JPH05126541A - Instrument for three-dimensionally measuring shape of object - Google Patents
Instrument for three-dimensionally measuring shape of objectInfo
- Publication number
- JPH05126541A JPH05126541A JP28509291A JP28509291A JPH05126541A JP H05126541 A JPH05126541 A JP H05126541A JP 28509291 A JP28509291 A JP 28509291A JP 28509291 A JP28509291 A JP 28509291A JP H05126541 A JPH05126541 A JP H05126541A
- Authority
- JP
- Japan
- Prior art keywords
- light
- light receiving
- distance
- light emitting
- measurement point
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Length Measuring Devices By Optical Means (AREA)
- Measurement Of Optical Distance (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、例えばNC切削加工に
より製品を製造したり、NC工作機械で鋳型やプレス加
工に用いる金型を作る場合などに、試作モデルの形状を
測定して三次元データを得る物体形状の三次元測定装置
に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to three-dimensional measurement by measuring the shape of a prototype model, for example, when manufacturing a product by NC cutting or making a mold or a die used for press working with an NC machine tool. The present invention relates to an object shape three-dimensional measuring apparatus for obtaining data.
【0002】[0002]
【従来の技術】この種の三次元測定装置は、図8に示す
ように、被測定物Wの測定点Pに対してレーザ光を照射
する発光部31と、測定点Pからの反射光をその反射角
度に応じて受光する多数の受光素子からなる受光部32
とを備えた距離センサ30が使用されている(特公平2
−2082号,特公平2−16965号公報参照)。2. Description of the Related Art A three-dimensional measuring device of this type, as shown in FIG. 8, emits a laser beam to a measuring point P of an object to be measured W and a reflected light from the measuring point P. Light receiving section 32 including a large number of light receiving elements that receive light according to the reflection angle.
The distance sensor 30 including the
-2082, Japanese Patent Publication No. 2-16965).
【0003】前記受光部32には、受光レンズ33の光
軸に対して直交する方向に例えばCCD等の1024個の受
光素子34が一列に設けられると共に、前記受光レンズ
33がその光軸を発光部31の光軸に対して例えば15
°に交差するように設けられている。In the light receiving section 32, 1024 light receiving elements 34 such as CCDs are provided in a line in a direction orthogonal to the optical axis of the light receiving lens 33, and the light receiving lens 33 emits light along the optical axis. For example, 15 with respect to the optical axis of the part 31
It is provided so that it intersects with °.
【0004】そして、被測定物Wの測定点Pに発光部3
1から光を照射すると、測定点Pで光が乱反射され、受
光レンズ33を通った反射光のみが受光部32で受光さ
れので、測定点Pの高さに応じて、測定点Pから受光部
32に向かって反射される光の反射角度が変化して、受
光部32上の受光位置も変化することとなる。At the measuring point P of the object to be measured W, the light emitting section 3
When the light is irradiated from 1, the light is diffusely reflected at the measurement point P, and only the reflected light that has passed through the light receiving lens 33 is received by the light receiving section 32. Therefore, depending on the height of the measurement point P, the light receiving section from the measurement point P is received. The reflection angle of the light reflected toward 32 changes, and the light receiving position on the light receiving unit 32 also changes.
【0005】すなわち、測定点Pと発光部31との距離
に応じて、受光部32での受光位置が変化するので、受
光位置に応じて測定点Pまでの距離を求めることができ
る。そして、発光部31の座標値と、求められた距離に
基づいて、測定点Pの座標値を容易に求めることができ
る。That is, since the light receiving position at the light receiving unit 32 changes according to the distance between the measuring point P and the light emitting unit 31, the distance to the measuring point P can be obtained according to the light receiving position. Then, the coordinate value of the measurement point P can be easily obtained based on the coordinate value of the light emitting unit 31 and the obtained distance.
【0006】[0006]
【発明が解決しようとする課題】しかしながら、被測定
物Wの表面にV溝等の急斜面35や段差が形成されてい
る場合は、発光部31から斜面35に光を照射しても反
射光が斜面に遮られて受光部32に届かず、被測定物W
までの距離を求めることができないので、その部分の三
次元データを得ることができない。そこで、本発明は、
被測定物Wの表面に急斜面などが形成されている場合で
あっても、被測定物の三次元データを正確に測定するこ
とができるようにすることを技術的課題としている。However, when a steep slope 35 such as a V groove or a step is formed on the surface of the object to be measured W, even if the light is emitted from the light emitting section 31 to the slope 35, the reflected light is not reflected. The object to be measured W is blocked by the slope and does not reach the light receiving unit 32.
Since it is not possible to obtain the distance to, it is not possible to obtain the three-dimensional data of that portion. Therefore, the present invention is
Even if a steep slope or the like is formed on the surface of the object to be measured W, it is a technical problem to be able to accurately measure the three-dimensional data of the object to be measured.
【0007】[0007]
【課題を解決するための手段】この課題を解決するため
に、本発明は、被測定物の測定点に対して光を照射する
発光部と、測定点からの反射光をその反射角度に応じて
受光する多数の受光素子からなる受光部とを備えた距離
センサにより、発光部と測定点との距離を求め、当該距
離に基づいて測定点の座標値を算定する物体形状の三次
元測定装置において、前記距離センサの受光部が、発光
部の光軸を中心とする円周に沿って複数組設けられ、反
射光が受光されている任意の受光部を選択して発光部と
測定点との距離を算出すると共に、その受光部に反射光
が受光されなくなったときに、反射光を受光している他
の受光部を選択して発光部と測定点との距離を継続的に
算出する演算装置を備えたことを特徴とする。In order to solve this problem, the present invention relates to a light emitting section for irradiating a measuring point of an object to be measured with light and a reflected light from the measuring point according to its reflection angle. Three-dimensional measuring device of object shape for obtaining the distance between the light emitting portion and the measuring point by a distance sensor having a light receiving portion composed of a large number of light receiving elements for receiving light and calculating coordinate values of the measuring point based on the distance. In the above, the light receiving section of the distance sensor is provided in a plurality of sets along a circumference centered on the optical axis of the light emitting section, and any light receiving section receiving reflected light is selected to select a light emitting section and a measurement point. When the reflected light is no longer received by the light receiving part, another light receiving part receiving the reflected light is selected and the distance between the light emitting part and the measurement point is continuously calculated. It is characterized by having a computing device.
【0008】[0008]
【作用】本発明によれば、発光部から被測定物に光を照
射すると、光はその表面で乱反射されて、発光部の光軸
を中心とする円周に沿って配設された複数の受光部の夫
々で受光されることとなる。したがって、反射光を受光
している任意の受光部により、発光部と被測定物までの
距離を正確に求めることができる。According to the present invention, when light is emitted from the light emitting portion to the object to be measured, the light is diffusely reflected on the surface of the light emitting portion, and a plurality of light emitting portions are arranged along the circumference centered on the optical axis of the light emitting portion. The light is received by each of the light receiving units. Therefore, the distance between the light emitting unit and the object to be measured can be accurately obtained by any light receiving unit that receives the reflected light.
【0009】また、被測定物の表面に形成された凹凸や
段差により、測定点から測定中の受光部に向かって反射
される光が遮られても、その光を受光している他の受光
部に切り換えることによって発光部と被測定物との間の
距離を測定することができるので、測定不能になること
がなく、確実且つ迅速に測定点の座標値を算定すること
ができる。Further, even if the light reflected from the measuring point toward the light receiving portion being measured is blocked by the unevenness or steps formed on the surface of the object to be measured, other light receiving light is received. Since the distance between the light emitting unit and the object to be measured can be measured by switching to the unit, the coordinate value of the measurement point can be calculated reliably and quickly without making measurement impossible.
【0010】[0010]
【実施例】以下、本発明を図面に示す実施例に基づいて
具体的に説明する。図1は本発明装置の一例を示す斜視
図、図2及び図3は距離センサを示す概略構成図、図4
は本発明装置のブロック図、図5〜図7は使用状態を示
す説明図である。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below based on the embodiments shown in the drawings. FIG. 1 is a perspective view showing an example of the device of the present invention, FIGS. 2 and 3 are schematic configuration diagrams showing a distance sensor, and FIG.
Is a block diagram of the device of the present invention, and FIGS. 5 to 7 are explanatory views showing a usage state.
【0011】図中1は、被測定物Wの測定点までの距離
を測る距離センサであって、被測定物WをX−Y方向に
移動可能に支持するX方向移動テーブルTx及びY方向
移動テーブルTyと、当該距離センサ1をZ方向に移動
させるZ方向移動テーブルTzにより、被測定物Wに対
してX−Y−Z方向に相対移動可能に配設されている。In the figure, reference numeral 1 is a distance sensor for measuring the distance to the measuring point of the object to be measured W, which is an X-direction moving table Tx and a Y-direction moving table for supporting the object to be measured W in the XY directions. The table Ty and the Z-direction moving table Tz that moves the distance sensor 1 in the Z direction are arranged so as to be relatively movable in the XYZ directions with respect to the measured object W.
【0012】この距離センサ1には、例えばHe−Ne
レーザ光を出力する発光部2が中央部に配置されると共
に、その光軸を中心とする円周に沿って二つの受光部
3,3がその直径方向に配置されている。各受光部3
は、受光レンズ4の光軸に直交する方向に例えば1024個
のCCDを一列に設けて成る受光素子5が設けられ、前
記受光レンズ4の光軸が発光部2の光軸と所定角度(例
えば15°)に交差されるように一体に取り付けられて
いる。The distance sensor 1 includes, for example, He-Ne.
A light emitting part 2 for outputting a laser beam is arranged in the central part, and two light receiving parts 3, 3 are arranged in the diametrical direction along a circumference centered on the optical axis. Each light receiving unit 3
Is provided with a light receiving element 5 formed by, for example, 1024 CCDs arranged in a line in a direction orthogonal to the optical axis of the light receiving lens 4, and the optical axis of the light receiving lens 4 is at a predetermined angle (eg, with the optical axis of the light emitting unit 2). It is attached integrally so as to intersect at 15 °).
【0013】また、前記距離センサ1は、Z軸と平行な
回転軸Azの下端部に傾動可能に支持され、回転軸Az
を回転させるAz軸駆動モータ6と、距離センサ1を傾
動させる傾動モータ7により、発光部2の光軸を任意の
角度に傾斜させることができるように成されている。さ
らに、発光部2及び受光部3は、発光部2の光軸方向に
進退可能なシリンダ8のピストンロッドに取り付けられ
ると共に、例えば超音波モータ9により発光部2の光軸
を中心として回転可能に支持されている。The distance sensor 1 is tiltably supported by a lower end portion of a rotation axis Az parallel to the Z axis, and has a rotation axis Az.
The optical axis of the light emitting unit 2 can be tilted at an arbitrary angle by an Az axis drive motor 6 that rotates the lens and a tilt motor 7 that tilts the distance sensor 1. Further, the light emitting unit 2 and the light receiving unit 3 are attached to a piston rod of a cylinder 8 that can advance and retreat in the optical axis direction of the light emitting unit 2 and can be rotated about the optical axis of the light emitting unit 2 by, for example, an ultrasonic motor 9. It is supported.
【0014】10は、被測定物Wを支持する支持具であ
って、本例の場合、被測定物Wの中心軸を回転可能に支
持する回転軸Axと、これを所定角度ずつ回転させるA
x軸駆動モータ11とからなる。前記回転軸AxはX軸
と平行に配設され、被測定物Wの中心軸を通る切断面を
基準面として、当該基準面をX−Y面と平行にした状態
に取り付けることができるようになされている。なお、
被測定物Wの表面側のみを測定し裏面側を測定する必要
がない場合は、被測定物Wを回転軸Axに取り付けるこ
となく、X方向移動テーブルTxに直接取り付ければよ
い。Reference numeral 10 denotes a support for supporting the object to be measured W, and in the case of this example, a rotation axis Ax for rotatably supporting the central axis of the object to be measured W and A for rotating the axis Ax by a predetermined angle.
It is composed of an x-axis drive motor 11. The rotation axis Ax is arranged in parallel with the X axis, and the cut surface passing through the central axis of the object to be measured W is used as a reference plane so that the reference plane can be attached in a state parallel to the XY plane. Has been done. In addition,
When it is not necessary to measure only the front surface side and the back surface side of the object to be measured W, the object to be measured W may be directly attached to the X-direction moving table Tx without being attached to the rotation axis Ax.
【0015】12は、測定点に焦点Fを合わせるフォー
カス装置であって、距離センサ1内に配設されている。
受光部3の測定精度を上げていくと測定深度が浅くなる
ため(例えば約10mm)、被測定物Wにその測定深度よ
り深い凹凸や段差が形成されていると、測定点の位置が
測定深度から逸脱してしまい測定不能になる。Reference numeral 12 is a focusing device for focusing the focal point F on the measuring point, and is provided in the distance sensor 1.
As the measurement accuracy of the light receiving unit 3 is increased, the measurement depth becomes shallower (for example, about 10 mm). Therefore, if unevenness or a step deeper than the measurement depth is formed on the object to be measured W, the position of the measurement point becomes the measurement depth. It deviates from and becomes impossible to measure.
【0016】そこで、図3に示すように、測定深度が受
光部3に比して深く選定され、その焦点位置が受光部5
の測定深度内に設定されたフォーカス装置12を設け、
被測定物Wの凹凸や段差により測定点の位置が受光素子
5の測定深度を超えたときに、測定点までの距離と移動
方向を検出信号として出力する。Therefore, as shown in FIG. 3, the measurement depth is selected deeper than that of the light receiving section 3, and the focus position thereof is set to the light receiving section 5.
The focus device 12 set within the measurement depth of
When the position of the measurement point exceeds the measurement depth of the light receiving element 5 due to the unevenness or steps of the object to be measured W, the distance to the measurement point and the moving direction are output as a detection signal.
【0017】したがって、前記検出信号により、焦点F
と測定点の位置に応じて、光軸がZ軸と平行な場合には
Z方向移動テーブルTzが所定量移動され、光学が傾斜
されている場合は各移動テーブルTx,Ty及びTzを
同時に所定量ずつ移動させることによって光センサ1を
光軸方向に移動させる。なお、シリンダ8を所定長さだ
け伸縮させてもよく、この場合は光軸の傾斜に関係なく
光センサ1を光軸方向に移動することができる。Therefore, according to the detection signal, the focus F
According to the position of the measurement point, the Z-direction moving table Tz is moved by a predetermined amount when the optical axis is parallel to the Z axis, and when the optics is tilted, the moving tables Tx, Ty and Tz are simultaneously moved. The optical sensor 1 is moved in the optical axis direction by moving it by a fixed amount. The cylinder 8 may be expanded and contracted by a predetermined length, and in this case, the optical sensor 1 can be moved in the optical axis direction regardless of the inclination of the optical axis.
【0018】このフォーカス装置12は、受光部3ほど
精密な距離測定を行うことはできないものの受光部3の
測定深度内に焦点を合わせることができる程度の精度を
有しているので、焦点Fが測定点と合った時点で、受光
部3により距離を測定することにより、迅速且つ高精度
な測定が可能となる。Although the focus device 12 cannot measure the distance as accurately as the light receiving section 3, it has such an accuracy that it can focus within the measurement depth of the light receiving section 3, so that the focus F is By measuring the distance by the light receiving unit 3 at the time when the measurement point is met, it is possible to perform quick and highly accurate measurement.
【0019】13は、予め設定されたプログラムや被測
定物Wの形状に応じて各移動テーブルTx,Ty及びT
z,Az軸駆動モータ6,傾動モータ7,シリンダ8,
超音波モータ9,Ax軸駆動モータ11を駆動する制御
信号を出力すると共に、反射光が受光されている一方の
受光部3を選択し、その受光部3に反射光が受光されな
くなったときに反射光を受光している他方の受光部3を
選択する制御信号を出力する制御装置である。Reference numeral 13 denotes each moving table Tx, Ty and T according to a preset program and the shape of the object to be measured W.
z, Az axis drive motor 6, tilt motor 7, cylinder 8,
When a control signal for driving the ultrasonic motor 9 and the Ax-axis drive motor 11 is output, and one of the light receiving units 3 that receives reflected light is selected and no reflected light is received by the light receiving unit 3. The control device outputs a control signal for selecting the other light-receiving unit 3 that receives the reflected light.
【0020】また、14は測定点のX−Y−Z座標値を
算出する演算装置であって、各移動テーブルTx,Ty
及びTzの移動量,Az軸の回転角,傾動モータ7の傾
斜角及びシリンダ8の伸縮量に基づいて発光部2の座標
値を算出する演算手段15と、Az軸の回転角及び傾動
モータ7の傾斜角に基づいて座標軸に対する発光部2の
光軸の傾きを算出する演算手段16と、距離センサ1か
らの出力信号に基づいて発光部2と測定点までの距離を
求める演算手段17と、前記各演算手段15,16及び
17の演算結果に基づいて測定点のX−Y−Z座標値を
算出する演算手段18からなる。Numeral 14 is an arithmetic unit for calculating the XYZ coordinate values of the measuring points, which are the moving tables Tx, Ty.
And a moving amount of Tz, a rotation angle of the Az axis, a tilt angle of the tilt motor 7, and a calculation unit 15 that calculates the coordinate value of the light emitting unit 2 based on the expansion and contraction amount of the cylinder 8, and the rotation angle of the Az axis and the tilt motor 7. An arithmetic means 16 for calculating the inclination of the optical axis of the light emitting portion 2 with respect to the coordinate axis based on the inclination angle of, and an arithmetic means 17 for obtaining the distance between the light emitting portion 2 and the measurement point based on the output signal from the distance sensor 1. The calculation means 18 calculates the XYZ coordinate values of the measurement points based on the calculation results of the calculation means 15, 16 and 17.
【0021】以上が本発明の一例構成であって次にその
作用について説明する。例えば、人形の頭部をプラスチ
ック成形する場合の金型をおこす場合について説明する
と、頭部模型を被測定物WとしてAx軸に取り付け、発
光部2の光軸を被測定物Wの表面に照射して、X方向移
動テーブルTxを喉部から頭頂部に向かって所定ピッチ
で移動させながら各測定点の座標を一列に測定する。こ
のとき、発光部2の光軸がZ軸と方向となるように鉛直
下方に向け、Ax軸と交差させれば、測定点の座標値を
より簡単に算定することができる。The above is an example of the configuration of the present invention, and its operation will be described below. For example, a case of raising a metal mold for molding a doll's head will be described. A head model is attached to the Ax axis as the object to be measured W, and the optical axis of the light emitting unit 2 is irradiated onto the surface of the object to be measured W. Then, the coordinates of each measurement point are measured in a line while moving the X-direction movement table Tx from the throat toward the crown at a predetermined pitch. At this time, if the optical axis of the light emitting unit 2 is directed vertically downward so as to be in the direction of the Z axis and intersects with the Ax axis, the coordinate value of the measurement point can be more easily calculated.
【0022】次いで、Ax軸駆動モータ11により被測
定物Wを所定角度(例えば1°)回転させ、X方向移動
テーブルTxを頭頂部から喉部に向かって所定ピッチで
移動させながら各測定点の座標値を算定する。このと
き、被測定物Wが回転されているので、その座標値は回
転軸Axの回転角度に応じて演算手段18で補正されて
算定される。そして、これを繰り返すことにより被測定
物Wの全周の測定点について座標値を算定することがで
きる。Next, the object W to be measured is rotated by a predetermined angle (for example, 1 °) by the Ax-axis drive motor 11, and the X-direction moving table Tx is moved at a predetermined pitch from the top of the head to the throat. Calculate the coordinate values. At this time, since the object to be measured W is rotated, its coordinate value is calculated by being corrected by the calculation means 18 according to the rotation angle of the rotation axis Ax. Then, by repeating this, the coordinate values can be calculated for the measurement points on the entire circumference of the object W to be measured.
【0023】また、図5(a)に示すように、受光部
3,3の位置を例えばX軸と平行にして進行方向後方
(図面で見て左側)の受光部3で測定している場合に、
被測定物Wの表面に、反射光の反射角度よりも小さな角
度のV溝20がX軸方向と直交する方向に形成されてい
ると、V溝20の斜面からの反射光がその斜面に遮られ
て受光部3に届かなくなる。このときは、制御装置13
からの制御信号により進行方向前方の受光部3(図面で
見て右側)に切り換える。Further, as shown in FIG. 5 (a), when the positions of the light receiving portions 3 and 3 are set parallel to the X-axis, for example, and the light receiving portion 3 behind the traveling direction (left side in the drawing) is used for measurement. To
When the V groove 20 having an angle smaller than the reflection angle of the reflected light is formed on the surface of the object to be measured W in the direction orthogonal to the X-axis direction, the reflected light from the slope of the V groove 20 is blocked by the slope. Therefore, the light does not reach the light receiving unit 3. At this time, the control device 13
A control signal from the switch switches to the light receiving unit 3 (on the right side in the drawing) in the forward direction.
【0024】さらに、V溝20の底部近くからの反射光
は、図5(b)に示すように、両側の斜面に遮られてい
ずれの受光部3,3にも入力されなくなるので、このと
きは制御装置13からの制御信号により、図5(c)に
示すように、距離センサ1が発光部2の光軸を中心とし
て受光部3に光が受光される位置まで回転されるので、
反射光が受光されたいずれか一方の受光部3で測定を行
う。Further, as shown in FIG. 5B, the reflected light from the vicinity of the bottom of the V groove 20 is blocked by the slopes on both sides and is not input to any of the light receiving portions 3 and 3, so that at this time. As shown in FIG. 5C, the distance sensor 1 is rotated by the control signal from the control device 13 about the optical axis of the light emitting unit 2 to a position where the light receiving unit 3 receives light.
The measurement is performed by one of the light receiving units 3 that receives the reflected light.
【0025】この場合に、発光部2の光軸がZ軸と平行
な場合にはAz軸駆動モータ6又は超音波モータ9を駆
動させることにより距離センサ1を回転さればよく、光
軸が傾斜している場合には超音波モータ9を駆動させる
ことにより距離センサ1を回転させればよい。In this case, when the optical axis of the light emitting section 2 is parallel to the Z axis, the distance sensor 1 may be rotated by driving the Az axis drive motor 6 or the ultrasonic motor 9, and the optical axis is tilted. If so, the distance sensor 1 may be rotated by driving the ultrasonic motor 9.
【0026】また、図3に示すように、被測定物Wの表
面に形成された測定深度以上の段差や凹凸により、測定
点が受光部3の測定深度から逸脱した場合は、フォーカ
ス装置12からの検出信号に基づいて距離センサ1が光
軸方向に移動される。フォーカス装置12からは、測定
点までの距離と移動方向が検出信号として出力されるの
で、距離センサ1が発光部2の光軸に沿って所定の方向
に所定距離だけ移動され、測定点と焦点Fが合わされ、
測定時間をロスすることなく三次元データを測定するこ
とができる。Further, as shown in FIG. 3, when the measurement point deviates from the measurement depth of the light receiving portion 3 due to a step or unevenness formed on the surface of the object to be measured W and having a depth larger than the measurement depth, the focus device 12 is operated. The distance sensor 1 is moved in the optical axis direction based on the detection signal. Since the distance to the measurement point and the moving direction are output from the focus device 12 as a detection signal, the distance sensor 1 is moved in the predetermined direction along the optical axis of the light emitting unit 2 by the predetermined distance, and the measurement point and the focus point are moved. F is matched,
It is possible to measure three-dimensional data without loss of measurement time.
【0027】このとき、光軸がX軸,Y軸又はZ軸と平
行な場合は対応する移動テーブルTx,Ty,Tzを所
定方向に所定量移動させることにより、また、光軸が傾
斜している場合は各移動テーブルTx,Ty,Tzを同
時に所定量ずつ移動させることにより、光センサ1を光
軸方向に移動させることができる。もちろんシリンダ8
を所定長さ伸縮させてもよい。At this time, when the optical axis is parallel to the X axis, Y axis or Z axis, the corresponding moving tables Tx, Ty, Tz are moved in a predetermined direction by a predetermined amount, and the optical axis is tilted. If so, the optical sensors 1 can be moved in the optical axis direction by simultaneously moving the moving tables Tx, Ty, Tz by a predetermined amount. Of course cylinder 8
May be expanded or contracted by a predetermined length.
【0028】さらに、例えば、図6に示すように、被測
定物Wに急斜面21が形成されると共に、その斜面の途
中に凹部22が形成されている場合に、光軸をZ軸と平
行にした状態で測定すると、斜面部分で測定点P1 〜P
8の三次元データしか測定することができないので、正
確な物体形状を把握することができず、測定ピッチを細
かくしても凹部22の内側まで測定することはできな
い。Further, for example, as shown in FIG. 6, when a steep slope 21 is formed on the object to be measured W and a recess 22 is formed in the middle of the slope, the optical axis is parallel to the Z axis. When the measurement is performed under the condition, the measurement points P 1 to P
Since only the three-dimensional data of 8 can be measured, it is not possible to grasp the accurate object shape, and even if the measurement pitch is made fine, it is not possible to measure the inside of the recess 22.
【0029】したがってこのような場合は、Az軸駆動
モータ6及び傾動モータ7を駆動させて、発光部2の光
軸を斜面と略直交する方向に傾斜させた状態で測定する
ことにより、凹部22の内側のX−Y−Z座標値も測定
することできる。Therefore, in such a case, the recess 22 is obtained by driving the Az axis drive motor 6 and the tilt motor 7 and measuring the optical axis of the light emitting section 2 in a state in which the optical axis is tilted in a direction substantially orthogonal to the slope. The XYZ coordinate values inside the can also be measured.
【0030】また、例えば図7に示すような半円柱を9
0°に連結したような被測定物Wに対しては、発光部2
の光軸を測定部位に応じて被測定物Wの測定面に対して
略直交する方向に傾斜させることにより物体形状を正確
に測定することができる。例えば、X軸と平行に延びた
部分については、光センサ1がY−Z面と平行に傾動さ
れるようにAz軸駆動モータ6が所定角度回転されると
共に、Y−Z面内で円弧を描くように移動テーブルT
y,Tzが所定量ずつ移動され、傾動モータ7が所定角
度ずつ回転される。Further, for example, a semi-cylindrical cylinder as shown in FIG.
For the object to be measured W connected at 0 °, the light emitting unit 2
The object shape can be accurately measured by inclining the optical axis of the object in a direction substantially orthogonal to the measurement surface of the object to be measured W according to the measurement site. For example, in the portion extending in parallel with the X axis, the Az axis drive motor 6 is rotated by a predetermined angle so that the optical sensor 1 is tilted in parallel with the YZ plane, and an arc is formed in the YZ plane. Moving table T as you draw
y and Tz are moved by a predetermined amount, and the tilt motor 7 is rotated by a predetermined angle.
【0031】Y軸と平行に延びた部分については、光セ
ンサ1がX−Z面と平行に傾動されるようにAz軸駆動
モータ6が所定角度回転されると共に、X−Z面内で円
弧を描くように移動テーブルTx,Tzが所定量ずつ移
動され、傾動モータ7が所定角度ずつ回転される。Regarding the portion extending in parallel with the Y axis, the Az axis drive motor 6 is rotated by a predetermined angle so that the optical sensor 1 is tilted in parallel with the XZ plane, and an arc is formed in the XZ plane. The moving tables Tx and Tz are moved by a predetermined amount so that the tilt motor 7 is rotated by a predetermined angle.
【0032】また、連結部については光センサ1がY−
Z面及びX−Z面に対して45°の面と平行に傾動され
るようにAz軸駆動モータ6が所定角度回転されると共
に、その面内で円弧を描くように、移動テーブルTx,
Ty,Tzが所定量ずつ移動され、傾動モータ7が所定
角度ずつ回転される。Further, regarding the connecting portion, the optical sensor 1 is Y-
The Az-axis drive motor 6 is rotated by a predetermined angle so as to be tilted parallel to the plane of 45 ° with respect to the Z-plane and the X-Z plane, and the moving table Tx, so as to draw an arc in the plane.
Ty and Tz are moved by a predetermined amount, and the tilt motor 7 is rotated by a predetermined angle.
【0033】なお、実施例の説明においては、受光部3
を二つ設けた場合についてのみ説明したが、その数は任
意である。ただし、受光部3の数が多いほど、特に、発
光部2の光軸を中心とする円周に沿って隙間なく受光部
を設ければ、測定点から乱反射された光を全方位的に受
光することができ死角が少なくなる。また、光センサ1
を発光部2の光軸を中心に回転させる場合は、一つの受
光部3でも足りるが、やはり数が多ければ小さな回転角
度で全方位をカバーすることができる。さらに、距離セ
ンサ1を被測定物Wに対してX軸方向,Y軸方向,Z軸
方向に相対移動させる手段としては、距離センサ1が移
動される場合であっても、被測定物Wが移動される場合
であってもよい。In the description of the embodiment, the light receiving section 3
Although only two cases have been described, the number is arbitrary. However, as the number of light-receiving units 3 increases, particularly if light-receiving units are provided without gaps along the circumference centered on the optical axis of the light-emitting unit 2, the light diffusely reflected from the measurement point is received in all directions. Can reduce blind spots. Also, the optical sensor 1
In the case of rotating around the optical axis of the light emitting section 2, one light receiving section 3 is sufficient, but if the number is large, it is possible to cover all directions with a small rotation angle. Further, as means for moving the distance sensor 1 relative to the object to be measured W in the X-axis direction, the Y-axis direction, and the Z-axis direction, even if the distance sensor 1 is moved, the object to be measured W is It may be moved.
【0034】[0034]
【発明の効果】以上述べたように、本発明によれば、距
離センサの発光部を中心とする円周に沿って複数の受光
部が形成され、距離測定に使用している任意の受光部で
反射光が受光されなくなっても、反射光が受光されてい
る他の受光部で距離測定を行うことができるので、測定
を中断することなく連続して正確に測定点の座標値を算
定することができるという優れた効果を有する。As described above, according to the present invention, a plurality of light receiving portions are formed along the circumference centering on the light emitting portion of the distance sensor, and any light receiving portion used for distance measurement is formed. Even if the reflected light is not received at, the distance can be measured at the other light receiving part where the reflected light is received, so the coordinate values of the measurement points can be calculated continuously and accurately without interrupting the measurement. It has an excellent effect of being able to.
【図1】 本発明装置を示す斜視図。FIG. 1 is a perspective view showing a device of the present invention.
【図2】 距離センサを示す概略構成図。FIG. 2 is a schematic configuration diagram showing a distance sensor.
【図3】 距離センサを示す概略構成図。FIG. 3 is a schematic configuration diagram showing a distance sensor.
【図4】 本発明装置を示すブロック図。FIG. 4 is a block diagram showing the device of the present invention.
【図5】 使用状態を示す説明図。FIG. 5 is an explanatory diagram showing a usage state.
【図6】 使用状態を示す説明図。FIG. 6 is an explanatory diagram showing a usage state.
【図7】 使用状態を示す説明図。FIG. 7 is an explanatory view showing a usage state.
【図8】 従来の測定装置を示す概略構成図。FIG. 8 is a schematic configuration diagram showing a conventional measuring device.
1・・・距離センサ 2・・・発光部 3・・・受光部 6・・・Az軸駆動モ
ータ 7・・・傾動装置 8・・・シリンダ 9・・・超音波モータ 10・・・被測定物支持
具 11・・・Ax軸駆動モータ 12・・・フォーカス
装置 13・・・制御装置 14・・・演算装置1 ... Distance sensor 2 ... Light emitting part 3 ... Light receiving part 6 ... Az axis drive motor 7 ... Tilt device 8 ... Cylinder 9 ... Ultrasonic motor 10 ... Measured Object support 11 ... Ax axis drive motor 12 ... Focus device 13 ... Control device 14 ... Arithmetic device
Claims (4)
射する発光部(2)と、測定点からの反射光をその反射
角度に応じて受光する多数の受光素子からなる受光部
(3)とを備えた距離センサ(1)により、発光部
(2)と測定点との距離を求め、当該距離に基づいて測
定点の座標値を算定する物体形状の三次元測定装置にお
いて、前記距離センサ(1)の受光部(3)が、発光部
(2)の光軸を中心とする円周に沿って複数組設けら
れ、反射光が受光されている任意の受光部(3)を選択
して発光部(2)と測定点との距離を算出すると共に、
その受光部(3)に反射光が受光されなくなったとき
に、反射光を受光している他の受光部(3)を選択して
発光部(2)と測定点との距離を継続的に算出する演算
装置(17)を備えたことを特徴とする物体形状の三次
元測定装置。1. A light receiving section comprising a light emitting section (2) for irradiating light to a measuring point of an object to be measured (W) and a plurality of light receiving elements for receiving reflected light from the measuring point according to its reflection angle. In a three-dimensional measuring device for an object shape, the distance sensor (1) including a part (3) determines a distance between a light emitting part (2) and a measurement point, and calculates coordinate values of the measurement point based on the distance. An arbitrary light receiving part (3) is provided in which a plurality of light receiving parts (3) of the distance sensor (1) are provided along the circumference centered on the optical axis of the light emitting part (2) and the reflected light is received. ) Is selected to calculate the distance between the light emitting unit (2) and the measurement point, and
When the reflected light is no longer received by the light receiving unit (3), another light receiving unit (3) receiving the reflected light is selected to continuously maintain the distance between the light emitting unit (2) and the measurement point. A three-dimensional measuring apparatus for object shape, comprising a calculation device (17) for calculating.
射する発光部(2)と、測定点からの反射光をその反射
角度に応じて受光する多数の受光素子からなる受光部
(3)とを備えた距離センサ(1)により、発光部
(2)と測定点との距離を求め、当該距離に基づいて測
定点の座標値を算定する物体形状の三次元測定装置にお
いて、前記距離センサ(1)が発光部(2)の光軸を回
転軸とする回転装置(6,9)に取り付けられ、受光部
(3)に反射光が受光されなくなったときに、前記回転
装置(6,9)を駆動して受光部(3)で反射光を受光
できる位置まで距離センサ(1)を回転させる制御装置
(13)と、受光部(3)で反射光が受光されたときに
発光部(2)と測定点との距離を算出する演算装置(1
7)を備えたことを特徴とする物体形状の三次元測定装
置。2. A light receiving section comprising a light emitting section (2) for irradiating light to a measuring point of the object to be measured (W) and a plurality of light receiving elements for receiving reflected light from the measuring point according to the reflection angle thereof. In a three-dimensional measuring device for an object shape, the distance sensor (1) including a part (3) determines a distance between a light emitting part (2) and a measurement point, and calculates coordinate values of the measurement point based on the distance. When the distance sensor (1) is attached to a rotating device (6, 9) whose rotation axis is the optical axis of the light emitting section (2), and the reflected light is no longer received by the light receiving section (3), the rotation is performed. The reflected light is received by the light receiving unit (3) and the control device (13) that drives the device (6, 9) to rotate the distance sensor (1) to a position where the light receiving unit (3) can receive the reflected light. An arithmetic unit (1 that sometimes calculates the distance between the light emitting unit (2) and the measurement point
7) A three-dimensional measuring device for measuring the shape of an object, comprising:
射する発光部(2)と、測定点からの反射光をその反射
角度に応じて受光する多数の受光素子からなる受光部
(3)とを備えた距離センサ(1)により、発光部
(2)と測定点との距離を求め、当該距離に基づいて測
定点の座標値を算定する物体形状の三次元測定装置にお
いて、被測定物(W)を三次元座標軸のいずれか一つの
座標軸と平行な回転軸(Ax)により回転可能に支持す
る回転装置(11)と、当該回転装置(11)を駆動し
て前記回転軸(Ax)を所定角度ずつ回転させる制御装
置(13)と、前記回転軸(Ax)の回転角に応じて測
定点の座標値を補正して算定する演算装置(14)を備
えたことを特徴とする物体形状の三次元測定装置。3. A light receiving section (2) for irradiating light to a measuring point of the object to be measured (W), and a plurality of light receiving elements for receiving reflected light from the measuring point according to its reflection angle. In a three-dimensional measuring device for an object shape, the distance sensor (1) including a part (3) determines a distance between a light emitting part (2) and a measurement point, and calculates coordinate values of the measurement point based on the distance. A rotation device (11) for rotatably supporting the object to be measured (W) by a rotation axis (Ax) parallel to any one of the three-dimensional coordinate axes, and the rotation device (11) is driven to rotate the rotation device (11). A control device (13) for rotating the shaft (Ax) by a predetermined angle, and an arithmetic device (14) for correcting and calculating the coordinate value of the measurement point according to the rotation angle of the rotation shaft (Ax) are provided. Three-dimensional measuring device for characteristic object shape.
射する発光部(2)と、測定点からの反射光をその反射
角度に応じて受光する多数の受光素子からなる受光部
(3)とを備えた距離センサ(1)により、発光部
(2)と測定点との距離を求め、当該距離に基づいて測
定点の座標値を算定する物体形状の三次元測定装置にお
いて、前記受光部(3)に比して測定深度が深く設定さ
れると共に焦点が受光部(3)の測定深度内に設けられ
たフォーカス装置(12)が距離センサ(1)に一体に
取り付けられ、測定点が受光部(3)の測定深度から逸
脱したときに、フォーカス装置(12)の焦点に測定点
を合焦させるように距離センサ(1)を発光部(2)の
光軸方向に沿って相対移動させる制御装置(13)を備
えたことを特徴とする物体形状の三次元測定装置。4. A light receiving section comprising a light emitting section (2) for irradiating light to a measuring point of the object to be measured (W) and a large number of light receiving elements for receiving reflected light from the measuring point according to its reflection angle. In a three-dimensional measuring device for an object shape, the distance sensor (1) including a part (3) determines a distance between a light emitting part (2) and a measurement point, and calculates coordinate values of the measurement point based on the distance. A focus device (12) having a deeper measurement depth than that of the light receiving section (3) and having a focus within the measurement depth of the light receiving section (3) is integrally attached to the distance sensor (1). When the measurement point deviates from the measurement depth of the light receiving section (3), the distance sensor (1) is moved in the optical axis direction of the light emitting section (2) so as to focus the measurement point on the focus of the focusing device (12). Object comprising a control device (13) for relatively moving along Three-dimensional shape measuring device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3285092A JP3071271B2 (en) | 1991-10-30 | 1991-10-30 | Object shape 3D measuring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3285092A JP3071271B2 (en) | 1991-10-30 | 1991-10-30 | Object shape 3D measuring device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05126541A true JPH05126541A (en) | 1993-05-21 |
JP3071271B2 JP3071271B2 (en) | 2000-07-31 |
Family
ID=17687029
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3285092A Expired - Fee Related JP3071271B2 (en) | 1991-10-30 | 1991-10-30 | Object shape 3D measuring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3071271B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5143821A (en) * | 1990-01-23 | 1992-09-01 | Eastman Kodak Company | Color photographic material comprising a 2-alkoxy pyrazolo[1,5-a]benzimidazole color coupler |
JP2009053209A (en) * | 2003-02-06 | 2009-03-12 | Koh Young Technology Inc | Three-dimensional shape measuring apparatus |
JP2014106099A (en) * | 2012-11-27 | 2014-06-09 | Keyence Corp | Shape measurement device, shape measurement method, and shape measurement program |
-
1991
- 1991-10-30 JP JP3285092A patent/JP3071271B2/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5143821A (en) * | 1990-01-23 | 1992-09-01 | Eastman Kodak Company | Color photographic material comprising a 2-alkoxy pyrazolo[1,5-a]benzimidazole color coupler |
JP2009053209A (en) * | 2003-02-06 | 2009-03-12 | Koh Young Technology Inc | Three-dimensional shape measuring apparatus |
US7884949B2 (en) | 2003-02-06 | 2011-02-08 | Koh Young Technology Inc. | Three-dimensional image measuring apparatus |
JP2014106099A (en) * | 2012-11-27 | 2014-06-09 | Keyence Corp | Shape measurement device, shape measurement method, and shape measurement program |
Also Published As
Publication number | Publication date |
---|---|
JP3071271B2 (en) | 2000-07-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0313801B1 (en) | Machine for measuring and mathematically defining the surface of three-dimensional models, particularly for the manufacture of molds with numeric-control machine tools | |
US5661667A (en) | 3D imaging using a laser projector | |
US6671973B2 (en) | Surface texture measuring instrument and a method of adjusting an attitude of a work for the same | |
JP3678915B2 (en) | Non-contact 3D measuring device | |
JPS59501540A (en) | automatic welding system | |
JPH0599617A (en) | Method and device for detecting edge section and hole by optical scanning head | |
JP2000186913A (en) | Method and device for optical detection of contrast line | |
JPH06210475A (en) | Height sensor device for laser robot | |
JP6147022B2 (en) | Spatial accuracy measuring method and spatial accuracy measuring apparatus for machine tool | |
JP2000131032A (en) | Method and device for measuring three-dimensional profile | |
JP3657252B2 (en) | Shape measurement system using workpiece shape measuring device | |
JP3678916B2 (en) | Non-contact 3D measurement method | |
JP3293830B2 (en) | Apparatus and method for measuring and calculating geometric parameters of an object | |
JPH1076384A (en) | Method for detecting focal position of laser beam machine | |
JP2008089393A (en) | Optical device and optical measurement system | |
JP3071271B2 (en) | Object shape 3D measuring device | |
JPH11344329A (en) | Three dimensional shape measuring device | |
JP2755346B2 (en) | Method and apparatus for measuring motion accuracy of automatic machine tool | |
JP2000046529A (en) | Method and device for measuring shape of object with 3-dimensional curves | |
JP2680460B2 (en) | Angle measuring device for bending machine | |
JP4753657B2 (en) | Surface shape measuring apparatus and surface shape measuring method | |
KR20000000530A (en) | Device for measuring vent pipe member for noncontact typed vessel mixed with camera and laser displacement sensor | |
JP2010201581A (en) | Workpiece attitude control device of machine tool | |
JP2577950B2 (en) | Non-contact digitizer | |
CN111947575A (en) | Multifunctional detection device and detection method based on laser triangulation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090526 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 10 Free format text: PAYMENT UNTIL: 20100526 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100526 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110526 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |