JPH05126304A - Device to monitor attachment of scale to heat exchanger - Google Patents

Device to monitor attachment of scale to heat exchanger

Info

Publication number
JPH05126304A
JPH05126304A JP32005491A JP32005491A JPH05126304A JP H05126304 A JPH05126304 A JP H05126304A JP 32005491 A JP32005491 A JP 32005491A JP 32005491 A JP32005491 A JP 32005491A JP H05126304 A JPH05126304 A JP H05126304A
Authority
JP
Japan
Prior art keywords
heat exchange
scale
feed water
temperature
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32005491A
Other languages
Japanese (ja)
Other versions
JP2675703B2 (en
Inventor
Michio Watanabe
邊 通 夫 渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP32005491A priority Critical patent/JP2675703B2/en
Publication of JPH05126304A publication Critical patent/JPH05126304A/en
Application granted granted Critical
Publication of JP2675703B2 publication Critical patent/JP2675703B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To carry out an elaborate scale removal by judging whether or not scale is much attached particularly near a plurality of heat exchanging tubes in a supply water heater, etc. CONSTITUTION:Respective output signals of process measurement sections 44, 45-1-45-n, 46, 47, 48 at supply water inlet and outlet, extraction steam inlet, and drain outlet and inlet are inputted to a performance operation section 49, and there operation is carried out in order to evaluate the heat exchanging performance for each group of heat exchanging tubes 31. The output signals of the performance operation section 49 as the results of the calculations are inputted to a judgement section 51. To the judgement section 51 the output signal of a pressure difference operation section 43 and also the load signals 50 of an electric power plant, etc., are inputted, and from the judgement section 51 the result 52 of scale skin formation judgement is outputted. And the spots where scale attaches are judged by this. With this arrangement it is possible to carry out an especially elaborate scale removal work for the heat exchanging tubes 31 near the spot where scale attaches.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の目的】[Object of the Invention]

【産業上の利用分野】本発明は熱交換器スケール付着監
視装置に係り、特に発電プラントの復水又は給水系統等
に設置される給水加熱器等の熱交換器の熱交換用チュー
ブの内面,外面あるいは整流筒等へのスケール付着の有
無を監視する装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat exchanger scale adhesion monitor, and more particularly to an inner surface of a heat exchange tube of a heat exchanger such as a feed water heater installed in a condensate of a power plant or a water supply system, The present invention relates to a device for monitoring the presence or absence of scale adhered to the outer surface or the straightening cylinder.

【0002】[0002]

【従来の技術】発電プラントの復水又は給水系統に設置
される給水加熱器等熱交換器のスケール付着の有無を監
視する装置として、特願平2−120682号「熱交換
器スケール付着監視装置」が提案されている。この従来
の技術は、各種のプロセス計測部と、差圧算出部と、性
能演算部と判定部とを備え、熱交換器の入口と出口にお
ける給水圧力の差圧及び熱交換器の熱交換性能の両者を
監視することにより、スケールの付着場所を判定するよ
うにしたものである。
2. Description of the Related Art Japanese Patent Application No. 2-120682 "Heat Exchanger Scale Adhesion Monitoring Device" is a device for monitoring the presence or absence of scale adhesion on a heat exchanger such as a feed water heater installed in a condensate of a power plant or a water supply system. Is proposed. This conventional technique includes various process measurement units, a differential pressure calculation unit, a performance calculation unit, and a determination unit, and the differential pressure of the feed water pressure at the inlet and outlet of the heat exchanger and the heat exchange performance of the heat exchanger. By monitoring both of these, the place where the scale adheres is determined.

【0003】[0003]

【発明が解決しようとする課題】上記従来技術によれ
ば、スケール付着の有無が熱交換用チューブの内面、外
面、整流筒部のいずれかの判断は可能である。さらに、
スケール付着の有無が前述の熱交換用チューブの内面か
外面か、あるいは整流筒部かの判断ばかりでなく、熱交
換用チューブの入口部、出口部又は中間部のおよそどの
あたりに付着しているかまですなわち、給水加熱器内の
ドレン冷却部又は過熱低温部又は凝縮部の内のどの近傍
の熱交換用チューブのスケールが付着しているかまで判
断することができる。
According to the above-mentioned prior art, it is possible to determine whether the scale is attached to the inner surface, the outer surface, or the straightening tube portion of the heat exchange tube. further,
Not only whether the scale has adhered to the inner or outer surface of the heat exchange tube or the straightening tube section, but also where the scale adheres to the inlet, outlet or middle section of the heat exchange tube. In other words, it is possible to determine up to which of the drain cooling section, the superheat low temperature section, and the condensing section in the feed water heater the scale of the heat exchange tube is attached.

【0004】しかしながら、熱交換器には非常に多数の
熱交換用チューブが設置されているが、従来の方法によ
ってはこれらの多数ある熱交換用チューブの内のおよそ
どの熱交換用チューブに特にスケール皮膜が多く付着し
ているかまでは、判断できなかった。しかしながら、熱
交換用チューブに付着したスケール皮膜の取り除き作業
を実施する場合には多数ある熱交換用チューブの内の中
心部又は周辺部又は、中間部のおよそどのあたりに設置
された熱交換用チューブに特にスケール皮膜が多く付着
しているかまで判れば、その付近の熱交換用チューブを
特に入念にスケール皮膜の取り除き作業を実施できるの
で効果的である。
However, although a large number of heat exchange tubes are installed in the heat exchanger, according to the conventional method, approximately any of these many heat exchange tubes is particularly scaled. It was not possible to judge whether or not a large amount of film was attached. However, when removing the scale film adhering to the heat exchange tube, the heat exchange tube installed in the central part or the peripheral part of the many heat exchange tubes, or in the middle part. It is effective to know how much scale film is adhered to, because the heat exchange tube in the vicinity can be particularly carefully removed to remove the scale film.

【0005】そこで、本発明の目的は上記従来技術が有
する問題点を解消し、給水加熱器内の多数ある熱交換用
チューブの内の中心部又は周辺部又は中間部のおよそど
のあたりに設置された熱交換用チューブに特にスケール
皮膜が多く付着しているかまでを、監視できるようにし
た熱交換器スケール付着監視装置を提供することにあ
る。
Therefore, the object of the present invention is to solve the above-mentioned problems of the prior art, and to install the heat exchanger tubes at a central portion, a peripheral portion or an intermediate portion of a large number of heat exchange tubes in a feed water heater. Another object of the present invention is to provide a heat exchanger scale adhesion monitor capable of monitoring whether or not a large amount of scale film adheres to the heat exchange tube.

【0006】[0006]

【発明の構成】[Constitution of the invention]

【課題を解決するための手段】上記目的を達成するため
に、本発明の熱交換器スケール付着監視装置は、基本的
にはグループに区分された複数本の熱交換用チューブの
各区分における各種のプロセス計測部と差圧算出部と性
能演算部と、判定部とを備え、熱交換器の入口と出口に
おける給水圧力の差圧及び熱交換器の熱交換性能の両者
を監視して、スケール付着の有無及び、スケール付着箇
所が熱交換用チューブの内面か、外面か又は前記熱交換
用チューブ以外の例えば整流筒等の給水流路部かの判定
を行なえる様にしたものである。さらに、本発明におい
ては、熱交換器に設置された多数の熱交換用チューブを
便宜的に、いくつかのグループに区分し、その各グルー
プ毎に熱交換性能を監視するための各種のプロセス計測
部を設けて、性能演算部において、熱交換用チューブの
各グループ毎の熱交換性能を演算し、監視する様にした
ものである。
In order to achieve the above object, the heat exchanger scale adhesion monitoring apparatus of the present invention is basically a variety of heat exchanger tubes divided into groups. The process measuring section, the differential pressure calculating section, the performance calculating section, and the determining section are provided to monitor both the differential pressure of the feed water pressure at the inlet and outlet of the heat exchanger and the heat exchange performance of the heat exchanger, The presence / absence of adhesion and the scale adhesion location can be determined as to whether it is the inner surface or the outer surface of the heat exchange tube or the water supply flow path part such as a flow straightening tube other than the heat exchange tube. Further, in the present invention, a large number of heat exchange tubes installed in the heat exchanger are conveniently divided into several groups, and various process measurements for monitoring the heat exchange performance for each group. A unit is provided, and the performance calculation unit calculates and monitors the heat exchange performance of each group of heat exchange tubes.

【0007】次に本発明の基本的構成を図1を参照して
説明する。図1において、給水加熱器の給水入口と出口
との差圧を監視するために、給水入口部23には給水入
口圧力計測部41が、また給水出口部27には給水出口
圧力計測部42がそれぞれ取付けられており、これらの
計測部41,42の出力信号は差圧算出部43に導かれ
る。なお、入口側水室25及び出口側水室26に近いと
ころでは給水の流れに乱れがあるため、入口側水室及び
出口側水室に近ければ近いほど給水圧入口圧力計測部4
1及び給水出口圧力計測部42の圧力は脈動が大きくな
る。そこで、給水入口圧力計測部41及び給水出口圧力
計測部42は脈動を小さく計測できるように、入口側水
室25及び出口側水室26から十分離れた位置に設置さ
れる。
Next, the basic structure of the present invention will be described with reference to FIG. In FIG. 1, in order to monitor the differential pressure between the water supply inlet and the water outlet of the water supply heater, a water supply inlet pressure measuring unit 41 is provided at the water supply inlet unit 23, and a water supply outlet pressure measuring unit 42 is provided at the water supply outlet unit 27. They are attached respectively, and the output signals of these measuring units 41 and 42 are guided to the differential pressure calculating unit 43. Since there is turbulence in the flow of water supply near the inlet-side water chamber 25 and the outlet-side water chamber 26, the closer to the inlet-side water chamber and the outlet-side water chamber, the closer to the water-supply pressure inlet pressure measuring unit 4
1 and the pressure of the water supply outlet pressure measuring unit 42 has large pulsation. Therefore, the water supply inlet pressure measuring unit 41 and the water supply outlet pressure measuring unit 42 are installed at positions sufficiently separated from the inlet side water chamber 25 and the outlet side water chamber 26 so that the pulsation can be measured small.

【0008】一方、給水加熱器の熱交換性能を監視する
ために給水入口部23には給水入口プロセス計測部44
が、出口側水室26の熱交換用チューブ31の出口部に
複数の給水出口プロセス計測部45−1,……45−n
が、抽気入口部28には抽気蒸気入口プロセス計測部4
6が、ドレン出口部29にはドレン出口プロセス計測部
47が、またドレン入口部36にはドレン入口プロセス
計測部48がそれぞれ取付けられている。なお、各給水
出口プロセス計測部45−1,……45−nは多数の熱
交換用チューブの各グループ毎の平均的な状態値が計測
できるような計測点に取付けるのが好ましい。これらの
プロセス計測部44〜48の出力信号は性能演算部49
に入力され、ここで熱交換用チューブの各グループ毎に
熱交換性能を評価するための演算が行われ、その結果と
しての性能演算部49の出力信号は判定部51に入力さ
れる。判定部51には、差圧算出部43の出力信号と、
発電プラント等の負荷信号50も入力され、判定部51
からはスケール皮膜生成判定結果52が出力される。
On the other hand, in order to monitor the heat exchange performance of the feed water heater, the feed water inlet process measuring unit 44 is provided at the feed water inlet 23.
However, at the outlet of the heat exchange tube 31 of the outlet side water chamber 26, a plurality of water supply outlet process measuring units 45-1, ... 45-n are provided.
However, the extraction steam inlet process 28 is connected to the extraction steam inlet process 28.
6, a drain outlet process measuring unit 47 is attached to the drain outlet 29, and a drain inlet process measuring unit 48 is attached to the drain inlet 36. It should be noted that each of the water supply outlet process measurement units 45-1, ... 45-n is preferably attached to a measurement point where an average state value of each group of a large number of heat exchange tubes can be measured. The output signals of these process measurement units 44 to 48 are the performance calculation unit 49.
The calculation signal for evaluating the heat exchange performance is performed for each group of heat exchange tubes, and the resulting output signal of the performance calculation unit 49 is input to the determination unit 51. The determination unit 51 includes an output signal of the differential pressure calculation unit 43,
The load signal 50 of the power plant or the like is also input, and the determination unit 51
Outputs a scale film formation determination result 52.

【0009】前記判定部51には給水差圧値算出結果お
よび熱交換器の熱交換用チューブの各グループ毎の熱交
換性能評価演算結果の他、発電プラント等の負荷信号又
はこれに代る信号として熱交換器に流入する給水流量信
号50が入力され、ここで給水差圧値及び熱交換性能評
価演算結果にその時の負荷又は給水流量の値による補正
を加えた後、これらの同一時点における両者の値を用い
て図2の判定ロジックによりスケール皮膜が熱交換器の
どの部位に過大な厚さに生成したか、あるいは熱交換用
チューブのどのグループのものに過大な厚さに生成した
かを判定し、その結果を判定部51から出力する。
The determination unit 51 supplies the load water differential pressure value calculation result and the heat exchange performance evaluation calculation result for each group of heat exchange tubes of the heat exchanger, as well as a load signal of the power plant or a signal in place of this. The feed water flow rate signal 50 flowing into the heat exchanger is input as the feed water differential pressure value and the heat exchange performance evaluation calculation result are corrected by the load or the feed water flow rate value at that time. 2 is used to determine in which part of the heat exchanger the scale film is formed in an excessive thickness, or in which group of heat exchange tubes is formed in an excessive thickness by the decision logic of FIG. The determination unit 51 outputs the result of the determination.

【0010】多数ある熱交換用チューブへのスケール付
着の状況は、必ずしも均一ではなく、実際の火力発電プ
ラントにおける熱交換器の一例においても外周部の特に
抽気蒸気が流入する近傍の熱交換用チューブに特にスケ
ール付着が多いもの、又は、中心部に特に多いもの、
又、熱交換用チューブ全数にほぼ均一に付着しているも
の等、発電プラントにより、又は、熱交換器の設置条件
種類等により、スケール付着状況に種々の特徴が見られ
た。そこで本発明においては、多数ある熱交換用チュー
ブを便宜的かつ経験的にスケール付着状況に同一の特徴
を持つと思われる熱交換用チューブ毎にいくつかのグル
ープに分け、各グループ毎に熱交換された給水が十分混
合される前のプロセス計測値を各給水出口プロセス計測
部45−01〜45−nにより計測する。
The state of scale adhesion to a large number of heat exchange tubes is not always uniform, and even in an example of a heat exchanger in an actual thermal power plant, the heat exchange tubes in the outer peripheral portion, particularly in the vicinity of where the extracted steam flows in. Especially with a lot of scale adherence, or especially in the center,
In addition, various characteristics were observed in the scale adhesion condition depending on the power generation plant or the kind of installation conditions of the heat exchanger, such as the ones that are almost uniformly adhered to all the heat exchange tubes. Therefore, in the present invention, a large number of heat exchange tubes are conveniently and empirically divided into several groups for each heat exchange tube that are considered to have the same characteristics in the scale adhesion state, and heat exchange is performed for each group. The process measured values before the supplied water is sufficiently mixed are measured by the respective water supply outlet process measuring units 45-01 to 45-n.

【0011】なお、ここで前述の通り、熱交換器へ流入
する給水、抽気蒸気又ドレンは、十分混合された均一な
状態であるため、給水入口プロセス計測部44、抽気蒸
気入口プロセス計測部46、ドレン入口プロセス計測部
48による計測値は、平均値を示している。一方、熱交
換器から流出するドレンについては一例として温度に着
目すると熱交換性能が高い熱交換用チューブ近傍のもの
は、比較的温度が低く、熱交換性能が低い熱交換用チュ
ーブ近傍のものは比較的温度が高いと言うように局所的
には、ドレンの温度は不均一であるが、ドレン出口部2
9に流れてくるまでに十分混合され、均一な温度になっ
ているので、ドレン出口プロセス計測部47による計測
値は平均値を示している。
As described above, since the feed water, the extraction steam or the drain flowing into the heat exchanger is in a sufficiently mixed and uniform state, the feed water inlet process measuring section 44 and the extraction steam inlet process measuring section 46. The value measured by the drain inlet process measuring unit 48 is an average value. On the other hand, regarding the drain that flows out from the heat exchanger, focusing on the temperature as an example, the one near the heat exchange tube with high heat exchange performance has a relatively low temperature and the one near the heat exchange tube with low heat exchange performance. Although the temperature of the drain is locally non-uniform as the temperature is relatively high, the drain outlet 2
Since it is sufficiently mixed and has a uniform temperature by the time it flows to 9, the measured value by the drain outlet process measuring section 47 shows an average value.

【0012】又、熱交換用チューブから流出する給水に
ついて、一例として温度に着目すると、熱交換性能が高
いものから流出する給水温度は比較的高く、熱交換性能
が低いものから流出する給水温度は比較的低い。そこで
これらの計測結果を用いて、性能演算部49において
は、各グループ毎に熱交換用チューブの熱交換性能を評
価するための演算を行なう。そしてその結果を用いて判
定部51において、熱交換器のどの部位に過大な厚さに
生成したかを判定するだけでなく、熱交換用チューブの
どのグループのものに特に過大な厚さに生成したかまで
判定できる。
Regarding the feed water flowing out from the heat exchange tube, focusing on the temperature as an example, the feed water temperature flowing out from the one having a high heat exchange performance is relatively high, and the feed water temperature flowing out from the one having a low heat exchange performance is Relatively low. Therefore, using these measurement results, the performance calculation unit 49 performs calculation for evaluating the heat exchange performance of the heat exchange tubes for each group. The determination unit 51 uses the result to determine not only in which part of the heat exchanger the excessive thickness is generated, but also in which group of the heat exchange tubes the excessive thickness is generated. You can judge up to what you did.

【0013】[0013]

【実施例】次に、上述した本発明の第1実施例の、より
具体的な構成例と作用を図3乃至図5を参照して説明す
る。図3は、図1に示した構成ブロック図の詳細図であ
る。図において、給水入口圧力計測部41の出力信号P
1 および給水出口圧力計測部42の出力信号P2 は減算
部55によって構成される差圧算出部43に入力され、
その出力信号ΔPは判定部51の減算部59−3に入力
される。給水入口プロセス計測部44として給水入口温
度検出部44−1を、また、ドレン出口プロセス計測部
47としてドレン出口温度検出部47−1を用い、これ
らの出力信号ΔT2 は判定部51の減算部59−2に入
力される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, a more specific structural example and operation of the above-described first embodiment of the present invention will be described with reference to FIGS. FIG. 3 is a detailed diagram of the configuration block diagram shown in FIG. In the figure, the output signal P of the water supply inlet pressure measuring unit 41
1 and the output signal P 2 of the water supply outlet pressure measurement unit 42 are input to the differential pressure calculation unit 43 configured by the subtraction unit 55,
The output signal ΔP is input to the subtraction unit 59-3 of the determination unit 51. The feed water inlet temperature detecting unit 44-1 is used as the feed water inlet process measuring unit 44, and the drain outlet temperature detecting unit 47-1 is used as the drain outlet process measuring unit 47. These output signals ΔT 2 are subtracted by the subtracting unit of the determining unit 51. 59-2 is input.

【0014】また、図3に示した例は、熱交換用チュー
ブを6つのグループに分けた給水加熱器に本発明を適用
した一例であって抽気蒸気入口プロセス計測部46とし
て抽気蒸気入口給水加熱器器内圧力検出部46−2を用
い、その出力信号P3 が性能演算部49の飽和温度(t
1 )演算部56に入力され、その出力信号t1 が減算部
57−1及び57−11〜57−16に入力される。給
水出口プロセス計測部45として、給水出口温度検出部
45−01〜45−06を用い、その出力信号t2 及び
21〜t26も減算部57−1及び57−11〜57−1
6に入力される。この減算部57−1,57−11〜5
7−16の出力信号ΔT1 ,ΔT11〜ΔT16は判定部5
1の減算部59−1,59−11〜59−16に入力さ
れる。発電プラントの負荷信号(又、給水加熱器への給
水流量信号)50(L)は判定部51のΔT1L,Δt
1L1 〜ΔT1L6 規準値算出部58−1及び58−11〜
58−16に入力され、これらの出力信号ΔT1L,ΔT
1L1 〜ΔT1L6 も減算部59−1,59−11〜59−
16,にそれぞれ入力される。
Further, the example shown in FIG. 3 is an example in which the present invention is applied to a feed water heater in which heat exchange tubes are divided into six groups, and the extraction steam inlet process heating unit 46 is used as the extraction steam inlet process water heating unit. The output signal P 3 from the internal pressure detector 46-2 is used to determine the saturation temperature (t
1 ) It is input to the calculation unit 56, and its output signal t 1 is input to the subtraction units 57-1 and 57-11 to 57-16. As the water supply outlet process measuring unit 45, the water supply outlet temperature detecting units 45-01 to 45-06 are used, and their output signals t 2 and t 21 to t 26 are also subtracting units 57-1 and 57-11 to 57-1.
6 is input. This subtraction unit 57-1, 57-11 to 5
The output signals ΔT 1 and ΔT 11 to ΔT 16 of 7-16 are sent to the determination unit 5.
1 is input to the subtraction units 59-1, 59-11 to 59-16. The load signal (or the feed water flow rate signal to the feed water heater) 50 (L) of the power plant is ΔT 1L , Δt of the determination unit 51.
1L1 to ΔT 1L6 reference value calculation units 58-1 and 58-11
58-16, and these output signals ΔT 1L , ΔT
1L1 to ΔT 1L6 are also subtraction units 59-1, 59-11 to 59-
16, respectively.

【0015】また減算部59−1,59−11〜59−
16の出力信号A1,A11〜A16はそれぞれに対応した
警報設定部69−1〜69−3,69−11〜69−3
1,69−12〜69−32,……及び69−16〜6
9−36に入力され、その結果ON−OFFの出力信号
1 〜a3 ,a11〜a31,a12〜a32,……a16〜a36
が判定ロジック部70に入力される。一方、警報設定部
69−4〜69−6及び69−7〜69−9からは判定
ロジック部70に対し、b1 〜b3 及びc1 〜c3 が入
力される。判定ロジック部70では図4の判定ロジック
により、スケール皮膜が、どの部位に又、熱交換用チュ
ーブのどのグループのものに過大な厚さに生成したかを
判定し、その判定結果52を判定部51の出力信号とし
て出力する。
Further, subtraction units 59-1, 59-11 to 59-
The 16 output signals A 1 , A 11 to A 16 correspond to the alarm setting units 69-1 to 69-3 and 69-11 to 69-3, respectively.
1, 69-12 to 69-32, ... and 69-16 to 6
9-36, and as a result, ON-OFF output signals a 1 to a 3 , a 11 to a 31 , a 12 to a 32 , ... A 16 to a 36
Is input to the determination logic unit 70. On the other hand, the alarm setting units 69-4 to 69-6 and 69-7 to 69-9 input b 1 to b 3 and c 1 to c 3 to the determination logic unit 70. The judgment logic unit 70 judges, by the judgment logic of FIG. 4, in which part and in which group of the heat exchange tubes the scale film is formed with an excessive thickness, and the judgment result 52 is judged. It outputs as an output signal of 51.

【0016】次に上記実施例の作用を説明する。給水加
熱器の給水入口部と出口部との差圧は前述したとおり、
入口側圧力信号P1 と出口側圧力信号P2 との差圧を検
出することにより監視する。又、給水加熱器の熱交換性
能を監視する一方法としては、「抽気蒸気入口における
給水加熱器器内圧力の飽和温度と給水出口温度との差」
及び「ドレン出口温度と給水入口温度との差」の両者を
監視し、これが規定値以上変化した場合に、熱交換性能
が低下したものと見なす方法を用いている。「抽気蒸気
入口における給水加熱器器内圧力」、「ドレン出口温
度」及び「給水入口温度」は、十分に混合しあった平均
値的なものを用いているが、本実施例においては、さら
に前述の様に「給水出口温度」については、熱交換様チ
ューブの各グループ毎の給水出口温度を用いている。
Next, the operation of the above embodiment will be described. As mentioned above, the pressure difference between the inlet and outlet of the feed water heater is
Monitoring is performed by detecting the differential pressure between the inlet side pressure signal P 1 and the outlet side pressure signal P 2 . Further, as one method of monitoring the heat exchange performance of the feed water heater, "the difference between the saturation temperature of the pressure inside the feed water heater at the extraction steam inlet and the feed water outlet temperature"
And "difference between drain outlet temperature and feedwater inlet temperature" are both monitored, and when the difference exceeds a specified value, it is considered that the heat exchange performance is deteriorated. The “feed water heater internal pressure at the extraction steam inlet”, the “drain outlet temperature” and the “feed water inlet temperature” are average values that are sufficiently mixed, but in the present embodiment, further As described above, the “water supply outlet temperature” uses the water supply outlet temperature of each group of heat exchange-like tubes.

【0017】ところで、熱交換性能がそれぞれ異なる個
々の熱交換用チューブ毎に考えた場合又は、各グループ
毎に考えた場合には、給水流量が同一であれば当然の事
ながら、熱交換性能が高い熱交換用チューブについて
は、そのチューブ内の給水温度の上昇分は大きく、一方
そのチューブのまわりの抽気蒸気及びドレン温度の下降
分も大きいはずである。又反面熱交換性能が低い熱交換
用チューブについては、そのチューブ内の給水温度の上
昇分は小さく、一方そのチューブのまわりの抽気蒸気及
びドレン温度の下降分も小さいはずである。そこで、本
来ならば個々の又は、各グループ毎の熱交換用チューブ
毎の熱交換性能を監視するためには、それぞれのチュー
ブ毎にまわりの抽気蒸気及びドレン温度及びチューブへ
の給水入口温度及び流量も計測しなければならない訳で
ある。
By the way, when considering heat exchange tubes having different heat exchange performances, or considering each group, it is natural that the heat exchange performances are the same if the feed water flow rate is the same. For high heat exchange tubes, the rise in feedwater temperature within the tube should be large, while the fall in bleed steam and drain temperatures around the tube should be large. On the other hand, for a heat exchange tube having a low heat exchange performance, the rise of the feed water temperature in the tube should be small, while the fall of the extraction steam and drain temperature around the tube should be small. Therefore, in order to monitor the heat exchange performance of each or each group of heat exchange tubes, the extraction steam and drain temperature around each tube and the feed water inlet temperature and flow rate to each tube should be monitored. It is a translation that must also be measured.

【0018】すなわち、熱交換用チューブの出口給水温
度だけを計測している場合には、例えばチューブ内面に
局部的にスケールが過大に付着すると該当チューブの熱
交換性能はほとんど変化ないが、チューブ内を流れる給
水流量は減少するので出口給水温度は上昇してしまう場
合もある。ところで本実施例においては、抽気蒸気、ド
レン温度、給水入口温度については、平均値的な値を用
い、従って「ドレン出口温度と給水入口温度との差(以
下ΔT2Lと言う)」を監視する。
That is, when only the outlet feed water temperature of the heat exchange tube is measured, for example, if the scale locally adheres to the inner surface of the tube excessively, the heat exchange performance of the tube hardly changes. Since the flow rate of feed water flowing through the outlet decreases, the outlet feed water temperature may rise. By the way, in the present embodiment, average values are used for the extraction steam, the drain temperature, and the feed water inlet temperature, and therefore the “difference between the drain outlet temperature and the feed water inlet temperature (hereinafter referred to as ΔT 2L )” is monitored. ..

【0019】一方「抽気蒸気入口における給水加熱器器
内圧力の飽和温度と給水出口温度との差(以下ΔT1L
びΔT1L1 〜ΔT1L6 と言う)」については熱交換用チ
ューブの各グループ毎のいわゆる便宜的な値をも監視す
る訳である。なおマグネタイトのスケール皮膜が正常な
状態に生成した場合における前述の値すなわち発電プラ
ントの負荷(又は給水加熱器への給水流量)と給水加熱
器のΔT2L及びΔT1L及び熱交換用チューブの各グルー
プ毎のΔT1L1 〜ΔT1L6 との関係を理論的計算結果又
は実機運転データにより予め求めておく。そしてこの関
係式をΔT1L,ΔT1L1 〜ΔT1L6 規準値算出部58−
1,58−11〜58−16およびΔT2L規準値算出部
58−2に記憶させておき、これに負荷信号(又は、給
水加熱器への給水流量信号)50を入力することにより
その負荷におけるΔT1L,ΔT1L1 〜ΔT1L6 ,ΔT2L
を得て、これらの値(規準値)に対して、実測値から算
出したΔT1 ,ΔT11〜ΔT16及びΔT2 がどのくらい
ずれてきたかを監視する方式を採用している。
Meanwhile, "(hereinafter referred to as [Delta] T 1L and ΔT 1L1 ~ΔT 1L6) bleed difference between the saturation temperature and the feed water outlet temperature of the feed water heater vessel pressure at the steam inlet" in each group of a heat exchanger tube for So-called convenient values are also monitored. The above values when the scale film of magnetite is generated in a normal state, that is, the load of the power plant (or the flow rate of feed water to the feed water heater), ΔT 2L and ΔT 1L of the feed water heater, and each group of heat exchange tubes obtained beforehand by theoretical calculations or actual operational data the relationship between ΔT 1L1 ~ΔT 1L6 for each. Then, this relational expression is expressed by ΔT 1L , ΔT 1L1 to ΔT 1L6 reference value calculation unit 58-
1, 58-11 to 58-16 and the ΔT 2L reference value calculation unit 58-2 are stored, and the load signal (or the feed water flow rate signal to the feed water heater) 50 is input to the load signal in the load. ΔT 1L, ΔT 1L1 ~ΔT 1L6, ΔT 2L
Then, with respect to these values (standard values), a method of monitoring how much ΔT 1 , ΔT 11 to ΔT 16 and ΔT 2 calculated from the measured values have come is adopted.

【0020】一方、一般に熱交換用チューブの熱交換性
能は、経時的に高くなる事はなく、一定か又は低くな
る。しかも、給水加熱器のトータル的な性能が低下した
かどうかは、平均値的な値から算出したΔT1 及びΔT
2 により判定しているので便宜的な値が変化したかどう
か(すなわち規準値からのズレが規定値以上になった
事)を監視しても熱交換用チューブの各グループ毎の熱
交換性能の低下を監視できる訳である。以上の判定ロジ
ックを図4に示す。
On the other hand, generally, the heat exchange performance of the heat exchange tube does not increase with time, but remains constant or decreases. Moreover, whether or not the total performance of the feed water heater has deteriorated is determined by ΔT 1 and ΔT calculated from average values.
Since it is judged according to 2, the heat exchange performance of each group of heat exchange tubes can be checked by monitoring whether the convenient value has changed (that is, the deviation from the reference value has exceeded the specified value). The deterioration can be monitored. The above determination logic is shown in FIG.

【0021】又、本実施例においては、図5に示したよ
うに、水室部21の出口側水室26への熱交換用チュー
ブの出口31aを便宜的に6つのグループに分割し、そ
れぞれの出口部の温度を給水出口温度検出部45−01
〜45−06により計測するようにした。又、できるか
ぎり各グループ毎に平均的な温度が計測できるようにす
るために、熱交換用チューブの出口部近傍を各グループ
毎に分割板301で仕切ることにより、給水出口温度検
出部近傍において、他グループどうしの給水は、まざり
にくく、かつ、同グループどうしは、まざりやすい構造
にした。
Further, in the present embodiment, as shown in FIG. 5, the outlets 31a of the heat exchange tubes to the outlet side water chamber 26 of the water chamber portion 21 are conveniently divided into six groups, each of which is divided into six groups. The outlet temperature of the water supply outlet temperature detection unit 45-01
˜45-06. Further, in order to measure the average temperature for each group as much as possible, by partitioning the vicinity of the outlet of the heat exchange tube with the dividing plate 301 for each group, in the vicinity of the water supply outlet temperature detecting unit, The water supply between other groups is difficult to mix, and the water supply between groups is easy to mix.

【0022】なお本実施例において、熱交換用チューブ
を6つのグループに区分したのは、実施例で用いた構造
及び設置状況の場合、例えば、抽気蒸気が流入する近傍
の熱交換用チューブにスケール皮膜が付着しやすい等、
経験的、構造的、設置状況的判断からなるべく類似した
ものを同一グループとして、区分している。又本実施例
においては、判定ロジック部70では図4の判定ロジッ
クを用いて、給水加熱器へのスケール皮膜の過大な厚さ
の付着の有無及びスケール皮膜付着部位の判定ばかりで
なく、どのグループの熱交換用チューブに特にスケール
が付着しているかの判定も行い、その結果を出力する。
In the present embodiment, the heat exchange tubes are divided into six groups in the case of the structure and installation conditions used in the embodiments, for example, the heat exchange tubes in the vicinity of the flow of the extracted steam are scaled. The film is easy to attach, etc.
Items that are as similar as possible based on empirical, structural, and installation judgments are classified as the same group. Further, in this embodiment, the determination logic unit 70 uses the determination logic of FIG. 4 not only to determine whether or not the scale coating is attached to the feed water heater with an excessive thickness and the scale coating deposition site, but also which group. It is also determined whether or not scale is attached to the heat exchange tube, and the result is output.

【0023】上述した本実施例によれば、多数ある熱交
換用チューブにおいて、便宜的にいくつかのグループに
分けた熱交換用チューブの内のどのグループのものに特
にスケール皮膜が過大な厚さに付着しているかまで判定
できるので、熱交換用チューブのスケールの除去のため
の洗浄の際に該当するものを特に重点的に行なえば良
く、効果が大きい。
According to the above-mentioned embodiment, in a large number of heat exchange tubes, whichever of the heat exchange tubes is divided into several groups for convenience, the scale film has an excessively large thickness. Since it is possible to determine whether or not the heat-exchange tube adheres to the heat exchange tube, it is sufficient to give particular attention to the corresponding one when cleaning for removing the scale of the heat exchange tube, and the effect is great.

【0024】次に本発明の他の実施例を図6乃至図10
を参照して説明する。なお熱交換器の熱交換性能を監視
する方法には前述した実施例の他に熱交換用チューブの
熱貫流率Kを監視する方法もあり、この方法に本発明を
適用することもできる。本実施例においては、図6に示
すように、ドレン冷却部、凝縮部、過熱低減部のれぞれ
に分けず、給水加熱器全体に対し、平均的な熱貫流率
を、便宜的に考える手法を採用した。これの構成ブロッ
ク図を図7および図8に示す。 又、本実施例におい
ても、給水加熱器の給水出口温度検出部89とは別に図
3の実施例と同様に水室部21の出口側水室26への熱
交換用チューブの出口31aを便宜的にn個のグループ
に分割し、それぞれの出口部の温度を給水出口温度検出
部89−1〜89−nによっても計測し、その計測結果
89-1〜t89-nを得る。なおこれらの計測結果t89-1
89-nは、平均値的な、給水出口温度検出部89による
計測結果t89とほとんど同一値のものもあり、又t89
り高温のもの、又は、低温のものもある訳である。そし
て、給水加熱器全体の平均値的な、熱貫流率は、t89
びt81,t85,t86及びWf,P等を用いて演算する。
Next, another embodiment of the present invention will be described with reference to FIGS.
Will be described. As a method of monitoring the heat exchange performance of the heat exchanger, there is a method of monitoring the heat transmission coefficient K of the heat exchange tube other than the above-mentioned embodiment, and the present invention can be applied to this method. In the present embodiment, as shown in FIG. 6, the average heat transmission coefficient for the entire feed water heater is considered for convenience without dividing into the drain cooling section, the condensation section, and the superheat reduction section. The method was adopted. A block diagram of this structure is shown in FIGS. 7 and 8. Also in the present embodiment, the outlet 31a of the heat exchange tube to the outlet side water chamber 26 of the water chamber 21 is conveniently provided separately from the water outlet temperature detector 89 of the water heater as in the embodiment of FIG. The temperature of each outlet is also measured by the water supply outlet temperature detectors 89-1 to 89-n , and the measurement results t 89-1 to t 89-n are obtained. Note that these measurement results t 89-1 ~
t 89-n are average values, the some are almost identical value as the measurement result t 89 by the feed water outlet temperature detecting unit 89, and those from the t 89 of high temperature, or a mean that some cold ones. Then, the average heat transfer coefficient of the entire feed water heater is calculated using t 89 and t 81 , t 85 , t 86, Wf, P and the like.

【0025】一方、各グループ毎の熱交換用チューブの
スケール皮膜付着の有無を監視するための熱貫流率の変
化の有無の監視については、t81,t85,t86,Wf,
Pについては平均値的な計測値を用いるが、給水出口温
度については、各グループ毎の熱交換用チューブ出口の
計測結果t89-1〜t89-nのそれぞれの温度があたかも、
給水出口における平均値的な温度と見なして、便宜的な
熱貫流率を演算する。そしてこの値が、給水加熱器が正
常な状態(熱交換用チューブに適度な厚さにスケール皮
膜が付着した状態)における熱貫流率から、どの程度ズ
レたかにより、どのグループの熱交換用チューブにスケ
ール皮膜の付着が異常かを判定する手法を取っている。
なお給水加熱器の給水入口と出口の差圧の監視について
は図3と同一の装置を用いるのでそれらの説明は省略す
る。
On the other hand, regarding the presence / absence of a change in the heat transmission coefficient for observing the presence or absence of the scale film on the heat exchange tubes of each group, t 81 , t 85 , t 86 , Wf,
Although an averaged measured value is used for P, as for the water supply outlet temperature, each temperature of the measurement results t 89-1 to t 89-n of the heat exchange tube outlet for each group is
Considering it as an average temperature at the water supply outlet, a convenient heat transmission coefficient is calculated. And, this value is different from the heat transfer coefficient in the normal state of the feed water heater (the state where the scale film is attached to the heat exchange tube with an appropriate thickness), depending on how much the heat exchange tube belongs to which group of heat exchange tubes. A method is used to determine whether the scale film adhesion is abnormal.
Since the same device as in FIG. 3 is used for monitoring the differential pressure between the inlet and outlet of the feed water heater, the description thereof will be omitted.

【0026】抽気蒸気入口プロセス計測部として温度検
出部81により給水加熱器への抽気蒸気入口温度t81
得る。給水出口プロセス計測部として温度検出部89に
より平均的な温度であるt89を得ると共に出口水室26
への各グループ毎の熱交換用チューブの出口31a近傍
における給水出口温度を給水出口温度検出部89−1〜
89−nにより計測し、t89-1〜t89-nも得る。ドレン
出口プロセス計測部として温度検出部85により給水加
熱器からのドレン出口温度t85を得る。給水入口プロセ
ス計測部として温度検出部86により給水加熱器への給
水入口温度t86を得る。また流量検出部90により給水
加熱器への給水入口流量Wfを得、給水入口圧力検出部
44−2により給水圧力Pを得る。
The temperature detecting unit 81 as the extraction steam inlet process measuring unit obtains the extraction steam inlet temperature t 81 to the feed water heater. As the water supply outlet process measuring unit, the temperature detecting unit 89 obtains t 89 which is an average temperature and the outlet water chamber 26
To the feed water outlet temperature near the outlet 31a of the heat exchange tube for each group to
89-n is also measured to obtain t 89-1 to t 89-n . The temperature detector 85 as the drain outlet process measuring unit obtains the drain outlet temperature t 85 from the feed water heater. Obtaining a feed water inlet temperature t 86 to the feed water heater by the temperature detector 86 as a feed water inlet process measurement unit. Further, the flow rate detector 90 obtains the feed water inlet flow rate Wf to the feed water heater, and the feed water inlet pressure detector 44-2 obtains the feed water pressure P.

【0027】このようにして得た前述の各温度信号等は
性能演算部49に入力される。この場合性能演算部を構
成する減算部95−10には温度信号t81及びt89が入
力され、減算結果ΔT81=t81−t89が出力される。減
算部95−11には、温度信号t81及びt89-1が入力さ
れ減算結果ΔT81.1=t81−t89-1が出力される。減算
部95−12には温度信号t81及びt89-2が入力され、
減算結果ΔT81.2(=t81−t89-2)が出力される。以
下同様にして、減算部95−1nには温度信号t81及び
89-nが入力され減算結果ΔT81-n(=t81−t89-n
が出力される。又減算部95−5には温度信号t85及び
86が入力され減算結果ΔT85(=t85−t86)が出力
される。
The above-mentioned temperature signals and the like thus obtained are input to the performance calculator 49. In this case, the temperature signals t 81 and t 89 are input to the subtraction unit 95-10 that constitutes the performance calculation unit, and the subtraction result ΔT 81 = t 81 −t 89 is output. The temperature signals t 81 and t 89-1 are input to the subtraction unit 95-11, and the subtraction result ΔT 81.1 = t 81 −t 89-1 is output. The temperature signals t 81 and t 89-2 are input to the subtraction unit 95-12,
The subtraction result ΔT 81.2 (= t 81 −t 89-2 ) is output. Similarly, the temperature signals t 81 and t 89-n are input to the subtraction unit 95-1n and the subtraction result ΔT 81-n (= t 81 −t 89-n )
Is output. Further, the temperature signals t 85 and t 86 are input to the subtraction unit 95-5, and the subtraction result ΔT 85 (= t 85 −t 86 ) is output.

【0028】そして以上の出力の内ΔT81及びΔT
85は、対数平均温度差演算部96−40に入力され、対
数平均温度差演算結果ΔTm10=(ΔT81−ΔT85)/
log (ΔT81/ΔT85)が出力される。又ΔT81-1及び
ΔT85が対数平均温度差演算部96−41に入力され、
その演算結果ΔTm11=(ΔT81-1−ΔT85)/log
(ΔT81-1/ΔT85)が出力される。又ΔT81-2及びΔ
85が対数平均温度差演算部96−42に入力され、そ
の演算結果ΔTm12=(ΔT81-2−ΔT85)log (ΔT
81-2/ΔT85)が出力される。以下同様にして、ΔT
81-n及びΔT85が対数平均温度差演算部96−4nに入
力され、その演算結果ΔTm1n=(ΔT81-n−ΔT85
/log (ΔT81-n/ΔT85)が出力される。一方性能演
算部49を構成するエンタルピ演算部97.10〜97
−1n及び97−4に記憶させておき、前述の給水圧力
P及び温度信号t89は、エンタルピ演算部97−10に
入力され、その演算結果としてエンタルピh89が出力さ
れる。
Of the above outputs, ΔT 81 and ΔT
85 is input to the logarithmic average temperature difference calculation unit 96-40, and the logarithmic average temperature difference calculation result ΔTm 10 = (ΔT 81 −ΔT 85 ) /
log (ΔT 81 / ΔT 85 ) is output. Further, ΔT 81-1 and ΔT 85 are input to the logarithmic average temperature difference calculation unit 96-41,
The calculation result ΔTm 11 = (ΔT 81-1 −ΔT 85 ) / log
(ΔT 81-1 / ΔT 85 ) is output. Also ΔT 81-2 and Δ
T 85 is input to the logarithmic average temperature difference calculation unit 96-42, and the calculation result ΔTm 12 = (ΔT 81-2 −ΔT 85 ) log (ΔT
81-2 / ΔT 85 ) is output. Similarly, ΔT
81-n and ΔT 85 are input to the logarithmic average temperature difference calculation unit 96-4n, and the calculation result ΔTm 1n = (ΔT 81-n −ΔT 85 ).
/ Log (ΔT 81-n / ΔT 85 ) is output. On the other hand, the enthalpy computing units 97.10 to 97 that constitute the performance computing unit 49.
-1n and 97-4 are stored, and the water supply pressure P and the temperature signal t 89 described above are input to the enthalpy calculation unit 97-10, and the enthalpy h 89 is output as the calculation result.

【0029】又給水圧力P及び温度信号t89-1はエンタ
ルピ演算部97−11に入力され、その演算結果とし
て、エンタルピh89-1が出力される。又、給水圧力P及
び温度信号t89-2はエンタルピ演算部97−12に入力
され、その演算結果として、エンタルピh89-2が出力さ
れる。以下同様にして、給水圧力P及び温度信号t89-n
は、エンタルピ演算部97−1nに入力され、その演算
結果として、エンタルピh89-nが出力される。又、給水
圧力P及び温度信号t86はエンタルピ演算部97−4に
入力され、その演算結果として、エンタルピh86が出力
される。
The feed water pressure P and the temperature signal t 89-1 are input to the enthalpy calculating unit 97-11, and the enthalpy h 89-1 is output as the calculation result. Further, the feed water pressure P and the temperature signal t 89-2 are input to the enthalpy calculation unit 97-12 , and the enthalpy h 89-2 is output as the calculation result. Similarly, the feed water pressure P and the temperature signal t 89-n
Is input to the enthalpy calculation unit 97-1n, and the enthalpy h 89-n is output as the calculation result. Further, the feed water pressure P and the temperature signal t 86 is input to the enthalpy calculation unit 97-4, as the calculation result, the enthalpy h 86 is output.

【0030】次に前述の給水入口流量Wf及びh89,Δ
Tm10,h86は熱貫流率演算部98−40に入力され、
その演算結果K10=Wf×(h89-1−h86)/(A0 ×
ΔTm10)が出力される。又、Wf,h89-1,ΔT
11,h86は熱貫流率演算部98−41に入力され、そ
の演算結果K11=Wf×(h89-1−h86)/(A0 ×Δ
Tm11)が出力される。又、Wf,h89-2,ΔTm12
86は熱貫流率演算部98−42に入力され、その演算
結果K12=Wf×(h89-2−h86)/(A0 ×ΔT
12)が出力される。以下同様にしてWf,h89-n,Δ
Tm1n,h86は熱貫流率演算部98−4nに入力され、
その演算結果K1n=Wf×(h89-n−h86)/(A0 ×
ΔTm1n)が出力される。なおここでA0 は、給水加熱
器の伝熱面積である。K10は、給水加熱器全体の平均値
的な熱貫流率である。又K11,K12〜K1nは、各グルー
プ毎の熱交換用チューブの便宜的な熱貫流率である。
Next, the above-mentioned feed water inlet flow rate Wf and h 89 , Δ
Tm 10 and h 86 are input to the heat transmission coefficient calculation unit 98-40,
The calculation result K 10 = Wf × (h 89-1 −h 86 ) / (A 0 ×
ΔTm 10 ) is output. Also, Wf, h 89-1 , ΔT
m 11 and h 86 are input to the heat transmission coefficient calculation unit 98-41, and the calculation result K 11 = Wf × (h 89-1 −h 86 ) / (A 0 × Δ
Tm 11 ) is output. Also, Wf, h 89-2 , ΔTm 12 ,
h 86 is input to the heat transmission coefficient calculation unit 98-42, and the calculation result K 12 = Wf × (h 89-2 −h 86 ) / (A 0 × ΔT
m 12 ) is output. Similarly, Wf, h 89-n , Δ
Tm 1n and h 86 are input to the heat transmission coefficient calculation unit 98-4n,
The calculation result K 1n = Wf × (h 89-n −h 86 ) / (A 0 ×
ΔTm 1n ) is output. Here, A 0 is the heat transfer area of the feed water heater. K 10 is the average value of the heat transmission coefficient of the entire feed water heater. Further, K 11 , K 12 to K 1n are convenient heat transmission coefficients of the heat exchange tubes for each group.

【0031】これらの演算結果K10,K11〜K1nは判定
部51を構成する減算部100−40,100−41〜
100−4nのそれぞれに入力される。一方判定部51
のK10L ,K11L 〜K1nL のそれぞれの規準値算出部9
9−40,99−41,99−4nには、給水加熱器が
正常な状態(スケール皮膜が適度な厚さに付着した状
態)における、各負荷(又は給水加熱器へ流入する給水
流量でもよい)に対する熱貫流率K10L ,K11L 〜K
1nL を理論値又は、実機におけるデータ計測等により算
出し、これらの値が記憶されている。そして発電プラン
トの負荷信号50がK10L ,K11L 〜K1nL 規準値算出
部99−40,99−41〜99−4nに入力され、そ
の負荷信号に対応した出力信号K10L ,K11L 〜K1nL
が規準値として、前述の減算部100−40,100−
41〜100−4nに入力される。
These calculation results K 10 , K 11 to K 1n are subtracted by the subtraction units 100-40 and 100-41 which constitute the determination unit 51.
It is input to each of 100-4n. Meanwhile, the determination unit 51
Reference value calculation unit 9 for each of K 10L , K 11L to K 1nL
9-40, 99-41, 99-4n may be the load (or the flow rate of the feed water flowing into the feed water heater) in the normal state of the feed water heater (the state where the scale film adheres to an appropriate thickness). ) Heat transmission coefficient K 10L , K 11L ~ K
1 nL is calculated by theoretical values or data measurement in an actual machine, and these values are stored. Then, the load signal 50 of the power plant is input to the K 10L , K 11L to K 1nL reference value calculation units 99-40, 99-41 to 99-4n, and the output signals K 10L and K 11L to K corresponding to the load signals. 1nL
As a reference value, the subtraction units 100-40, 100-
41 to 100-4n.

【0032】これらの減算結果B40,B41〜B4nのそれ
ぞれは、警報設定部101−10〜101−2nに入力
され、その結果ON−OFFの出力信号d10〜d30,e
11〜en2が得られ、これらのON−OFF信号は判定ロ
ジック部102に入力され、ここで図9の判定ロジック
により、スケール皮膜がどの部位に過大な厚さに生成し
ているかが判定できると同時に熱交換用チューブのどの
グループのものにスケール皮膜が特に過大な厚さに生成
しているかも判定できる。
The subtraction results B 40 , B 41 to B 4n are input to the alarm setting units 101-10 to 101-2n, and as a result, ON-OFF output signals d 10 to d 30 , e.
11 to e n2 is obtained, these ON-OFF signal is input to the decision logic unit 102, by where judgment logic of FIG. 9, it can be determined whether the generated excessive thickness which site scale membrane is At the same time, it is possible to determine in which group of the heat exchange tubes the scale film is formed with a particularly excessive thickness.

【0033】従って、この方法を用いても、本実施例と
同一の効果が得られる。以上の実施例においては、各グ
ループ毎の熱交換用チューブの内のどのグループのもの
にスケール皮膜の付着が特に多いかを判定するのに例え
ば図3の本実施例においては、抽気蒸気入口給水加熱器
器内圧力検出部46−2の出力信号P3 の飽和温度(t
1 )と各グループ毎の熱交換用チューブの給水出口温度
21〜t26のそれぞれとの差を監視する方式を採用し
た。発電プラントの熱交換器の構造及び種類、設置条件
によっては、発電プラントの各負荷と、給水出口温度及
び抽気蒸気入口給水加熱器器内圧力の飽和温度(t1
との関係が、ある一定の比例関係に近いものもある。
Therefore, even if this method is used, the same effect as this embodiment can be obtained. In the above embodiment, in order to determine to which group of the heat exchange tubes of each group the scale film is particularly attached, for example, in the present embodiment of FIG. 3, the extraction steam inlet water supply is used. saturation temperature of the output signal P 3 of the heater vessel pressure detecting unit 46-2 (t
The method of monitoring the difference between 1 ) and each of the water supply outlet temperatures t 21 to t 26 of the heat exchange tubes for each group was adopted. Depending on the structure, type, and installation conditions of the heat exchanger of the power plant, each load of the power plant, the feed water outlet temperature, and the saturation temperature of the extraction steam inlet feed water heater internal pressure (t 1 )
There is also a relationship with and close to a certain proportional relationship.

【0034】このような、熱交換器においては、抽気蒸
気入口給水加熱器器内圧力の飽和温度(t1 )を求めな
いで、単に各グループ毎の熱交換用チューブの給水出口
温度のみを計測し、この計測値を、給水加熱器が正常な
状態(スケール皮膜が全体に適度な厚さに付着した状
態)において発電プラントの同一負荷時に同一計測点で
収集した値とを比較し、両者の差がある規定値以上にな
った場合(ズレの大きさが、規定値以上になった場合)
に該当グループの熱交換用チューブにスケール皮膜の付
着が特に多いと判定しても簡易的に監視が可能であり同
様の効果が得られる。
In such a heat exchanger, the saturation temperature (t 1 ) of the extraction steam inlet feed water heater internal pressure is not obtained, but only the feed water outlet temperature of the heat exchange tubes of each group is measured. However, this measured value is compared with the value collected at the same measurement point when the power plant is under the same load when the feed water heater is in a normal state (the scale film is adhered to an appropriate thickness on the whole). When the difference exceeds the specified value (when the size of the deviation exceeds the specified value)
Even if it is determined that the scale film is particularly adhered to the heat exchange tubes of the corresponding group, it can be easily monitored and the same effect can be obtained.

【0035】すなわち、本変形例を図3を用いて説明す
ると次の通りである。減算部59−11〜59−16へ
の入力信号ΔT11〜ΔT16の代りに温度検出器45−0
1〜45−06の出力信号を入力する。一方ΔT1L1
ΔT1L6 規準値算出部58−11〜58−16には、給
水加熱器が正常な状態におけるΔT1L1 〜ΔT1L6 と発
電プラントの負荷との関係を記憶させておく代りに、給
水加熱器が正常な状態における各グループ毎の熱交換用
チューブ出口における給水出口温度と発電プラントの負
荷との関係を記憶させておく。
That is, this modification will be described below with reference to FIG. The temperature detector 45-0 is used instead of the input signals ΔT 11 to ΔT 16 to the subtraction units 59-11 to 59-16.
Input the output signals of 1 to 45-06. On the other hand, ΔT 1L1 ~
In the ΔT 1L6 reference value calculation units 58-11 to 58-16, instead of storing the relationship between ΔT 1L1 to ΔT 1L6 and the load of the power plant when the feedwater heater is in a normal state, the feedwater heater is normal. In this state, the relationship between the water supply outlet temperature at the heat exchange tube outlet and the load of the power plant for each group is stored.

【0036】この様な構成において発電プラントの負荷
信号50を入力すれば、ΔT1L1 〜ΔT1L6 規準値算出
部58−11〜58−16から発電プラントの該当負荷
に対して各グループ毎に熱交換用チューブ出口における
給水出口温度の規準値が、前述の減算部59−11〜5
9−16に入力され、その結果、各グループ毎に熱交換
用チューブ出口における給水出口温度の実測値が規準値
からどれだけズレたかが監視できる訳である。
If the load signal 50 of the power plant is input in such a configuration, the ΔT 1L1 to ΔT 1L6 reference value calculation units 58-11 to 58-16 perform heat exchange for each group for the corresponding load of the power plant. The reference value of the water supply outlet temperature at the tube outlet for use is the subtraction unit 59-11 to 5-5 described above.
9-16, and as a result, it is possible to monitor how much the measured value of the feed water outlet temperature at the heat exchange tube outlet deviates from the reference value for each group.

【0037】以上の実施例においては、各グループ毎の
熱交換用チューブの内のどれにスケール皮膜の付着が特
に多いかを判定する方法として、図3においては、抽気
蒸気入口給水加熱器器内圧力の飽和温度(t1 )と、各
グループ毎の熱交換用チューブの給水出口温度との差に
ついて、又、図7および図8においては、各グループ毎
の熱交換用チューブについて便宜的に算出した熱貫流率
について、発電プラント等の該当負荷における規準値と
の差が、あらかじめ決めた規定値以上になったかどうか
(ズレが規定値以上になったかどうか)で判定してい
る。ところがこの方法の代りに、各グループ毎の熱交換
用チューブに関するこれらの値と給水加熱器全体の平均
値的な該当する値とを比較して、両者の差が大きいもの
があった場合に該当グループの熱交換器用チューブにス
ケール皮膜の付着が特に過大と判定してもよい。この方
法に関する、判定ロジックの一例を図8の構成要素を用
いて図10に示す。
In the above embodiment, as a method for judging which of the heat exchange tubes of each group the scale film is particularly attached, in FIG. 3, the inside of the extraction steam inlet feed water heater is shown. The difference between the pressure saturation temperature (t 1 ) and the feed water outlet temperature of the heat exchange tubes for each group, and in FIGS. 7 and 8, the heat exchange tubes for each group were calculated for convenience. The heat transmission coefficient is judged by whether the difference from the standard value at the corresponding load of the power plant or the like exceeds a predetermined specified value (whether the deviation exceeds the specified value). However, instead of this method, compare these values for the heat exchange tubes for each group with the corresponding average value of the entire feed water heater, and apply if there is a large difference between the two It may be determined that the scale film is particularly excessively attached to the heat exchanger tube of the group. An example of the decision logic for this method is shown in FIG. 10 using the components of FIG.

【0038】図3の実施例においては、熱交換用チュー
ブの各グループを図5のように区分したが必ずしもこの
様に区分する必要はない。又、グループ数も6つには限
定されない。又、本実施例では、図5の様に各グループ
毎に分割板を設けて分離したが熱交換器の種類、構造
又、設置状況によっては必ずしも分割板を設けなくと
も、各グループ毎の平均値的な給水出口温度を計測でき
る場合もあるので、必ずしも分割板を設ける必要はな
い。
In the embodiment of FIG. 3, the groups of heat exchange tubes are divided as shown in FIG. 5, but it is not always necessary to divide them in this way. Also, the number of groups is not limited to six. Further, in the present embodiment, as shown in FIG. 5, a dividing plate is provided for each group for separation, but the dividing plate may not necessarily be provided depending on the type, structure, or installation condition of the heat exchanger. In some cases, it is possible to measure the value of the outlet temperature of the water supply, so it is not always necessary to provide a dividing plate.

【0039】又、本実施例では、各グループ毎に1個づ
つの給水出口温度検出部を設けたが、各グループ毎に複
数個の給水出口温度検出部を設け各グループ毎の平均値
的な、給水出口温度を演算し、その他を用いて監視して
も同一の効果が得られる。
Further, in the present embodiment, one water supply outlet temperature detecting unit is provided for each group, but a plurality of water supply outlet temperature detecting units is provided for each group and the average value for each group is set. The same effect can be obtained by calculating the water supply outlet temperature and monitoring it using other values.

【0040】[0040]

【発明の効果】以上の説明から明らかなように、本発明
によればスケール皮膜付着の判定の他、熱交換器の多数
ある熱交換用チューブを便宜的にいくつかのグループに
分け、どのグループの熱交換用チューブに特にスケール
皮膜の付着が過大であるかを判定できるようにしたの
で、スケール皮膜取り除き作業の際には、特にその付近
の熱交換用チューブを特に入念に実施でき非常に効果的
である。
As is apparent from the above description, according to the present invention, in addition to the determination of scale film adhesion, heat exchange tubes having a large number of heat exchangers are conveniently divided into several groups. Since it is possible to determine whether the scale film is excessively adhered to the heat exchange tube of, it is possible to perform the heat exchange tube in the vicinity particularly carefully when removing the scale film, which is extremely effective. Target.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による基本構成を示した模式図FIG. 1 is a schematic diagram showing a basic configuration according to the present invention.

【図2】本発明による判定ロジックを示した線図FIG. 2 is a diagram showing a decision logic according to the present invention.

【図3】本発明の一実施例の構成を示すブロック図FIG. 3 is a block diagram showing the configuration of an embodiment of the present invention.

【図4】本発明の一実施例における判定ロジックを示し
た線図
FIG. 4 is a diagram showing a decision logic according to an embodiment of the present invention.

【図5】本発明の一実施例における、給水加熱器の出口
側水室における出口給水温度計測部の構造を示す斜視図
FIG. 5 is a perspective view showing the structure of an outlet feed water temperature measuring unit in the outlet side water chamber of the feed water heater in one embodiment of the present invention.

【図6】給水加熱器内各部における給水、加熱蒸気、飽
和蒸気、ドレンの温度の状態を示す説明図
FIG. 6 is an explanatory view showing the states of the temperature of feed water, heated steam, saturated steam, and drain in each part of the feed water heater.

【図7】本発明の他の実施例による給水加熱器スケール
付着監視装置を示した図
FIG. 7 is a view showing a feed water heater scale adherence monitoring device according to another embodiment of the present invention.

【図8】図7の監視装置の監視回路を示したブロック図FIG. 8 is a block diagram showing a monitoring circuit of the monitoring device of FIG.

【図9】図8による実施例における判定ロジック図FIG. 9 is a decision logic diagram in the embodiment according to FIG.

【図10】判定ロジック図の他の一例を示す図。FIG. 10 is a diagram showing another example of a determination logic diagram.

【符号の説明】[Explanation of symbols]

21 水室部 22 給水加熱器胴 23 給水入口部 24 整流筒 25 給水入口部 26 給水出口部 28 抽気入口部 29 ドレン出口部 31 熱交換用チューブ 36 ドレン出口部 41 給水入口圧力計測部 42 給水出口圧力計測部 44 給水入口プロセス計測部 45 給水出口プロセス計測部 46 抽気蒸気入口プロセス計測部 47 ドレン出口プロセス計測部 48 ドレン入口プロセス計測部 21 Water Chamber Part 22 Water Supply Heater Body 23 Water Supply Inlet 24 Rectifying Tube 25 Water Supply Inlet 26 Water Supply Outlet 28 Extraction Inlet 29 Drain Outlet 31 Heat Exchange Tube 36 Drain Outlet 41 Water Inlet Pressure Measuring Unit 42 Water Outlet Pressure measuring unit 44 Water supply inlet process measuring unit 45 Water supply outlet process measuring unit 46 Extraction steam inlet process measuring unit 47 Drain outlet process measuring unit 48 Drain inlet process measuring unit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】発電プラントに設置される給水加熱器等の
熱交換器を構成する熱交換用チューブの内面、外面ある
いは整流筒等へのスケール付着の有無を監視するための
熱交換器スケール付着監視装置において、 複数のグループに区分された熱交換用チューブの各区分
における発電プラントの復水または給水の温度等のプロ
セス値を計測するプロセス計測部と、熱交換器の入口と
出口における給水圧力の差圧を算出する差圧算出部と、
前記熱交換用チューブの各グループ毎の熱交換性能を演
算する性能演算部と、スケール皮膜生成判定結果を判断
する判定部とを備え、前記判定部は、抽気蒸気入口給水
加熱器の器内圧力検出部の出力信号の飽和温度と各グル
ープ毎の熱交換用チューブの給水出口温度との差から判
定するかまたは各グループ毎の熱交換用チューブの熱貫
流率を算出し、この算出値と発電プラント等の該当負荷
における規準値との差から判定するようにしたことを特
徴とする熱交換器スケール付着監視装置。
1. A heat exchanger scale attachment for monitoring the presence or absence of scale attachment to the inner surface, outer surface of a heat exchange tube that constitutes a heat exchanger such as a feed water heater installed in a power plant, or a flow straightener. In the monitoring device, the process measurement unit that measures the process value such as the condensate or feedwater temperature of the power plant in each section of the heat exchange tubes divided into multiple groups, and the feedwater pressure at the inlet and outlet of the heat exchanger A differential pressure calculation unit for calculating the differential pressure of
The heat exchange tube comprises a performance calculation unit for calculating the heat exchange performance for each group, and a determination unit for determining the scale film formation determination result, wherein the determination unit is the internal pressure of the extraction steam inlet feed water heater. Determine from the difference between the saturation temperature of the output signal of the detection unit and the water supply outlet temperature of the heat exchange tubes for each group, or calculate the heat transmission coefficient of the heat exchange tubes for each group, and use this calculated value and power generation. A heat exchanger scale adhesion monitoring device, characterized in that the judgment is made based on a difference from a reference value at a corresponding load of a plant or the like.
JP32005491A 1991-11-07 1991-11-07 Heat exchanger scale adhesion monitor Expired - Lifetime JP2675703B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32005491A JP2675703B2 (en) 1991-11-07 1991-11-07 Heat exchanger scale adhesion monitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32005491A JP2675703B2 (en) 1991-11-07 1991-11-07 Heat exchanger scale adhesion monitor

Publications (2)

Publication Number Publication Date
JPH05126304A true JPH05126304A (en) 1993-05-21
JP2675703B2 JP2675703B2 (en) 1997-11-12

Family

ID=18117211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32005491A Expired - Lifetime JP2675703B2 (en) 1991-11-07 1991-11-07 Heat exchanger scale adhesion monitor

Country Status (1)

Country Link
JP (1) JP2675703B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016063772A1 (en) * 2014-10-20 2016-04-28 三菱日立パワーシステムズ株式会社 Heat exchanger monitoring device and heat exchanger monitoring method
CN112304133A (en) * 2019-07-30 2021-02-02 山东大学 Mirror symmetry's water head control vibration loop heat pipe

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101467922B1 (en) * 2013-11-26 2014-12-03 한국남동발전 주식회사 Method for early detection of boiler tube plugging

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016063772A1 (en) * 2014-10-20 2016-04-28 三菱日立パワーシステムズ株式会社 Heat exchanger monitoring device and heat exchanger monitoring method
JP2016080286A (en) * 2014-10-20 2016-05-16 三菱日立パワーシステムズ株式会社 Monitoring device of heat exchanger and monitoring method of heat exchanger
CN106662417A (en) * 2014-10-20 2017-05-10 三菱日立电力系统株式会社 Heat exchanger monitoring device and heat exchanger monitoring method
US10527371B2 (en) 2014-10-20 2020-01-07 Mitsubishi Hitachi Power Systems, Ltd. Heat exchanger monitoring device that determines the presence or absence of an anomaly of a heat transfer surface of a heat transfer tube
CN112304133A (en) * 2019-07-30 2021-02-02 山东大学 Mirror symmetry's water head control vibration loop heat pipe
CN112304133B (en) * 2019-07-30 2023-03-28 山东大学 Mirror symmetry's water head control vibration loop heat pipe

Also Published As

Publication number Publication date
JP2675703B2 (en) 1997-11-12

Similar Documents

Publication Publication Date Title
CN105135407B (en) According to the cloud observing and controlling steam generator system of blowdown ratio automatic pollution discharge
US4390058A (en) Method of monitoring condenser performance and system therefor
CN105135406B (en) According to the intelligent monitoring steam generator system of steam water-level dynamic calculation water loss
JP4301085B2 (en) Deterioration diagnosis system for heat source equipment
JP2675703B2 (en) Heat exchanger scale adhesion monitor
CN105241667B (en) Condenser vacuum condition discrimination method based on k M models
JP4026402B2 (en) Cleaning method of heat exchanger
JP3002797B2 (en) Method and apparatus for operating heat exchanger
JPH10281695A (en) Method and apparatus for sensing cleaning time of heat exchanger
Tseng et al. Cooling of roll and strip in steel rolling
JP2002257667A (en) Method and device for abnormality diagnosis of heat transfer member, thermal power plant, and absorption type refrigerator
JPS5747199A (en) Device and method for diagnosis of heat exchanger
Tokarski et al. Mathematical model and measurements of a combi-steamer condensation hood
CN105184043B (en) Condenser heat transfer coefficient computational methods based on single dimensionless number
JP2684239B2 (en) Abnormality diagnosis device for steam-using equipment
JP2003121290A (en) Leakage detector
JP2717716B2 (en) refrigerator
JP2684235B2 (en) Abnormality diagnosis device for steam-using equipment
CN105605549B (en) According to the intelligent monitoring steam generator system of drum Water-quality control blowdown
CN218156260U (en) Device capable of accurately measuring deposition and scaling
CN214335005U (en) Device for measuring flow velocity of high-temperature particles
JP4480906B2 (en) Steam dryness or wetness control device
JPS5834758B2 (en) Condenser performance monitoring method
CN104992066A (en) Condenser heat transfer coefficient calculation method based on two dimensionless numbers
JPH0829027A (en) Troubled state diagnosing device for absorptive cold and hot water apparatus