は回折格子12で主として3つの回折光に分割され、ハ
ーフミラー13を経て、各々コリメータレンズ14で平
行光になった後、対物レンズ15でスケール上に絞られ
る。回折格子で分割されたビームは図が複雑になる事を
避けるために図3には分離しては記載していない。回折
格子で分割された3つのレーザービームは図4の様に3
つのレーザースポット21、22、23としてスケール
上に絞られる。溝を横切る方向のスポット間隔dは溝の
周期pの4分の1となる様に回折格子12を回転させて
調節しておく。
Next, the optical system of the optical head for signal detection will be described with reference to FIG. Since one laser beam can be easily transmitted through the diffraction grating and divided into three beams, the case of using three laser beams will be described in this embodiment as well. Reference numeral 11 denotes a semiconductor laser, the light of which is mainly divided into three diffracted lights by a diffraction grating 12, passes through a half mirror 13, and becomes collimated by a collimator lens 14, respectively, and then focused on a scale by an objective lens 15. .. The beam divided by the diffraction grating is not shown separately in FIG. 3 in order to avoid complication of the drawing. The three laser beams divided by the diffraction grating are 3 as shown in Fig. 4.
The two laser spots 21, 22 and 23 are focused on the scale. The diffraction grating 12 is rotated and adjusted so that the spot distance d across the groove becomes 1/4 of the groove period p.

【0014】スケールからの反射光は、ハーフミラー1
3で反射され、シリンドリカルレンズ16で非点収差を
与えられて光検出器17上に照射する。光検出器17に
照射される反射光の様子を図5に示す。21’、2
2’、23’はそれぞれ21、22、23の反射光であ
る。光ディスクの非点収差方法を用いて焦点制御でき
る。すなわち、真ん中の光検出部が4分割され、31と
33の受光量の和と、32と34の受光量の和とが、互
いに等しくなる様に制御すれば、各レーザースポットの
最も絞られた部分がスケール上に自動的に照射される。
それぞれの反射光の受光量を用いて位置信号を検出する
が、21’の受光信号は31、32、33、34の和で
あり、22’、23’の受光信号は各々35、36から
得られる。
The reflected light from the scale is reflected by the half mirror 1.
The light is reflected by 3 and is given astigmatism by the cylindrical lens 16 to illuminate it onto the photodetector 17. The state of the reflected light with which the photodetector 17 is irradiated is shown in FIG. 21 ', 2
2'and 23 'are the reflected lights of 21, 22, and 23, respectively. Focus control can be performed using the astigmatism method of the optical disc. That is, the central photodetector is divided into four parts, and if the sum of the received light amounts of 31 and 33 and the sum of the received light amounts of 32 and 34 are controlled to be equal to each other, each laser spot is most narrowed. The part is automatically illuminated on the scale.
The position signal is detected by using the received light amount of each reflected light. The received light signal of 21 'is the sum of 31, 32, 33 and 34, and the received light signals of 22' and 23 'are obtained from 35 and 36 respectively. Be done.

【0015】図6(a)に、3つのレーザースポットが
スケール上の溝を横切った時の、それら3つの受光信号
の変化を示しておく。図6(b)はスケール上の溝の断
面を表わし、この図6(b)のそれぞれの位置にレーザ
ースポット21の中心が照射した時の、スポット21、
22、23の受光信号を、それぞれ対応させて41、4
2、43として示したものが図6(a)である。各受光
信号は正弦波であり、スポット21の中心が溝の中央に
照射される時は、光検出部31、32、33、34の和
信号41は最小である。その時、スポット22の中心
は、スポット21の中心とはスケールの溝に垂直な方向
に溝のピッチの4分の1ずれているので、光検出部35
の受光信号42は正弦波の最も勾配が急な信号となる。
同様に、スポット23の反射光はスポット22と反対側
に、スポット21の中心とはスケールの溝に垂直な方向
に溝のピッチの4分の1ずれているので、光検出部36
の受光信号43は受光信号42とは180度位相が異な
る正弦波の最も勾配が急な信号となる。これらの正弦波
の大きさの変化を電気的に検出して、スケールとスポッ
トの相対位置変化を検出する。スポット21が溝の中央
付近で相対位置が変化しても、受光信号41ではそれほ
ど大きな変化はないが、検出信号42及び43は変化の
勾配が大きく正確な位置検出ができる。この様に、スポ
ットがスケールのいずれの位置にあっても、3つの検出
信号41、42、43のどれかは急な勾配を持ち、常に
正確な位置検出できる。
FIG. 6A shows changes in the three received light signals when the three laser spots cross the groove on the scale. FIG. 6B shows a cross section of the groove on the scale. When the center of the laser spot 21 irradiates each position of FIG. 6B, the spot 21,
The light reception signals of 22 and 23 are made to correspond to 41 and 4 respectively.
What is shown as 2, 43 is FIG. Each received light signal is a sine wave, and when the center of the spot 21 is irradiated to the center of the groove, the sum signal 41 of the photodetectors 31, 32, 33, 34 is minimum. At that time, the center of the spot 22 is deviated from the center of the spot 21 in a direction perpendicular to the groove of the scale by a quarter of the pitch of the groove.
The light receiving signal 42 of is a signal having the steepest sine wave.
Similarly, the reflected light of the spot 23 is on the side opposite to the spot 22 and is shifted from the center of the spot 21 in the direction perpendicular to the groove of the scale by a quarter of the groove pitch.
The light reception signal 43 of 1 is a signal having the steepest sine wave whose phase is 180 degrees different from that of the light reception signal 42. A change in the relative position between the scale and the spot is detected by electrically detecting the change in the size of these sine waves. Even if the relative position of the spot 21 changes near the center of the groove, the received light signal 41 does not change so much, but the detection signals 42 and 43 have a large change gradient and accurate position detection is possible. Thus, regardless of the position of the spot on the scale, any of the three detection signals 41, 42, and 43 has a steep slope, and accurate position detection can always be performed.

【0016】3つの正弦波が最も急な勾配を持つ位置
は、それぞれ4分の1周期ずれている。周期を1.36
μmとすればその間隔は0.34μmであり、その間隔
を10分の1に分解すれば、0.04μm以下、20分
の1に分解できるとすれば0.02μm以下の分解能で
位置検出できる。
The positions where the three sine waves have the steepest slope are shifted by a quarter period. Cycle 1.36
If the distance is μm, the distance is 0.34 μm. If the distance is divided into tenths, the position can be detected with a resolution of 0.04 μm or less, and if it can be divided into one-twentieth, the position can be detected with a resolution of 0.02 μm or less. ..

【0017】[0017]

【発明の効果】本発明の位置検出器では、測定用のレー
ザーは回折限界にまで絞れる程度にコヒーレンスであれ
ばよく、波長の微妙な変化は測定には影響しない。従っ
て、光源は一般の半導体レーザーでよく波長安定化の必
要はない。また、光ディスクの光ヘッドと同様の簡単な
光学系で信号検出できる。さらに、反射光を用いて位置
検出できるので、スケールを取り付ける方法は多様で応
用範囲は広い。
In the position detector of the present invention, the laser for measurement has only to have a coherence so that it can be narrowed to the diffraction limit, and a subtle change in wavelength does not affect the measurement. Therefore, the light source may be a general semiconductor laser, and it is not necessary to stabilize the wavelength. Moreover, signals can be detected by a simple optical system similar to the optical head of an optical disc. Further, since the position can be detected by using the reflected light, the method of attaching the scale is diverse and the application range is wide.

【0018】この様に、本発明の位置検出器により、レ
ーザー測長器に匹敵する高精度の分解能を、簡単な装置
で安価に、広い応用範囲に提供できる。
As described above, the position detector of the present invention can provide a highly accurate resolution comparable to that of a laser length measuring device with a simple device at low cost and in a wide range of applications.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のスケールの断面図FIG. 1 is a sectional view of a scale of the present invention.

【図2】スケールの作製方法の説明図FIG. 2 is an explanatory diagram of a method of manufacturing a scale.

【図3】位置信号検出用の光学系の構成の説明図FIG. 3 is an explanatory diagram of a configuration of an optical system for detecting a position signal.

【図4】スケール上のレーザースポットの配置図[Fig. 4] Layout of laser spots on the scale

【図5】位置検出用の光検出器上の反射光の配置図FIG. 5 is a layout diagram of reflected light on a photodetector for position detection.

【図6】位置検出用の波形の説明図FIG. 6 is an explanatory diagram of a waveform for position detection.

【符号の説明】[Explanation of symbols]

1 回折溝 2 反射膜 3 保護膜 4 円盤 11 半導体レーザー 12 回折格子 17 光検出器 21 〜 23 レーザースポット 21’〜 23’反射光 31 〜 36 光検出部 41 〜 43 検出信号 DESCRIPTION OF SYMBOLS 1 Diffraction groove 2 Reflective film 3 Protective film 4 Disc 11 Semiconductor laser 12 Diffraction grating 17 Photodetector 21-23 Laser spot 21'-23 'Reflected light 31-36 Photodetector 41-43 Detection signal

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】周期的な反射回折溝を形成したスケールを
配置し、少なくとも2つのレーザービームをそのスケー
ル上に絞る手段、及び、それらのレーザービームがスケ
ールから反射する光を受光する少なくとも2つの光検出
部を有し、レーザーの絞りスポットとスケールを相対的
に移動させ、光検出部の受光信号を位置検出に用いる事
を特徴とする光学的位置検出器。
1. A means for arranging a scale in which periodic reflection diffraction grooves are formed, for squeezing at least two laser beams on the scale, and at least two means for receiving the light reflected by the laser beams from the scale. An optical position detector having a photodetection unit, wherein a laser spot and a scale are moved relative to each other, and a light reception signal of the photodetection unit is used for position detection.
【請求項2】円盤に同心円またはスパイラル状の反射回
折溝を形成する工程と、その溝の上に透明な保護層を形
成する工程と、その円盤から円盤の放射方向に細長い形
状を切り出す事を特徴とするスケール製造方法。
2. A step of forming a concentric or spiral reflection diffraction groove on a disk, a step of forming a transparent protective layer on the groove, and a step of cutting out an elongated shape from the disk in the radial direction of the disk. Characteristic scale manufacturing method.
JP29278691A 1991-11-08 1991-11-08 Optical position detector and manufacture of scale Pending JPH05126604A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29278691A JPH05126604A (en) 1991-11-08 1991-11-08 Optical position detector and manufacture of scale

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29278691A JPH05126604A (en) 1991-11-08 1991-11-08 Optical position detector and manufacture of scale

Publications (1)

Publication Number Publication Date
JPH05126604A true JPH05126604A (en) 1993-05-21

Family

ID=17786323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29278691A Pending JPH05126604A (en) 1991-11-08 1991-11-08 Optical position detector and manufacture of scale

Country Status (1)

Country Link
JP (1) JPH05126604A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016085055A (en) * 2014-10-23 2016-05-19 株式会社ミツトヨ Optical encoder
JP2019120500A (en) * 2017-12-28 2019-07-22 株式会社ミツトヨ Scale and method for manufacturing the same
CN114113138A (en) * 2021-11-22 2022-03-01 合肥维信诺科技有限公司 Product registration detection device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016085055A (en) * 2014-10-23 2016-05-19 株式会社ミツトヨ Optical encoder
US10831035B2 (en) 2014-10-23 2020-11-10 Mitutoyo Corporation Optical encoder
JP2019120500A (en) * 2017-12-28 2019-07-22 株式会社ミツトヨ Scale and method for manufacturing the same
CN114113138A (en) * 2021-11-22 2022-03-01 合肥维信诺科技有限公司 Product registration detection device

Similar Documents

Publication Publication Date Title
US4850673A (en) Optical scanning apparatus which detects scanning spot focus error
US5059791A (en) Reference position detecting device utilizing a plurality of photo-detectors and an encoder using the device
EP0220757B1 (en) Optical transducer element and displacement meter comprising such an element
JPS626119A (en) Rotary encoder
US7538312B2 (en) Method for determining the position of a first moving component relatively to a second component and device for applying said method
JPS6212814A (en) Rotary encoder
JPH02285214A (en) Length measuring machine and scale member used for the same
KR880000771A (en) Optical distance measuring device
GB2084315A (en) Interferometer
US5825023A (en) Auto focus laser encoder having three light beams and a reflective grating
JPH05126604A (en) Optical position detector and manufacture of scale
JPS62200225A (en) Rotary encoder
JPS59224514A (en) Optical encoder
JPS62200224A (en) Rotary encoder
JPS61212728A (en) Rotary encoder
JPS62163919A (en) Rotary encoder
JP2540113B2 (en) Encoder
JPS62200222A (en) Rotary encoder
JPS62163921A (en) Rotary encoder
JP2836900B2 (en) Optical disk recording / reproducing apparatus and recording / reproducing method
JPS59224513A (en) Optical linear encoder
JPS62163924A (en) Encoder
JPH05240612A (en) Optical displacement measuring instrument
JPH07198422A (en) Laser encoder
JPH10111114A (en) Groove shape measuring device