JPH05126532A - Method for measuring unit picture element length - Google Patents

Method for measuring unit picture element length

Info

Publication number
JPH05126532A
JPH05126532A JP31957391A JP31957391A JPH05126532A JP H05126532 A JPH05126532 A JP H05126532A JP 31957391 A JP31957391 A JP 31957391A JP 31957391 A JP31957391 A JP 31957391A JP H05126532 A JPH05126532 A JP H05126532A
Authority
JP
Japan
Prior art keywords
visual sensor
coordinate system
sensor
movement
visual
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31957391A
Other languages
Japanese (ja)
Inventor
Tatsuo Sumida
達夫 澄田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Watch Co Ltd
Original Assignee
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co Ltd filed Critical Citizen Watch Co Ltd
Priority to JP31957391A priority Critical patent/JPH05126532A/en
Publication of JPH05126532A publication Critical patent/JPH05126532A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a simple method for measuring the unit picture element length of a visual sensor. CONSTITUTION:By using at least one object 2 having dimensions which come in sight of a visual sensor 1 and a moving means which can move the object 2 and sensor 1 in two orthogonal directions without relatively rotating them against each other, the object 2 and sensor 1 are relatively moved against each other in the two directions by the same moving amount and the positions of the object 2 before and after the movement are calculated from the measured results of the sensor 1 and moved amount. The unit picture element of the sensor 1 can be obtained from a simple calculation formula and, since it is not necessary to make the measured position of the object 2 obtained by means of the sensor 1 to coincide with a known position on a coordinate system in the working space, the degree of freedom the object can be increased in its shape.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、視覚センサを用いて対
象物の測定を行なう場合に、視覚センサのとらえた画像
の座標系で得られた情報から、実際の作業が行なわれる
空間の座標系への変換に必要な座標変換用パラメータの
ひとつである単位画素長を得る方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention, when measuring an object using a visual sensor, uses the information obtained in the coordinate system of the image captured by the visual sensor to determine the coordinates of the space where the actual work is performed. The present invention relates to a method of obtaining a unit pixel length which is one of the parameters for coordinate conversion necessary for conversion into a system.

【0002】[0002]

【従来の技術】産業用ロボットなどの機械装置に取り付
けられた視覚センサにより作業対象の種類判別、良否の
検査、寸法の測定などを行ない、その結果に対応した作
業を選択してロボットの動作を教示する事は広く行なわ
れている。
2. Description of the Related Art A visual sensor attached to a mechanical device such as an industrial robot determines the type of work, inspects whether the work is good, measures dimensions, etc., and selects the work corresponding to the result to operate the robot. Teaching is widely practiced.

【0003】例えば、視覚センサによって対象物の寸法
を測定する場合、まず視覚センサのとらえた画像の座標
系で対象物の寸法を測定し、作業が行なわれる空間の座
標系での寸法へと変換することで対象物の実際の寸法を
知ることができる。
For example, when measuring the size of an object with a visual sensor, the size of the object is first measured in the coordinate system of the image captured by the visual sensor and converted into the size in the coordinate system of the space in which the work is performed. By doing so, the actual size of the object can be known.

【0004】上記のような変換を行なうためには、いく
つかの座標変換用パラメータが必要であり、事前にこの
座標変換用パラメータが得られていなければ視覚センサ
による対象物の測定結果を用いて作業を続けて行なうこ
とはできない。このパラメータには、画像座標系の単位
である垂直方向及び水平方向の1画素の寸法を、実際の
作業空間座標系の単位で表した値である単位画素長があ
る。この単位画素長が得られていれば、視覚センサによ
る対象物の寸法や形状に関する測定結果を作業空間座標
系での値に変換することができる。
In order to perform the above-mentioned conversion, some coordinate conversion parameters are necessary. If the coordinate conversion parameters are not obtained in advance, the measurement result of the object by the visual sensor is used. You cannot continue working. This parameter has a unit pixel length that is a value that represents the size of one pixel in the vertical and horizontal directions, which is the unit of the image coordinate system, in the unit of the actual working space coordinate system. If this unit pixel length is obtained, the measurement result of the size and shape of the object by the visual sensor can be converted into a value in the working space coordinate system.

【0005】単位画素長を得るための従来の方法は、作
業空間座標系で位置や寸法の分かっている対象物を用意
し、その対象物を視覚センサでとらえて画像座標系で測
定した教示用対象物の位置や寸法と、既知である作業空
間座標系での教示用対象物の位置や寸法との関係から算
出している。
The conventional method for obtaining the unit pixel length is for teaching in which an object whose position and dimensions are known in the working space coordinate system is prepared, and the object is grasped by a visual sensor and measured in the image coordinate system. It is calculated from the relationship between the position and size of the object and the position and size of the teaching target in a known work space coordinate system.

【0006】例えば特開昭61−132805号公報に
おいては、視覚センサの視野内の間隔距離が既知の少な
くとも2点に標識の重心が一致するように該標識を位置
決めして前記視覚センサにそのときの標識の重心を算出
させ、次いで、該算出された少なくとも2点の重心位置
と前記既知の距離から前記視覚センサの単位画素長を算
出させる方法が提示されている。
For example, in Japanese Unexamined Patent Publication No. 61-132805, the marker is positioned so that the center of gravity of the marker coincides with at least two known distances in the visual field of the sensor, and the marker is then positioned at that time. There is presented a method of calculating the center of gravity of the sign, and then calculating the unit pixel length of the visual sensor from the calculated center of gravity of at least two points and the known distance.

【0007】[0007]

【発明が解決しようとする課題】しかしながら上述した
従来の方法では、教示用の対象物の形状は、視覚センサ
による測定に基づいて位置を特定できる点(例えば、対
象物画像の重心位置)を機械的に位置決めできる形状で
なければならず、その位置が作業空間座標系で知られて
いなければならない。また、複数の対象物を同時に視覚
センサの視野に入れる必要がある。そのため単位画素長
を得るための作業は複雑で手間のかかるものとなる。
However, in the above-mentioned conventional method, the shape of the object to be taught is defined by a point (for example, the position of the center of gravity of the object image) that can be specified based on the measurement by the visual sensor. Must be a shape that can be positioned mechanically, and its position must be known in the workspace coordinate system. Further, it is necessary to bring a plurality of objects into the visual field of the visual sensor at the same time. Therefore, the work for obtaining the unit pixel length is complicated and troublesome.

【0008】そこで本発明は、対象物の形状の制約、作
業空間座標系での絶対位置への位置合わせを必要とせ
ず、単一の対象物と単純な算出式とにより単位画素長を
得る測定方法を提供する事を目的とする。
Therefore, the present invention does not require the shape of the object and the alignment to the absolute position in the working space coordinate system, and obtains the unit pixel length by a single object and a simple calculation formula. The purpose is to provide a method.

【0009】[0009]

【課題を解決するための手段】上記目的を達成させるた
め、本発明では、視覚センサによる位置の測定が安定し
て行なわれる対象物を少なくとも1個と、視覚センサの
撮像平面上で対象物と視覚センサを相対移動させるため
の移動手段とを用意し、作業空間座標系において互いに
直角な2つの方向に等しい移動量だけ視覚センサと対象
物の間での相対移動を行い、それぞれの場合について移
動前と移動後に視覚センサを用いて画像座標系で測定し
た対象物の位置と移動量との関係から単位画素長を算出
する。
In order to achieve the above object, according to the present invention, at least one object whose position is stably measured by the visual sensor and at least one object on the imaging plane of the visual sensor. A moving means for relatively moving the visual sensor is prepared, and relative movement between the visual sensor and the object is performed by an equal amount of movement in two directions orthogonal to each other in the work space coordinate system, and movement is performed in each case. The unit pixel length is calculated from the relationship between the position and the movement amount of the object measured in the image coordinate system using the visual sensor before and after the movement.

【0010】このとき、対象物は、視覚センサの視野に
おさまるものであって、対象物と視覚センサとの相対移
動によっても視野からはみ出さない寸法である事を条件
とする。また、移動手段は、移動量を作業空間座標系と
同じ単位の値で知ることができる事、互いに直角である
2方向の移動が可能である事、移動の際に相対的な回転
を伴わない事を条件とする。
At this time, the condition is that the object fits within the visual field of the visual sensor, and the dimension is such that it does not protrude from the visual field due to the relative movement of the object and the visual sensor. Further, the moving means can know the moving amount by the value of the same unit as the working space coordinate system, can move in two directions which are orthogonal to each other, and do not involve relative rotation at the time of moving. On the condition.

【0011】[0011]

【実施例】以下本発明による一実施例を図面を用いて説
明する。図1は、作業空間座標系の上方に視覚センサ1
が固定されており、XYステージ3の上面に設置された
対象物2を視覚センサ1で測定している状態を示す斜視
図である。この場合、XYステージ3が視覚センサ1と
対象物2との相対的移動を与える移動手段であり、視覚
センサ1の撮像平面はXYステージ上面である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment according to the present invention will be described below with reference to the drawings. FIG. 1 shows a visual sensor 1 above the workspace coordinate system.
3 is a perspective view showing a state in which the visual sensor 1 is measuring the object 2 that is fixed and is installed on the upper surface of the XY stage 3. FIG. In this case, the XY stage 3 is a moving unit that gives relative movement between the visual sensor 1 and the object 2, and the imaging plane of the visual sensor 1 is the upper surface of the XY stage.

【0012】図2および図3は、本発明の手順にしたが
って、互いに直角である2つの方向に、等しい移動量だ
け視覚センサ1と対象物2との間で相対的移動を行な
い、それぞれの場合について移動前と移動後に視覚セン
サ1で対象物2の重心位置を測定した時の対象物2の位
置の幾何学的関係を示しており、図2はそれぞれの移動
をx軸に投影した場合を示す図であり、図3はy軸に投
影した場合を示す図である。
FIG. 2 and FIG. 3 show that, according to the procedure of the present invention, relative movement between the visual sensor 1 and the object 2 is performed in two directions which are at right angles to each other by an equal amount of movement, in each case. Shows the geometrical relationship of the position of the object 2 when the position of the center of gravity of the object 2 is measured by the visual sensor 1 before and after the movement. FIG. 2 shows the case where each movement is projected on the x-axis. It is a figure which shows, and FIG. 3 is a figure which shows the case where it projects on ay axis.

【0013】互いに直角である対象物の移動Pxおよび
Pyを視覚センサ1はとらえており、その移動量はどち
らとも等しくpである。
The visual sensor 1 captures the movements Px and Py of the object which are at right angles to each other, and the movement amounts are both equal to p.

【数1】 [Equation 1]

【0014】移動PxおよびPyについて、画像座標系
のx軸上への投影をそれぞれVxx,Vxyとする。こ
こで、移動Pxの画像座標系のx軸との傾きをα、x軸
方向の単位画素長をUxとする。
For the movements Px and Py, the projections on the x-axis of the image coordinate system are Vxx and Vxy, respectively. Here, the inclination of the movement Px with respect to the x-axis of the image coordinate system is α, and the unit pixel length in the x-axis direction is Ux.

【数2】 [Equation 2]

【0015】1つの角に関する三角関数の関係を示す式
(4)より、式(2)および式(3)は式(5)の形に
まとめられる。
From equation (4) showing the relationship of trigonometric functions for one angle, equations (2) and (3) can be summarized in the form of equation (5).

【数3】 [Equation 3]

【0016】よって式(6)よりx軸方向の単位画素長
Uxが算出される。また、同様にしてy軸方向の単位画
素長Uyを算出する式(7)が得られる。
Therefore, the unit pixel length Ux in the x-axis direction is calculated from the equation (6). Further, in the same manner, the equation (7) for calculating the unit pixel length Uy in the y-axis direction is obtained.

【数4】 [Equation 4]

【0017】上述の実施例は視覚センサが固定され対象
物のみを移動させた場合の適用例であるが、視覚センサ
と対象物の間で相対的な回転を伴わずに、互いに直角で
ある2つの方向に視覚センサと対象物との間で相対的な
移動が行えるならば、対象物を固定して視覚センサを移
動させる場合や、あるいは作業空間座標系に対して視覚
センサと対象物の両方を移動させる場合など、広く本発
明を適用できる。
The above-described embodiment is an application example in which the visual sensor is fixed and only the object is moved. However, there is no relative rotation between the visual sensor and the object, and they are perpendicular to each other. If the relative movement between the visual sensor and the object in one direction is possible, the object is fixed and the visual sensor is moved, or both the visual sensor and the object with respect to the workspace coordinate system. The present invention can be widely applied to the case of moving the.

【0018】視覚センサでとらえた画像から対象物の画
像座標系での位置を特定するために、上述の実施例では
対象物の画像の重心を用いたが、対象物の特定の頂点、
穴の中心などを用いることもでき、本発明において、対
象物の位置の測定方法は任意である。
In order to specify the position of the object in the image coordinate system from the image captured by the visual sensor, the center of gravity of the image of the object is used in the above-mentioned embodiment, but the specific vertex of the object,
The center of the hole or the like can be used, and in the present invention, the method of measuring the position of the object is arbitrary.

【0019】[0019]

【発明の効果】以上のように本発明によれば、単位画素
長を算出するための式(6)、(7)には作業空間座標
系での対象物の絶対位置は含ず、視覚センサによる対象
物の測定位置と作業空間座標系での既知の位置を一致さ
せる必要が無いため、対象物の形状の自由度が高く位置
合わせの作業も不要である。
As described above, according to the present invention, the equations (6) and (7) for calculating the unit pixel length do not include the absolute position of the object in the workspace coordinate system, and the visual sensor Since it is not necessary to match the measured position of the object with the known position in the work space coordinate system, the degree of freedom of the shape of the object is high and the alignment work is unnecessary.

【0020】また、式(6)、(7)は、視覚センサと
対象物との互いに直角である2つの相対移動の移動量
と、それぞれの移動の前後で測定した画像座標系での対
象物の位置の値のみで構成される単純な算出式であるか
ら、不要な誤差要因が入りにくく信頼製の高い値が得ら
れる。
Equations (6) and (7) are the amounts of movement of two relative movements of the visual sensor and the object at right angles to each other, and the object in the image coordinate system measured before and after each movement. Since this is a simple calculation formula composed only of the values of the positions, it is possible to obtain a highly reliable value in which unnecessary error factors are less likely to enter.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す構成図である。FIG. 1 is a configuration diagram showing an embodiment of the present invention.

【図2】本発明の一実施例における画像座標系を移動す
る対象物の幾何学的な関係を示す説明図である。
FIG. 2 is an explanatory diagram showing a geometrical relationship of an object moving in an image coordinate system according to an embodiment of the present invention.

【図3】本発明の一実施例における画像座標系を移動す
る対象物の幾何学的な関係を示す説明図である。
FIG. 3 is an explanatory diagram showing a geometrical relationship of an object moving in an image coordinate system according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 視覚センサ 2 対象物 3 XYステージ 1 Visual sensor 2 Object 3 XY stage

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 視覚センサで測定され、画像座標系の単
位で得られる対象物の測定結果を実際の作業が行なわれ
る作業空間座標系の単位に変換して用いる場合に必要
な、水平方向及び垂直方向の1画素の寸法を作業空間座
標系の単位で表した値である単位画素長の測定方法にお
いて、視覚センサの視野内に入る寸法と形状であり、視
覚センサによって安定して位置を測定できる少なくとも
1個の対象物と、対象物と視覚センサとの間で相対的な
回転を伴わずに視覚センサの撮像平面上で互いに直角な
2つの方向に相対的な移動を与える事ができ、移動量を
作業空間座標系の単位で知ることのできる移動手段を用
い、前記2つの方向についてそれぞれ等しい移動量で視
覚センサと対象物の間に相対的な移動を行ない、それぞ
れの移動の前後で視覚センサを用いて画像座標系の単位
で測定した対象物の位置と、前記移動量との関係から算
出することを特徴とした単位画素長の測定方法。
1. A horizontal direction, which is necessary when a measurement result of an object measured by a visual sensor and obtained in a unit of an image coordinate system is converted into a unit of a working space coordinate system in which an actual work is performed and used. In the method of measuring the unit pixel length, which is a value that represents the size of one pixel in the vertical direction in units of the working space coordinate system, the size and shape are within the visual field of the visual sensor, and the position can be stably measured by the visual sensor. It is possible to provide relative movement in two directions at right angles to each other on the imaging plane of the visual sensor without any relative rotation between the at least one possible object and the visual sensor. By using a moving means capable of knowing the amount of movement in units of the working space coordinate system, relative movement is performed between the visual sensor and the object with the same amount of movement in each of the two directions, and before and after each movement. Visual A method for measuring a unit pixel length, which is calculated from a relationship between a position of an object measured in a unit of an image coordinate system using a sensor and the movement amount.
JP31957391A 1991-11-08 1991-11-08 Method for measuring unit picture element length Pending JPH05126532A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31957391A JPH05126532A (en) 1991-11-08 1991-11-08 Method for measuring unit picture element length

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31957391A JPH05126532A (en) 1991-11-08 1991-11-08 Method for measuring unit picture element length

Publications (1)

Publication Number Publication Date
JPH05126532A true JPH05126532A (en) 1993-05-21

Family

ID=18111774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31957391A Pending JPH05126532A (en) 1991-11-08 1991-11-08 Method for measuring unit picture element length

Country Status (1)

Country Link
JP (1) JPH05126532A (en)

Similar Documents

Publication Publication Date Title
JPH09105613A (en) Non-contact type three-dimensional measuring device and measuring method
JPH02143309A (en) Operation method and apparatus
JP2509357B2 (en) Work position detector
WO2018043524A1 (en) Robot system, robot system control device, and robot system control method
JPH11166818A (en) Calibrating method and device for three-dimensional shape measuring device
CN109773589B (en) Method, device and equipment for online measurement and machining guidance of workpiece surface
JPS6332306A (en) Non-contact three-dimensional automatic dimension measuring method
JPH1089960A (en) Three-dimensional image measuring method
JP4284765B2 (en) Robot hand position measuring device
JPH08254409A (en) Three-dimensional shape measuring and analyzing method
Ravn et al. Auto-calibration in automation systems using vision
Zhang et al. Space-to-plane decoupling method for six-degree-of-freedom motion measurements
JPH06195472A (en) Image-processing system
JP3696335B2 (en) Method for associating each measurement point of multiple images
JPH05126532A (en) Method for measuring unit picture element length
JP2567923B2 (en) Distance measurement method
JP2005186193A (en) Calibration method and three-dimensional position measuring method for robot
Mosnier et al. A New Method for Projector Calibration Based on Visual Servoing.
JPH04269194A (en) Plane measuring method
JPH07139918A (en) Method for measuring central position/radius of cylinder
JPWO2021111613A1 (en) 3D map creation device, 3D map creation method, and 3D map creation program
JPH07113535B2 (en) Surface inclination measuring device
JP2661118B2 (en) Conversion method of object coordinates and visual coordinates using image processing device
JP2626780B2 (en) 3D image measurement method by segment correspondence
JPH0835828A (en) Calibration method of three-dimensional measuring apparatus