JPH05125496A - High silicon steel sheet excellent in magnetic property and mechanical property and prepared by means of si cementation method and its production - Google Patents

High silicon steel sheet excellent in magnetic property and mechanical property and prepared by means of si cementation method and its production

Info

Publication number
JPH05125496A
JPH05125496A JP3311547A JP31154791A JPH05125496A JP H05125496 A JPH05125496 A JP H05125496A JP 3311547 A JP3311547 A JP 3311547A JP 31154791 A JP31154791 A JP 31154791A JP H05125496 A JPH05125496 A JP H05125496A
Authority
JP
Japan
Prior art keywords
steel sheet
cooling
silicon steel
less
cooling rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3311547A
Other languages
Japanese (ja)
Other versions
JP2639256B2 (en
Inventor
Hironori Ninomiya
弘憲 二宮
Yasushi Tanaka
靖 田中
Akira Hiura
昭 日裏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP3311547A priority Critical patent/JP2639256B2/en
Publication of JPH05125496A publication Critical patent/JPH05125496A/en
Application granted granted Critical
Publication of JP2639256B2 publication Critical patent/JP2639256B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To provide a high silicon steel sheet excellent in magnetic properties and mechanical properties and its production by means of Si cementation method. CONSTITUTION:The steel sheet is a high silicon steel sheet which contains, by weight, <=0.01% C, 4-7% Si, 0.001-0.01% N, and <=0.01% Al and in which the amount of the nitrides of Si and Al is regulated to <=5ppm. This steel sheet can be produced by applying hot rolling and cold rolling to a slab of low carbon steel with <=4% Si content, subjecting the resulting steel sheet to siliconizing treatment-diffusion heat treatment, and then performing cooling at a cooling rate of >=25 deg.C/sec through the region from 950 to 900 deg.C and at a cooling rate of >=(T-800)/4( deg.C/sec) with respect to sheet temp. T( deg.C) through the region between 900 and 800 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、Si拡散浸透処理法
による磁気特性および機械特性の優れた高珪素鋼板およ
びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high silicon steel sheet excellent in magnetic properties and mechanical properties by a Si diffusion infiltration treatment method and a method for producing the same.

【0002】[0002]

【従来の技術】Si:4wt%以上を含有する高珪素鋼
板を製造する方法として、所謂Si拡散浸透処理法が知
られている。この方法は低珪素鋼を溶製して圧延により
薄板化した後、表面からSiを浸透させることにより高
珪素鋼板を製造するもので、この方法によれば、加工性
の問題を生じることなく高珪素鋼板を得ることができ
る。この拡散浸透処理法による高珪素鋼板の製造は、一
般に、普通鋼板または低珪素鋼板(通常、Si:4wt
%以下)に対して、SiCl4等のSi化合物とN2との
混合ガス雰囲気中でSiの浸透処理(浸珪処理)を施し
て鋼板の表面からSiを浸透させ、次いでSi化合物を
含まない雰囲気中で鋼板に対して拡散熱処理を施して、
浸透させたSiを鋼板中に拡散させ、Siを均質に含有
させた高珪素鋼板を得るものである。
2. Description of the Related Art A so-called Si diffusion permeation treatment method is known as a method for producing a high silicon steel sheet containing Si: 4 wt% or more. According to this method, a low silicon steel is melted and thinned by rolling, and then a high silicon steel sheet is manufactured by infiltrating Si from the surface. According to this method, a high silicon steel sheet is produced without causing a problem of workability. A silicon steel plate can be obtained. The production of high silicon steel sheets by this diffusion infiltration treatment method is generally performed by using ordinary steel sheets or low silicon steel sheets (usually Si: 4 wt.
% Or less) is subjected to Si infiltration treatment (siliconizing treatment) in a mixed gas atmosphere of Si compound such as SiCl 4 and N 2 to infiltrate Si from the surface of the steel sheet, and then Si compound is not included. Diffusion heat treatment is applied to the steel sheet in the atmosphere,
The infiltrated Si is diffused in the steel sheet to obtain a high-silicon steel sheet in which Si is uniformly contained.

【0003】[0003]

【発明が解決しようとする課題】しかし、このような高
珪素鋼板の製造プロセスでは、鋼中に含まれるSiやA
lが窒化し、この析出物が鋼板の磁気特性を劣化させる
という問題がある。このような窒化物による磁気特性の
劣化の問題は、従来製造されているSi:4wt%以下
の珪素鋼板でも知られているが、Si量が4wt%を超
えるような高珪素鋼板では、Si:4wt%以下の鋼板
に較べ熱処理時の窒化の問題が特に著しく、加えて、S
i拡散浸透処理法では通常の焼鈍とは異なり鋼板表面が
活性となるため、窒化がより生じ易いという問題があ
る。
However, in the manufacturing process of such a high silicon steel sheet, Si and A contained in steel are contained.
There is a problem that l is nitrided and this precipitate deteriorates the magnetic properties of the steel sheet. Such a problem of deterioration of magnetic properties due to nitrides is also known in a conventionally manufactured Si: 4 wt% or less silicon steel sheet, but in a high silicon steel sheet having an Si content of 4 wt% or less, Si: The problem of nitriding during heat treatment is particularly significant compared to steel sheets of 4 wt% or less.
The i diffusion diffusion treatment method has a problem that nitriding is more likely to occur because the surface of the steel sheet is activated unlike ordinary annealing.

【0004】しかし、従来Si拡散浸透処理法に関し
て、その処理中に生じるSi、Alの窒化物やこれと磁
気特性との関係、さらには、その生成抑制方法について
具体的に検討された例はない。
However, with respect to the conventional Si diffusion and infiltration treatment method, there have been no concrete studies on the nitrides of Si and Al generated during the treatment, the relationship between the nitride and the magnetic characteristics, and the method of suppressing the generation thereof. ..

【0005】一般に、SiやAlを含む電磁鋼板は、熱
延後のコイル焼鈍時に吸窒や内部酸化により磁気特性の
劣化を起こすことが知られており、この対策として従
来、 焼鈍雰囲気にAr等の不活性ガスを用いる技術 焼鈍雰囲気の露点を上げ、雰囲気を弱酸化性とする技
術 素材となる鋼中に窒化防止剤として働くSb,Snな
どの元素を添加する技術(特公昭58−31366号) 熱延コイルの焼鈍前にコイル表面にNH3合成の負媒
体として働くSe,Te,Sbなどの化合物を塗布して
おく技術(特公昭62−24506号、特開平1−14
2029号、特開平3−36242号) 等が知られている。
It is generally known that magnetic steel sheets containing Si and Al deteriorate in magnetic properties due to nitrogen absorption and internal oxidation during coil annealing after hot rolling. As a countermeasure against this, conventionally, Ar or the like is used in an annealing atmosphere. Technology of using an inert gas for increasing the dew point of the annealing atmosphere and making the atmosphere weakly oxidizing Technology for adding elements such as Sb and Sn that act as nitriding inhibitors to the raw material steel (Japanese Patent Publication No. 58-31366) ) acting on the coil surface before annealing the hot-rolled coil as a negative medium of the NH 3 synthesizing Se, Te, technology to be coated with compounds such as Sb (Japanese Patent Publication No. 62-24506, JP-1-14
No. 2029, JP-A-3-36242) and the like are known.

【0006】しかしながら、上記のような技術はいずれ
もSiが4wt%以下の通常の電磁鋼板に関するもので
あり、本発明が対象とするような高珪素鋼板に対しては
十分な効果が得られない。これは、上述したようにSi
量が4wt%を超えるような高珪素鋼板では窒化の問題
が特に著しく、また、拡散浸透処理法では鋼板表面が活
性となるため、窒化がより生じ易いことによるものであ
る。
However, all of the above-mentioned techniques relate to ordinary electromagnetic steel sheets containing Si in an amount of 4 wt% or less, and sufficient effects cannot be obtained for high-silicon steel sheets targeted by the present invention. .. This is due to the Si
This is because the problem of nitriding is particularly remarkable in a high silicon steel sheet whose amount exceeds 4 wt%, and the surface of the steel sheet becomes active in the diffusion and infiltration treatment method, so that nitriding is more likely to occur.

【0007】また、上記従来技術のうち、の方法
は、添加元素や工程の増加によりコスト高となるという
欠点ある。また、の方法を拡散浸透処理に適用した場
合、酸化が起こり浸珪反応が進まなくなるとともに、鋼
板の表面が汚れるという問題があり、好ましくない。
Further, among the above-mentioned conventional techniques, the method (1) has a drawback that the cost is increased due to the increase of additional elements and steps. Further, when the method (1) is applied to the diffusion and infiltration treatment, there is a problem that oxidation occurs, the siliconizing reaction does not proceed, and the surface of the steel sheet becomes dirty, which is not preferable.

【0008】さらに、本発明者らが検討したところによ
れば、特に、拡散浸透処理法による高珪素鋼板の製造で
は、処理後の冷却時に窒化物が析出し易く、これが磁気
特性や機械特性に悪影響を及ぼすことが判った。
Further, according to the studies made by the present inventors, particularly in the production of a high silicon steel sheet by the diffusion and infiltration treatment method, nitrides are likely to precipitate during cooling after the treatment, which results in a decrease in magnetic properties and mechanical properties. It turned out to have an adverse effect.

【0009】本発明はこのような問題に鑑みなされたも
ので、拡散浸透処理法により製造される高珪素鋼板に関
し、窒化物量と磁気特性および機械特性との関係を明ら
かにし、これらの特性に優れた高珪素鋼板を提供するこ
とを第1の目的とする。また、本発明は、製造過程にお
いてSiやAlの窒化を適切に防止し、上記高珪素鋼板
を容易に製造することができる方法の提供を第2の目的
とする。
The present invention has been made in view of the above problems, and relates to a high silicon steel sheet manufactured by a diffusion infiltration treatment method, clarifies the relationship between the amount of nitride and magnetic characteristics and mechanical characteristics, and is excellent in these characteristics. It is a first object to provide a high silicon steel sheet having the above properties. A second object of the present invention is to provide a method capable of appropriately preventing nitriding of Si or Al in the manufacturing process and easily manufacturing the high silicon steel sheet.

【0010】[0010]

【課題を解決するための手段】本発明者らは、拡散浸透
処理法により製造される高珪素鋼板に関して、その窒化
物量と磁気特性および機械特性との関係、さらには、S
iやAlの窒化を効果的に防止できる方法についてを検
討した結果、Si拡散浸透処理後のSiおよびAlの窒
化物量を5ppm以下とすることにより、優れた磁気特
性と機械特性が得られること、さらに、このような高珪
素鋼板の製造において、Si拡散浸透処理を施した後の
薄板の冷却時に冷却速度を適切にコントロールすること
によりSi,Alの窒化が防止でき、これらの窒化物量
が5ppm以下の高珪素鋼板を製造できることを見出し
た。この発明は以上のような知見に基づきなされたもの
で、その構成は以下の通りである。
DISCLOSURE OF THE INVENTION The inventors of the present invention have made a relationship between the amount of nitrides and magnetic properties and mechanical properties of a high silicon steel sheet produced by a diffusion infiltration treatment method, and further,
As a result of studying a method capable of effectively preventing nitriding of i and Al, it is possible to obtain excellent magnetic characteristics and mechanical characteristics by setting the amount of nitrides of Si and Al after Si diffusion and penetration treatment to 5 ppm or less. Further, in the production of such a high silicon steel sheet, nitriding of Si and Al can be prevented by appropriately controlling the cooling rate at the time of cooling the thin plate after the Si diffusion and infiltration treatment, and the amount of these nitrides is 5 ppm or less. It was found that the high silicon steel sheet of The present invention was made on the basis of the above findings, and its constitution is as follows.

【0011】(1) C:0.01wt%以下、Si:
4〜7wt%、N:0.001〜0.01wt%、A
l:0.01wt%以下を含有し、Si、Alの窒化物
量が5ppm以下であるSi拡散浸透処理法により製造
される磁気特性および機械特性の優れた高珪素鋼板。
(1) C: 0.01 wt% or less, Si:
4-7 wt%, N: 0.001-0.01 wt%, A
1: A high silicon steel sheet containing 0.01 wt% or less and having an amount of Si and Al nitrides of 5 ppm or less and manufactured by a Si diffusion infiltration treatment method having excellent magnetic properties and mechanical properties.

【0012】(2) C:0.01wt%以下、Si:
4wt%以下、N:0.001〜0.01wt%、A
l:0.01wt%以下を含有する低炭素鋼スラブを熱
間圧延、冷間圧延して薄板とした後、Si化合物とN2
との混合ガス雰囲気中にて浸珪処理し、次いでSiを板
厚方向に拡散させる拡散熱処理を施した後、950℃か
ら900℃までを25℃/秒以上の冷却速度で冷却し、
900℃以降800℃までを、t≧(T−800)/4
[但し、T:板温(℃)]を満足する冷却速度t(℃)
で冷却することを特徴とする上記(1)に記載された磁
気特性および機械特性の優れた高珪素鋼板の製造方法。
(2) C: 0.01 wt% or less, Si:
4 wt% or less, N: 0.001 to 0.01 wt%, A
l: A low carbon steel slab containing 0.01 wt% or less is hot-rolled and cold-rolled into a thin plate, and then a Si compound and N 2 are added.
After a siliconizing treatment in a mixed gas atmosphere with and then a diffusion heat treatment for diffusing Si in the plate thickness direction, cooling from 950 ° C to 900 ° C at a cooling rate of 25 ° C / sec or more,
From 900 ℃ to 800 ℃, t ≧ (T-800) / 4
Cooling rate t (° C) that satisfies [T: plate temperature (° C)]
The method for producing a high-silicon steel sheet having excellent magnetic properties and mechanical properties according to the above (1), characterized in that

【0013】[0013]

【作用】拡散浸透処理により製造される本発明の鋼板
は、鋼板中のSiおよびAlの窒化物の量を5ppm以
下に限定する。この窒化物はSi34、AlNであり、
磁気特性や機械特性に悪影響を及ぼす。
In the steel sheet of the present invention produced by the diffusion and infiltration treatment, the amount of Si and Al nitrides in the steel sheet is limited to 5 ppm or less. This nitride is Si 3 N 4 , AlN,
It adversely affects magnetic properties and mechanical properties.

【0014】表1に示す化学組成を有するスラブを、常
法により熱間圧延、冷間圧延して板厚0.3mmの薄板
とした。この薄板を、炉内温度1200℃、10%Si
Cl4−残部N2の雰囲気の炉に装入し、Si量が板厚方
向平均で6.5wt%まで富化されるようSiの浸透処
理を施し、引き続き同温度で拡散熱処理を施した後、1
200℃からの冷却過程において、図1に示すように9
50℃から800℃までの冷却速度を、ガスジェット冷
却条件を変えることによって1〜50℃/秒と種々変化
させた冷却パターンで冷却を行ない、得られた高珪素鋼
板から溶媒抽出法により析出物抽出を行い、析出物の同
定定量を行なった。同定の結果では、析出物はそのほと
んどがSi34であり、一部AlNが観察された。各冷
却速度に対応する析出物(Si34およびAlN)の濃
度を図2に示す。また、これら抽出残渣について電子顕
微鏡を用いて鋼中析出物の観察を行なった。この観察に
よる析出物の拡大写真を図3に示す。
A slab having the chemical composition shown in Table 1 was hot-rolled and cold-rolled by a conventional method to obtain a thin plate having a plate thickness of 0.3 mm. This thin plate is heated to a temperature of 1200 ° C, 10% Si
After charging into a furnace with an atmosphere of Cl 4 -remainder N 2 and performing Si infiltration treatment so that the Si amount is enriched to 6.5 wt% on average in the plate thickness direction, followed by diffusion heat treatment at the same temperature 1
During the cooling process from 200 ° C., as shown in FIG.
The cooling rate from 50 ° C. to 800 ° C. was varied by changing the gas jet cooling conditions to 1 to 50 ° C./sec to perform cooling with a cooling pattern, and precipitates were obtained from the obtained high silicon steel sheet by a solvent extraction method. Extraction was performed to identify and quantify the precipitate. As a result of the identification, most of the precipitates were Si 3 N 4 , and AlN was partially observed. The concentration of precipitates (Si 3 N 4 and AlN) corresponding to each cooling rate is shown in FIG. Further, the precipitates in the steel were observed for these extraction residues using an electron microscope. An enlarged photograph of the precipitate obtained by this observation is shown in FIG.

【0015】また、上記各鋼板から内径10mm、外径
20mmのリング試料およびJIS5号引張試験片を切
り出し、直流磁気特性および機械特性を測定した。その
結果を図4および図5に示す。これらの図から明らかな
ように、最大透磁率および破断強度は析出物濃度と高い
相関を有し、析出物(Si34、AlN)の濃度が5p
pm以下であれば優れた特性を示す。
Further, a ring sample having an inner diameter of 10 mm and an outer diameter of 20 mm and a JIS No. 5 tensile test piece were cut out from each of the above steel plates, and the DC magnetic characteristics and mechanical characteristics were measured. The results are shown in FIGS. 4 and 5. As is clear from these figures, the maximum magnetic permeability and the breaking strength have a high correlation with the precipitate concentration, and the precipitate (Si 3 N 4 , AlN) concentration is 5 p
If it is pm or less, excellent properties are exhibited.

【0016】次に、鋼板の成分組成の限定理由について
説明する。 Si:圧延加工性の問題から拡散浸透処理前の素材のS
i量は4wt%以下とし、また拡散浸透処理後の最終的
なSi量は、高珪素鋼板を得るという目的から4wt%
をその下限とし、また、磁気特性の面から7wt%をそ
の上限とする。 Al:拡散浸透処理法によってSiを添加する場合に
は、Alは磁気特性に悪影響を及ぼすボイド発生の原因
となることから極力低減することが望ましく、このため
0.01wt%をその上限とする。
Next, the reasons for limiting the composition of the steel sheet will be described. Si: S of the material before the diffusion and penetration treatment due to the problem of rolling workability
The amount of i is 4 wt% or less, and the final amount of Si after the diffusion and penetration treatment is 4 wt% for the purpose of obtaining a high silicon steel sheet.
Is its lower limit, and from the viewpoint of magnetic properties, its upper limit is 7 wt%. Al: When Si is added by the diffusion and permeation treatment method, Al causes the generation of voids that adversely affect the magnetic properties, and therefore it is desirable to reduce it as much as possible. Therefore, the upper limit is 0.01 wt%.

【0017】C:初透磁率、最大透磁率を低下させ、H
c、鉄損を増大させる元素であり、できる限り低減する
ことが望ましいが、0.01wt%以下に抑えることに
よりこの影響を抑制できることから、0.01wt%を
その上限とする。 N:本発明の高珪素鋼板は通常の珪素鋼を素材とするも
のであるため、そのN量は0.001〜0.01wt%
の範囲である。
C: The initial permeability and the maximum permeability are lowered, and H
c, an element that increases iron loss, and it is desirable to reduce it as much as possible. However, since the effect can be suppressed by suppressing it to 0.01 wt% or less, 0.01 wt% is the upper limit. N: Since the high-silicon steel sheet of the present invention is made of ordinary silicon steel, its N content is 0.001 to 0.01 wt%.
The range is.

【0018】また他の元素については、以下のように規
定することが好ましい。 O:Oは鉄損を高め、SiO2のようなコロイド状微粒
子として存在する場合には、磁気特性を著しく劣化させ
る元素として知られている。また、OはCとどの程度共
存するかによっても磁気特性を変化させる。特に、O含
有量とC含有量とがほぼ同等の場合、鉄損値が最小にな
ることも知られており、上記C含有量の適正範囲と同様
に、O含有量も0.01wt%以下とすることが好まし
い。
The other elements are preferably specified as follows. O: O is known as an element that enhances iron loss and, when present as colloidal fine particles such as SiO 2 , significantly deteriorates magnetic properties. Further, O changes the magnetic characteristics depending on the degree of coexistence with C. In particular, it is also known that the iron loss value becomes the minimum when the O content and the C content are substantially equal to each other, and the O content is 0.01 wt% or less as in the appropriate range of the C content. It is preferable that

【0019】S:時効の原因となるため極力少なくする
ことが好ましく、0.01wt%以下とすることが好ま
しい。 P:Pは酸素による磁性劣化を軽減し、鉄損を減少させ
る作用があるが、多量に添加すると、熱間での加工性を
劣化させるというという問題があり、その上限を0.0
2wt%とすることが好ましい。なお、Hは鋼板を著し
く脆くさせるため、高圧下でHを含有させる等、積極的
な含有は避けることが好ましい(通常ppmレベル以
下)。
S: Since it causes aging, it is preferable to reduce it as much as possible, preferably 0.01 wt% or less. P: P has a function of reducing magnetic deterioration due to oxygen and reducing iron loss, but when added in a large amount, there is a problem that workability during hot deterioration is deteriorated.
It is preferably set to 2 wt%. In addition, since H makes the steel sheet extremely brittle, it is preferable to avoid aggressive inclusion such as inclusion of H under high pressure (usually below ppm level).

【0020】Mn:熱間圧延時の展延性の改善と、脱硫
作用および規則−不規則変態における磁性改善効果を考
慮し、Mnは0.5wt%以下の範囲で添加することが
できる。 V:若干のVを添加することにより、Hcが改善される
ことが知られている。すなわち、Vは適量添加すること
により、結晶粒の発達が促進され、磁性が改善される。
このため、Vは0.05wt%を上限として添加するこ
とができる。
Mn: Mn can be added within a range of 0.5 wt% or less in consideration of the improvement of the spreadability during hot rolling and the effect of improving the desulfurization action and the magnetism in the ordered-disordered transformation. V: It is known that Hc is improved by adding a slight amount of V. That is, by adding an appropriate amount of V, the development of crystal grains is promoted and the magnetism is improved.
Therefore, V can be added with an upper limit of 0.05 wt%.

【0021】Ti:若干のTiを添加することでVと同
様の効果を期待でき、このため、0.05wt%を上限
として添加することができる。 Ca:Caは多量に含有すると透磁率を低下させるた
め、0.3wt%以下とすることが好ましい。 Be、As:若干の磁気特性改善効果が期待でき、それ
ぞれ0.1wt%を上限として添加することができる。
Ti: By adding a small amount of Ti, the same effect as V can be expected, so that 0.05 wt% can be added up to the upper limit. Ca: When Ca is contained in a large amount, the magnetic permeability decreases, so it is preferably 0.3 wt% or less. Be, As: A slight magnetic property improving effect can be expected, and 0.1 wt% of each can be added as an upper limit.

【0022】Cu:0.7wt%程度までは、磁性を大
きく劣化させることはないが、0.7wt%を超えて含
有すると鉄損が増大する。このため、Cuは0.7wt
%以下、好ましくは0.1wt%以下とすることが望ま
しい。 Cr:鉄損を増大させる傾向があり、0.03wt%以
下とすることが好ましい。 Ni:磁気特性を著しく悪化させるため、極力低減させ
ることが好ましく、0.01wt%以下とすることが好
ましい。
Cu: Up to about 0.7 wt%, the magnetism is not significantly deteriorated, but if it exceeds 0.7 wt%, iron loss increases. Therefore, Cu is 0.7 wt
% Or less, preferably 0.1 wt% or less. Cr: Iron loss tends to increase, and it is preferably 0.03 wt% or less. Ni: The magnetic properties are significantly deteriorated, so it is preferable to reduce Ni as much as possible, and it is preferable to set it to 0.01 wt% or less.

【0023】次に、上記鋼板の製造方法について説明す
る。本発明の製造法では、Si:4wt%以下の低炭素
鋼スラブを熱間圧延、冷間圧延して薄板とし、この薄板
にSi化合物(SiCl4,SiH4,SiHCl3等)
とN2との混合ガス雰囲気中で浸珪処理してSiを添加
し、次いでSiを板厚方向で均一に拡散させる拡散熱処
理を施すことにより、Si:4〜7wt%の高珪素鋼板
を製造する。このような浸珪処理による高珪素鋼板の製
造では、通常の窒素雰囲気焼鈍と較べて窒化物が析出し
やすい。
Next, a method of manufacturing the above steel sheet will be described. In the production method of the present invention, a low carbon steel slab having Si: 4 wt% or less is hot-rolled or cold-rolled to form a thin plate, and a Si compound (SiCl 4 , SiH 4 , SiHCl 3, etc.) is added to the thin plate.
Si: 4 to 7 wt% high silicon steel sheet is manufactured by performing a siliconizing treatment in a mixed gas atmosphere of N and N 2 to add Si, and then performing a diffusion heat treatment for uniformly diffusing Si in the plate thickness direction. To do. In the production of a high silicon steel sheet by such a siliconizing treatment, nitrides are more likely to be precipitated than in the ordinary annealing in a nitrogen atmosphere.

【0024】先に述べたように、浸珪処理により製造さ
れる高珪素鋼板はその析出物濃度が5ppm以下であれ
ば優れた磁気特性、機械特性を示すが、析出物濃度を5
ppm以下に抑制する方法について検討を加えた結果、
浸珪処理−拡散熱処理を行なった後の冷却過程におい
て、950℃から900℃までを25℃/秒以上の冷却
速度で冷却し、900℃以降800℃までを、t≧(T
−800)/4[但し、T:板温(℃)]を満足する冷
却速度t(℃)で冷却することにより、析出物濃度を5
ppm以下に抑制できることを見い出した。その限定理
由を以下に説明する。
As described above, the high silicon steel sheet produced by the siliconizing treatment shows excellent magnetic properties and mechanical properties if the precipitate concentration is 5 ppm or less.
As a result of examining the method of suppressing below ppm,
In the cooling process after the siliconizing treatment-diffusion heat treatment, cooling is performed from 950 ° C to 900 ° C at a cooling rate of 25 ° C / sec or more, and from 900 ° C to 800 ° C, t ≧ (T
-800) / 4 [however, T: plate temperature (° C)] is cooled at a cooling rate t (° C) satisfying the precipitate concentration of 5
It has been found that it can be suppressed to below ppm. The reason for the limitation will be described below.

【0025】表1に示す化学組成を有するスラブを常法
に従って熱間圧延、冷間圧延して板厚0.3mmの薄板
とした。この薄板を炉内温度1200℃、10%SiC
4−残部N2の雰囲気の炉に装入し、Si量が板厚方向
平均で6.5wt%まで富化されるようにSiの浸透処
理を施し、引き続き同温度で拡散熱処理を施した後、1
200℃からの冷却過程において種々の温度T(℃)ま
で1℃/秒の冷却速度にてガス冷却し、その後氷水中に
焼き入れた。この時の冷却パターンを図6に示す。得ら
れた試料について、電子顕微鏡を用いて鋼中析出物の観
察を行なった。その観察の結果を、急冷開始温度T(氷
水中焼き入れ開始温度)で整理したものを図7に示す。
A slab having the chemical composition shown in Table 1 was hot-rolled and cold-rolled according to a conventional method to obtain a thin plate having a plate thickness of 0.3 mm. This thin plate is heated at a furnace temperature of 1200 ° C, 10% SiC
It was charged into a furnace having an atmosphere of l 4 -balance N 2 , and was subjected to Si infiltration treatment so that the Si content was enriched to 6.5 wt% on average in the plate thickness direction, and subsequently subjected to diffusion heat treatment at the same temperature. After 1
In the cooling process from 200 ° C., the gas was cooled to various temperatures T (° C.) at a cooling rate of 1 ° C./sec, and then quenched in ice water. The cooling pattern at this time is shown in FIG. The obtained sample was observed for precipitates in steel using an electron microscope. FIG. 7 shows the results of the observations arranged by the quenching start temperature T (quenching start temperature in ice water).

【0026】この結果から見ると急冷開始温度が950
℃超では析出物はほとんど観察されないが、急冷開始温
度が950℃以下となると、図8の電子顕微鏡拡大写真
に示すような針状の形態の析出物が観察される。この針
状形態の析出物は、抽出レプリカ法により成分分析を行
なった結果、そのほとんどがSi34であり、一部Al
Nであると同定された。以上の現象は、Si34或いは
AlNの鋼中における溶解度に関係するものであり、9
50℃以下においてはSi、AlとNは析出物の形態を
とった方が安定であるためと考えられる。
From this result, the quenching start temperature is 950.
Almost no precipitate is observed above ℃, but when the quenching start temperature is 950 ° C. or lower, a needle-shaped precipitate as shown in the electron micrograph of FIG. 8 is observed. As a result of the component analysis by the extraction replica method, most of the needle-shaped precipitates were Si 3 N 4 and part of them was Al.
Was identified as N. The above phenomenon is related to the solubility of Si 3 N 4 or AlN in steel.
It is considered that Si, Al and N are more stable in the form of precipitates at 50 ° C. or lower.

【0027】このように950℃以下の領域においては
窒化物の析出が熱力学的に生じることが判ったが、本発
明者らはこのような析出がSi、Al或いはNの鋼中に
おける拡散があってはじめて生じるものであることに着
目し、冷却速度を速くすることにより、析出サイトへS
i、Al、Nが拡散して析出物を形成する前に室温まで
の冷却を終了させてしまうことを考えた。図9に、12
00℃でのSi浸透処理−拡散熱処理後に種々の温度T
(℃)まで50℃/秒の冷却速度でガスジェット冷却を
行ない、引き続き1℃/秒の冷却速度で室温まで冷却し
て得られた試料について、その鋼中析出物の観察結果を
示す。この時の冷却パターンは図10に示す通りであ
る。この結果から、800℃まで急冷すれば、それ以下
の温度においては徐冷しても析出物は析出しないことが
判る。
As described above, it has been found that precipitation of nitrides occurs thermodynamically in the region of 950 ° C. or lower, but the present inventors have found that such precipitation causes diffusion of Si, Al or N in steel. Focusing on the fact that it occurs for the first time, by increasing the cooling rate, S
It was considered that cooling to room temperature would be terminated before i, Al, and N diffused to form a precipitate. In FIG. 9, 12
Various temperature T after Si infiltration treatment-diffusion heat treatment at 00 ° C
The results of observing the precipitates in the steel are shown for the sample obtained by performing the gas jet cooling to (° C.) at a cooling rate of 50 ° C./sec and subsequently cooling it to room temperature at a cooling rate of 1 ° C./sec. The cooling pattern at this time is as shown in FIG. From this result, it can be seen that if the material is rapidly cooled to 800 ° C., no precipitate is formed even at slower temperatures than that.

【0028】以上の結果から950℃超と800℃未満
の温度領域では、1℃/秒という遅い冷却速度で冷却し
ても析出物は生成しないこと、また、950℃から80
0℃の範囲においても、50℃/秒の冷却速度で急冷す
れば析出物が析出しないことが判った。さらに、本発明
者らはこの冷却条件について詳細に検討を行ない、95
0℃〜800℃の範囲において冷却速度を種々変化さ
せ、同じように析出物の存在の有無を確認した。この時
の冷却パターンを図11に、また析出物観察結果を図1
2に示す。この結果から判断すると、950℃〜800
℃の範囲では25℃/秒以上の冷却速度で冷却すれば析
出物は析出しないことが判る。さらに、図13に示すよ
うな冷却パターンで冷却したものについて、同様の析出
物観察を行なった。その結果を図14に示す。この結
果、950℃から850℃までを25℃/秒で冷却し、
それ以降800℃までを15℃/秒以上で冷却すれば、
析出物生成が抑制されることが判った。
From the above results, in the temperature range above 950 ° C. and below 800 ° C., no precipitate is formed even when cooled at a slow cooling rate of 1 ° C./sec.
Even in the range of 0 ° C., it was found that precipitates did not deposit if rapidly cooled at a cooling rate of 50 ° C./sec. Furthermore, the present inventors conducted a detailed study on this cooling condition, and
The presence or absence of precipitates was similarly confirmed by varying the cooling rate in the range of 0 ° C to 800 ° C. FIG. 11 shows the cooling pattern at this time, and FIG.
2 shows. Judging from this result, 950 ° C to 800
It can be seen that in the range of ° C, precipitates do not deposit if cooled at a cooling rate of 25 ° C / sec or more. Further, the same precipitates were observed for those cooled in the cooling pattern as shown in FIG. The result is shown in FIG. As a result, cooling from 950 ° C to 850 ° C at 25 ° C / sec,
After that, if you cool up to 800 ℃ at 15 ℃ / sec or more,
It was found that the formation of precipitates was suppressed.

【0029】以上のような結果に基づき、各温度領域に
おいてどのような冷却速度で冷却を行なえば析出物が析
出しないかを示したのが図15である。これによれば1
200℃から冷却する際に、図15に示した析出領域を
通過するような冷却条件であればSi34あるいはAl
Nが析出する。逆に、冷却を図15に示した固溶領域内
で行えば析出物の生成は抑制される。すなわち冷却時の
板温T(℃)に対して 、 1200℃≧T>950℃ :冷却速度t>0
〔℃/秒〕 950℃≧T≧900℃ :冷却速度t≧25〔℃/
秒〕 900℃>T≧800℃ :冷却速度t≧(T−80
0)/4〔℃/秒〕 800℃>T≧室温 :冷却速度t>0〔℃/
秒〕 を満足する冷却速度tで冷却することにより、析出物の
生成を抑制することができる。
Based on the above results, FIG. 15 shows at what cooling rate cooling is performed in each temperature region to prevent precipitation. According to this 1
When cooling from 200 ° C., if the cooling condition is such that the precipitation region shown in FIG. 15 is passed, Si 3 N 4 or Al
N precipitates. On the contrary, if cooling is performed within the solid solution region shown in FIG. 15, the formation of precipitates is suppressed. That is, with respect to the plate temperature T (° C.) during cooling, 1200 ° C. ≧ T> 950 ° C .: cooling rate t> 0
[° C./sec] 950 ° C. ≧ T ≧ 900 ° C .: Cooling rate t ≧ 25 [° C. /
Second] 900 ° C.> T ≧ 800 ° C .: Cooling rate t ≧ (T-80
0) / 4 [° C./sec] 800 ° C.> T ≧ room temperature: cooling rate t> 0 [° C. /
Second], it is possible to suppress the formation of precipitates by cooling at a cooling rate t that satisfies

【0030】本発明において、冷却速度をコントロール
することは極めて重要な要素となるが、このように冷却
速度をコントロールする方法としては、上述したガスジ
ェット冷却の他に、鋼板を冷却したロールに接触させ、
そのロールの温度とロールに対する鋼板の接触弧長を調
整する方法等がある。
In the present invention, controlling the cooling rate is an extremely important element. As such a method for controlling the cooling rate, in addition to the gas jet cooling described above, the steel sheet is contacted with a cooled roll. Let
There is a method of adjusting the temperature of the roll and the contact arc length of the steel sheet with respect to the roll.

【0031】[0031]

【実施例】【Example】

〔実施例1〕表2の組成を有するスラブを熱間圧延、冷
間圧延して板厚0.3mmの薄板とし、この薄板を炉内
温度1200℃、6%SiCl4−残部N2の雰囲気の炉
に装入し、拡散浸透処理法によってSiを板厚方向平均
で4wt%まで富化し、引き続き同温度で拡散熱処理を
施した後、冷却速度を種々変化させて室温まで冷却し、
高珪素鋼板を製造した。これらの鋼板について、化学分
析によりSi量、窒化物の析出量を測定した。また、磁
気特性として交流鉄損特性(W10/50)および機械特性
として破断強度TSを測定した。それらの結果を拡散熱
処理後の冷却速度とともに表3に示す。これによれば、
本発明法に従って冷却速度を25℃/秒以上とし、窒化
物量が5ppm以下に抑えられた鋼板は磁気特性、機械
特性ともに優れた値を示している。
Example 1 Table between the slab having a composition of 2 heat rolling, and cold rolling to a thin plate of thickness 0.3 mm, the thin furnace temperature 1200 ℃, 6% SiCl 4 - atmosphere balance N 2 In the furnace of No. 3, the Si was enriched to 4 wt% on average in the plate thickness direction by the diffusion and infiltration treatment method, and subsequently subjected to diffusion heat treatment at the same temperature, and then cooled to room temperature by variously changing the cooling rate,
A high silicon steel plate was manufactured. For these steel sheets, the amount of Si and the amount of nitride deposited were measured by chemical analysis. It was also measured breaking strength TS as AC core loss property (W 10/50) and mechanical properties as magnetic properties. The results are shown in Table 3 together with the cooling rate after the diffusion heat treatment. According to this
According to the method of the present invention, a steel sheet having a cooling rate of 25 ° C./sec or more and a nitride content of 5 ppm or less has excellent magnetic properties and mechanical properties.

【0032】〔実施例2〕表4の組成を有するスラブを
熱間圧延、冷間圧延して板厚0.1mmの薄板とし、こ
の薄板を炉内温度1150℃、15%SiCl4−残部
2の雰囲気の炉に装入し、拡散浸透処理法によってS
iを板厚方向平均で6.5%まで富化し、引き続き同温
度で拡散熱処理を施した後、1000℃までを10℃/
秒で冷却し、その後冷却ガスを吹き付けることにより種
々の冷却速度で700℃まで冷却し、さらにその後N2
ガス中で放冷した。このようにして得られた鋼板の鉄損
特性(W10/400)を冷却条件とともに表5に示す。これ
によれば、1000℃から700℃までの冷却速度が2
0℃/秒より速いものについては優れた磁気特性を示し
ており、本発明で規定した冷却速度で冷却することによ
り、磁気特性向上効果が得られていることが判る。
Example 2 A slab having the composition shown in Table 4 was hot-rolled and cold-rolled to form a thin plate having a plate thickness of 0.1 mm. The thin plate had a furnace temperature of 1150 ° C. and 15% SiCl 4 -balance N. Charge the furnace in the atmosphere of No. 2 and apply S by the diffusion infiltration treatment method.
i was enriched to 6.5% on average in the plate thickness direction, and subsequently subjected to diffusion heat treatment at the same temperature, and then up to 1000 ° C. at 10 ° C. /
Seconds, then blown with a cooling gas to cool to 700 ° C. at various cooling rates, and then N 2
Allowed to cool in gas. Thus iron loss properties of the resulting steel sheet with a (W 10/400) together with the cooling conditions shown in Table 5. According to this, the cooling rate from 1000 ° C to 700 ° C is 2
Those having a temperature higher than 0 ° C./sec show excellent magnetic properties, and it can be seen that the effect of improving the magnetic properties is obtained by cooling at the cooling rate specified in the present invention.

【0033】〔実施例3〕本発明を実際の連続製造ライ
ンに適用した場合についての試験を行なった。表6の組
成を有するスラブを熱間圧延、冷間圧延して板厚0.1
mmの薄板コイルとし、これにアルカリ脱脂を施し、し
かる後、炉内温度1150℃、10%SiCl4−残部
2の雰囲気の連続炉中に通板させ、Siを板厚方向平
均で6.5wt%まで富化した後、炉内温度1150℃
の拡散処理炉中に通板させて拡散熱処理を施し、引き続
き1000℃までを10℃/秒の冷却速度で冷却し、そ
の後冷却ガスを板面上下方向から吹き付けることにより
30℃/秒の冷却速度にて500℃まで冷却し、コイル
状に巻き取った。このコイルに絶縁皮膜をコーティング
した後、剪断機によってエプスタイン形状に剪断し、そ
のまま磁気特性を測定した。また、上記コイルからJI
S5号試験片を機械加工により切り出し、それらの破断
強度を測定した。また、比較のため拡散処理後の冷却の
際に冷却ガス吹き付けを行なわずそのまま冷却した場合
(冷却速度はほぼ10℃/秒であった)についてもコイ
ルを製造し、同様な方法で試験片を採取し、同様の磁気
特性および機械特性を測定した。
Example 3 A test was carried out in the case where the present invention was applied to an actual continuous production line. A slab having the composition shown in Table 6 was hot-rolled and cold-rolled to have a plate thickness of 0.1.
4. A thin plate coil having a thickness of 10 mm was subjected to alkali degreasing, and then passed through a continuous furnace in an atmosphere of a furnace temperature of 1150 ° C., 10% SiCl 4 -balance N 2 , and Si was averaged in the plate thickness direction. After enriching to 5 wt%, furnace temperature 1150 ° C
Diffusion heat treatment is performed by passing through the diffusion treatment furnace of No. 3, then cooled to 1000 ° C at a cooling rate of 10 ° C / sec, and then a cooling gas is blown from the vertical direction of the plate surface to a cooling rate of 30 ° C / sec. It was cooled to 500 ° C. and wound into a coil. After coating the coil with an insulating film, the coil was sheared into an Epstein shape by a shearing machine, and the magnetic characteristics were measured as it was. Also, from the above coil, JI
S5 test pieces were cut out by machining and their breaking strengths were measured. For comparison, when cooling after diffusion treatment without cooling gas spraying and cooling as it is (cooling rate was about 10 ° C./sec), coils were manufactured and test pieces were prepared in the same manner. Samples were taken and similar magnetic and mechanical properties were measured.

【0034】以上の結果を、化学分析により測定した窒
化物量とともに表7に示す。これによれば、実際の製造
ラインにおいても本発明法に従って冷却を行なうことに
より、磁気特性、機械特性に優れた高珪素鋼板の製造が
可能であることが判る。
The above results are shown in Table 7 together with the amount of nitride measured by chemical analysis. According to this, it can be seen that even in an actual production line, it is possible to produce a high silicon steel sheet having excellent magnetic properties and mechanical properties by cooling according to the method of the present invention.

【0035】[0035]

【表1】 [Table 1]

【0036】[0036]

【表2】 [Table 2]

【0037】[0037]

【表3】 [Table 3]

【0038】[0038]

【表4】 [Table 4]

【0039】[0039]

【表5】 [Table 5]

【0040】[0040]

【表6】 [Table 6]

【0041】[0041]

【表7】 [Table 7]

【図面の簡単な説明】[Brief description of drawings]

【図1】鋼板中の窒化物量と冷却速度との関係を調べる
ための試験において採られた、浸珪処理−拡散熱処理後
の冷却パターンを示す図面
FIG. 1 is a drawing showing a cooling pattern after siliconizing treatment-diffusion heat treatment, which was taken in a test for investigating the relationship between the amount of nitride in a steel sheet and the cooling rate.

【図2】浸珪処理−拡散熱処理後の冷却速度と窒化物量
との関係を示す図面
FIG. 2 is a drawing showing the relationship between the cooling rate and the amount of nitride after the siliconizing treatment-diffusion heat treatment.

【図3】図2に関する試験において得られた鋼板から抽
出された析出物の電子顕微鏡による拡大写真
FIG. 3 is an enlarged photograph of a precipitate extracted from the steel plate obtained in the test relating to FIG. 2 by an electron microscope.

【図4】鋼板中の窒化物量と最大透磁率との関係を示す
図面
FIG. 4 is a drawing showing the relationship between the amount of nitride in a steel sheet and the maximum magnetic permeability.

【図5】鋼板中の窒化物量と破断強度との関係を示す図
FIG. 5 is a drawing showing the relationship between the amount of nitride in a steel sheet and the fracture strength.

【図6】浸珪処理−拡散熱処理後の冷却途中において急
冷を開始すべき温度Tを調べるための試験において採ら
れた、冷却パターンを示す図面
FIG. 6 is a drawing showing a cooling pattern adopted in a test for investigating a temperature T at which rapid cooling should be started during cooling after the siliconizing treatment-diffusion heat treatment.

【図7】浸珪処理−拡散熱処理後の冷却途中における急
冷開始温度と鋼板中の窒化物量との関係を示す図面
FIG. 7 is a drawing showing the relationship between the quenching start temperature and the amount of nitride in the steel sheet during cooling after the siliconizing treatment-diffusion heat treatment.

【図8】図7に関する試験において得られた鋼板から抽
出された析出物の電子顕微鏡による拡大写真
8 is an enlarged photograph of a precipitate extracted from the steel plate obtained in the test relating to FIG. 7, taken by an electron microscope.

【図9】浸珪処理−拡散熱処理後の冷却途中における徐
冷開始温度と鋼板中の窒化物量との関係を示す図面
FIG. 9 is a drawing showing the relationship between the gradual cooling start temperature and the amount of nitride in the steel sheet during cooling after the siliconizing treatment-diffusion heat treatment.

【図10】浸珪処理−拡散熱処理後の冷却途中において
徐冷を開始すべき温度を調べるための試験において採ら
れた、冷却パターンを示す図面
FIG. 10 is a drawing showing a cooling pattern adopted in a test for investigating a temperature at which gradual cooling should be started during cooling after the siliconizing treatment-diffusion heat treatment.

【図11】浸珪処理−拡散熱処理後の冷却途中において
950℃から800℃までの適正冷却速度を調べるため
の試験において採られた、冷却パターンを示す図面
FIG. 11 is a drawing showing a cooling pattern adopted in a test for investigating an appropriate cooling rate from 950 ° C. to 800 ° C. during cooling after the siliconizing treatment-diffusion heat treatment.

【図12】浸珪処理−拡散熱処理後の冷却過程における
950℃〜800℃間の冷却速度と鋼板中の窒化物量と
の関係を示す図面
FIG. 12 is a drawing showing the relationship between the cooling rate between 950 ° C. and 800 ° C. and the amount of nitride in the steel sheet in the cooling process after the siliconizing treatment-diffusion heat treatment.

【図13】浸珪処理−拡散熱処理後の冷却途中において
950℃から800℃までの適正冷却速度を調べるため
の試験において採られた、冷却パターンを示す図面
FIG. 13 is a drawing showing a cooling pattern adopted in a test for investigating an appropriate cooling rate from 950 ° C. to 800 ° C. during cooling after the siliconizing treatment-diffusion heat treatment.

【図14】浸珪処理−拡散熱処理後の冷却過程において
冷却速度を25℃/秒から15℃/秒に変更した温度と
鋼板中の窒化物量との関係を示す図面
FIG. 14 is a drawing showing the relationship between the temperature at which the cooling rate is changed from 25 ° C./sec to 15 ° C./sec and the amount of nitride in the steel sheet in the cooling process after the siliconizing treatment-diffusion heat treatment.

【図15】浸珪処理−拡散熱処理後の冷却において、析
出物が生成する鋼板温度と冷却速度の領域を示す図面
FIG. 15 is a drawing showing regions of steel plate temperature and cooling rate at which precipitates are formed in cooling after the siliconizing treatment-diffusion heat treatment.

フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C23C 10/08 8116−4K H01F 1/14 Continuation of front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location C23C 10/08 8116-4K H01F 1/14

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 C:0.01wt%以下、Si:4〜7
wt%、N:0.001〜0.01wt%、Al:0.
01wt%以下を含有し、Si、Alの窒化物量が5p
pm以下であるSi拡散浸透処理法により製造される磁
気特性および機械特性の優れた高珪素鋼板。
1. C: 0.01 wt% or less, Si: 4 to 7
wt%, N: 0.001 to 0.01 wt%, Al: 0.
Contains less than 01 wt% and contains 5 p of Si or Al nitride
A high silicon steel sheet excellent in magnetic properties and mechanical properties produced by a Si diffusion infiltration treatment method of pm or less.
【請求項2】 C:0.01wt%以下、Si:4wt
%以下、N:0.001〜0.01wt%、Al:0.
01wt%以下を含有する低炭素鋼スラブを熱間圧延、
冷間圧延して薄板とした後、Si化合物とN2との混合
ガス雰囲気中にて浸珪処理し、次いでSiを板厚方向に
拡散させる拡散熱処理を施した後、950℃から900
℃までを25℃/秒以上の冷却速度で冷却し、900℃
以降800℃までを、t≧(T−800)/4[但し、
T:板温(℃)]を満足する冷却速度t(℃)で冷却す
ることを特徴とする請求項1に記載された磁気特性およ
び機械特性の優れた高珪素鋼板の製造方法。
2. C: 0.01 wt% or less, Si: 4 wt
% Or less, N: 0.001 to 0.01 wt%, Al: 0.
Hot rolling a low carbon steel slab containing less than or equal to 01 wt%;
After cold rolling into a thin plate, it is subjected to a siliconizing treatment in a mixed gas atmosphere of a Si compound and N 2 and then subjected to a diffusion heat treatment for diffusing Si in the plate thickness direction.
900 ℃, cooling up to ℃ at a cooling rate of 25 ℃ / sec or more
After that, up to 800 ° C., t ≧ (T−800) / 4 [however,
T: plate temperature (° C)] is cooled at a cooling rate t (° C) satisfying the above condition, the method for producing a high silicon steel sheet having excellent magnetic properties and mechanical properties according to claim 1.
JP3311547A 1991-10-31 1991-10-31 High silicon steel sheet excellent in magnetic properties and mechanical properties manufactured by Si diffusion infiltration treatment method and method for manufacturing the same Expired - Fee Related JP2639256B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3311547A JP2639256B2 (en) 1991-10-31 1991-10-31 High silicon steel sheet excellent in magnetic properties and mechanical properties manufactured by Si diffusion infiltration treatment method and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3311547A JP2639256B2 (en) 1991-10-31 1991-10-31 High silicon steel sheet excellent in magnetic properties and mechanical properties manufactured by Si diffusion infiltration treatment method and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JPH05125496A true JPH05125496A (en) 1993-05-21
JP2639256B2 JP2639256B2 (en) 1997-08-06

Family

ID=18018553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3311547A Expired - Fee Related JP2639256B2 (en) 1991-10-31 1991-10-31 High silicon steel sheet excellent in magnetic properties and mechanical properties manufactured by Si diffusion infiltration treatment method and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2639256B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0767249A2 (en) * 1995-10-06 1997-04-09 Nkk Corporation Silicon steel sheet and method thereof
WO2021065555A1 (en) * 2019-10-03 2021-04-08 Jfeスチール株式会社 Non-oriented electromagnetic steel sheet and method for manufacturing same
US12018357B2 (en) 2019-10-03 2024-06-25 Jfe Steel Corporation Non-oriented electrical steel sheet and method of producing same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0767249A2 (en) * 1995-10-06 1997-04-09 Nkk Corporation Silicon steel sheet and method thereof
EP0767249A3 (en) * 1995-10-06 1997-04-23 Nkk Corporation Silicon steel sheet and method thereof
US5902419A (en) * 1995-10-06 1999-05-11 Nkk Corporation Silicon steel sheet and method thereof
US6045627A (en) * 1995-10-06 2000-04-04 Nkk Corporation Silicon steel sheet and method thereof
US6241829B1 (en) 1995-10-06 2001-06-05 Nkk Corporation Silicon steel sheet and method thereof
WO2021065555A1 (en) * 2019-10-03 2021-04-08 Jfeスチール株式会社 Non-oriented electromagnetic steel sheet and method for manufacturing same
JPWO2021065555A1 (en) * 2019-10-03 2021-11-25 Jfeスチール株式会社 Non-oriented electrical steel sheet and its manufacturing method
US12018357B2 (en) 2019-10-03 2024-06-25 Jfe Steel Corporation Non-oriented electrical steel sheet and method of producing same

Also Published As

Publication number Publication date
JP2639256B2 (en) 1997-08-06

Similar Documents

Publication Publication Date Title
CN107614725B (en) Grain-oriented electromagnetic steel sheet and method for producing same
JP3485188B2 (en) Manufacturing method of grain-oriented electrical steel sheet with high magnetic flux density based on low-temperature slab heating method
JP5300210B2 (en) Method for producing grain-oriented electrical steel sheet
JPH0277525A (en) Production of grain-oriented electrical steel sheet having excellent magnetic characteristic and film characteristic
CA2445895C (en) Method for producing a high permeability grain oriented electrical steel
JP7110642B2 (en) Method for manufacturing grain-oriented electrical steel sheet
US20050217762A1 (en) Coating composition, and method for manufacturing high silicon electrical steel sheet using thereof
JPH0717953B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JPH0565537A (en) Manufacture of high silicon steel sheet having high permeability
JP2639256B2 (en) High silicon steel sheet excellent in magnetic properties and mechanical properties manufactured by Si diffusion infiltration treatment method and method for manufacturing the same
JP3275712B2 (en) High silicon steel sheet excellent in workability and method for producing the same
KR100817168B1 (en) Method for manufacturing the grain-oriented electrical steel sheets with excellent magnetic properties
JP4258050B2 (en) Method for producing high silicon steel sheet
JP2560579B2 (en) Method for manufacturing high silicon steel sheet having high magnetic permeability
JP5853968B2 (en) Method for producing grain-oriented electrical steel sheet
JP3993689B2 (en) Strain relief annealing method for laminated core
JP3019600B2 (en) Method for producing high silicon steel sheet having excellent magnetic and mechanical properties by diffusion infiltration treatment
JP2005179732A (en) Method for producing cold-rolled steel sheet
JP2760208B2 (en) Method for producing silicon steel sheet having high magnetic flux density
JP4196416B2 (en) Method for producing Al-containing grain-oriented silicon steel sheet
JP4231466B2 (en) Soft nitriding steel with excellent wear resistance
KR100721819B1 (en) Grain-oriented electrical steel sheets manufacturing method with low core loss, high magnetic induction
KR100825306B1 (en) Method for manufacturing the grain-oriented electrical steel sheets with excellent magnetic properties
JP2528746B2 (en) Method for manufacturing high silicon steel sheet
JP2003201518A (en) Method of producing grain oriented silicon steel sheet having excellent magnetic property

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080425

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090425

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100425

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100425

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees