JPH0512427B2 - - Google Patents

Info

Publication number
JPH0512427B2
JPH0512427B2 JP12370585A JP12370585A JPH0512427B2 JP H0512427 B2 JPH0512427 B2 JP H0512427B2 JP 12370585 A JP12370585 A JP 12370585A JP 12370585 A JP12370585 A JP 12370585A JP H0512427 B2 JPH0512427 B2 JP H0512427B2
Authority
JP
Japan
Prior art keywords
alloy
oxide
electrical contact
oxidation
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12370585A
Other languages
Japanese (ja)
Other versions
JPS61281859A (en
Inventor
Koichi Sakairi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP12370585A priority Critical patent/JPS61281859A/en
Publication of JPS61281859A publication Critical patent/JPS61281859A/en
Publication of JPH0512427B2 publication Critical patent/JPH0512427B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Switches (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、電気接点材料、特にAg−酸化物電
気接点材料の製造方法に関する。 (従来技術とその問題点) Ag合金を内部酸化することにより、Ag中に酸
化物を分散させる技術が、従来より広く用いられ
ており、特に電気接点の分野ではAg−CdO、Ag
−SnO2等により成る電気接点材料の製造に採用
されている。 Ag中に分散するCdO、SnO2等の酸化物は、添
加量が増えると、耐溶着性が向上する傾向を示す
が、溶質金属が多く、酸化による体積膨張が顕著
に現れるAg合金では酸化割れが発生する為、Ag
合金を接点形状に加工した後内部酸化する所謂後
酸化法を用いることができない。 この為、Ag合金の粉末、粗粒、線材、板材な
どを内部酸化した後、圧縮、焼結を行い、これを
押出、線引加工或いは圧延加工等の塑性加工によ
り所要形状の電気接点材料に加工する所謂前酸化
法が用いられる。 然し乍ら、この前酸化法で例えばAg−Sn合金
を内部酸化すると、その内酸化の最前線でSnO2
の凝集層ができ、それ以上内部に酸素が侵入せ
ず、内部酸化の進行が停止するものである。そし
て、SnO2の凝集層には殆んどのSnが集まつてい
るので、つまり凝集層の内側のAg−Sn中の濃度
が非常に薄い為、押出、線引加工或いは圧延加工
等の塑性加工により凝集層を破壊して再度内部酸
化を仮にしても析出するSnO2は極めてすくない
ので、SnO2が均質に分散されず、破断された凝
集層がのこるので、甚だ加工性が悪く、電気接点
に加工した際、割れが発生し易くなるものであ
る。 (発明の目的) 本発明は、上記の問題点を解決すべくなされた
ものであり、酸化物の凝集層を均質にAg中に分
散させることができて、電気接点に加工した際、
割れの発生を減少できるAg−酸化物電気接点材
料の製造方法を提供することを目的とするもので
ある。 (発明の構成) 本発明のAg−酸化物電気接点材料の製造方法
は、Ag合金を一部内部酸化して、内層にAg合金
を残すと共に外層に酸化物を形成した粉末又は粗
粒若しくは線材或いは板材を作り、次にこれを
Agの融点以下の温度で熱拡散処理を行つてAg合
金中に酸化物が分散した状態にした後、圧縮、焼
結を繰り返し、押出、線引加工或いは圧延加工等
の塑性加工により所要形状になし、次いでこれの
未酸化部分を内部酸化することを特徴とするもの
である。 上記本発明のAg−酸化物電気接点材料の製造
方法に於いて、最初にAg合金を一部内部酸化し
て内層にAg合金を残すと共に外層にAg−酸化物
を形成させたのは、酸化物の凝集層を作らずに未
酸化部分を残す為であり、さらにこの材料を熱拡
散処理するのは、Ag合金中に酸化物が分散した
状態にさせて圧縮、焼結後の線引加工、圧延加工
等の塑性加工を容易にし且つその後の内部酸化に
おいても酸化割れを起こさないようにし、さらに
電気接点に加工した際、割れが発生しないように
する為である。 (実施例) 本発明のAg−酸化物電気接点材料の製造方法
の実施例と共に説明する。 先ず実施例について説明すると、溶湯粉霧法に
よつて得られたAg−Sn9.5wt%粉末を直径50mm、
気孔率約30%のビレツトに成形した後、酸素9気
圧、400℃でAg:Snの重量比が約18:1になる
まで内部酸化した。この内部酸化したビレツトの
各粉末の外層はAg−SnO2となつていた。このビ
レツトを窒素ふん囲気中でAgの融点以下の温度、
本例では500℃で熱拡散処理を行つてAg−Sn中
にSnO2が分散した状態にした後、圧縮、焼結を
5回繰り返し、直径6mmの線材に押出加工した。
この線材をさらに直径2.4mmに線引加工した後、
頭径4mmと5mmのリベツト型に成形し、酸素9気
圧、400℃で未酸化部分が残らぬように内部酸化
して電気接点材料を得た。尚、線引加工は、ダイ
スを用いて加工率15〜20%の範囲内で行うことが
できた。 次に従来例について説明すると、実施例と同様
溶湯噴霧法によつて得られたAg−Sn9.5wt%粉
末を直径50mm、気孔率約30%のビレツトに成形し
た後、酸素9気圧、450℃で未酸化部分が残らぬ
ように内部酸化した処、酸化の最前線でSnO2
凝集層が形成され、それ以上内部に酸素が侵入せ
ず、内部酸化の進行が停止したビレツトを直径6
mmの線材に押出加工し、さらに直径2.4mmに線引
加工した後、頭径4mmと5mmのリベツト型の電気
接点材料に成形した。尚、線引加工は、ダイスを
用いて加工率10〜15%の範囲内で行うことができ
た。 こうして得られた実施例と従来例のリベツト型
電気接点材料各100ケの割れの発生状況を観察し
た処、下記の表に示すような結果を得た。
(Industrial Application Field) The present invention relates to an electrical contact material, particularly a method for producing an Ag-oxide electrical contact material. (Prior art and its problems) The technology of dispersing oxides in Ag by internally oxidizing the Ag alloy has been widely used in the past, and especially in the field of electrical contacts, Ag-CdO, Ag
-Used in the production of electrical contact materials made of SnO 2 , etc. Oxides such as CdO and SnO 2 dispersed in Ag tend to improve adhesion resistance as the amount added increases, but Ag alloys that contain a large amount of solute metal and exhibit significant volumetric expansion due to oxidation may suffer from oxidation cracking. occurs, so Ag
It is not possible to use the so-called post-oxidation method in which the alloy is processed into a contact shape and then internally oxidized. For this purpose, Ag alloy powder, coarse particles, wire rods, plate materials, etc. are internally oxidized, then compressed and sintered, and then processed into electrical contact materials of the desired shape through plastic processing such as extrusion, wire drawing, or rolling. A so-called pre-oxidation method is used for processing. However, when an Ag-Sn alloy is internally oxidized using this pre-oxidation method, SnO 2
A cohesive layer is formed, no more oxygen enters the interior, and the progress of internal oxidation is stopped. Since most of the Sn is gathered in the agglomerated layer of SnO 2 , that is, the concentration of Ag-Sn inside the agglomerated layer is very low, plastic processing such as extrusion, wire drawing, or rolling is not possible. Even if the agglomerated layer is destroyed and internal oxidation occurs again, very little SnO 2 will precipitate, so the SnO 2 will not be homogeneously dispersed and a broken agglomerated layer will remain, resulting in extremely poor workability and poor electrical contact. When processed, cracks are likely to occur. (Object of the Invention) The present invention was made to solve the above problems, and it is possible to homogeneously disperse an oxide agglomerated layer in Ag, and when processed into an electrical contact,
The object of the present invention is to provide a method for producing an Ag-oxide electrical contact material that can reduce the occurrence of cracks. (Structure of the Invention) The method for producing the Ag-oxide electrical contact material of the present invention involves partially internally oxidizing an Ag alloy to leave the Ag alloy in the inner layer and forming an oxide in the outer layer. Or make a board and then use this
After thermal diffusion treatment is performed at a temperature below the melting point of Ag to disperse oxides in the Ag alloy, compression and sintering are repeated, and the desired shape is obtained by plastic processing such as extrusion, wire drawing, or rolling. It is characterized by the fact that the unoxidized portion is internally oxidized. In the method for manufacturing the Ag-oxide electrical contact material of the present invention, the Ag alloy is first partially internally oxidized to leave the Ag alloy in the inner layer and form the Ag-oxide in the outer layer. This is to leave an unoxidized part without creating an agglomerated layer of material, and the reason why this material is subjected to thermal diffusion treatment is to make the oxide dispersed in the Ag alloy, compress it, and then wire-draw it after sintering. This is to facilitate plastic working such as rolling, to prevent oxidation cracking from occurring during subsequent internal oxidation, and to prevent cracking from occurring when processed into electrical contacts. (Example) The method for producing an Ag-oxide electrical contact material of the present invention will be explained together with an example. First, to explain an example, Ag-Sn9.5wt% powder obtained by the molten metal powder atomization method was
After forming into a billet with a porosity of about 30%, it was internally oxidized at 400° C. under 9 atmospheres of oxygen until the weight ratio of Ag:Sn became about 18:1. The outer layer of each powder of this internally oxidized billet was Ag- SnO2 . This billet is heated to a temperature below the melting point of Ag in a nitrogen atmosphere.
In this example, thermal diffusion treatment was performed at 500°C to disperse SnO 2 in Ag-Sn, and then compression and sintering were repeated five times to extrude into a wire rod with a diameter of 6 mm.
After further drawing this wire to a diameter of 2.4 mm,
They were molded into rivet molds with head diameters of 4 mm and 5 mm, and were internally oxidized at 400°C under 9 atmospheres of oxygen so that no unoxidized parts remained, to obtain electrical contact materials. Note that the wire drawing process could be performed using a die within a processing rate of 15 to 20%. Next, to explain a conventional example, Ag-Sn9.5wt% powder obtained by the molten metal spraying method as in the example was molded into a billet with a diameter of 50 mm and a porosity of about 30%, and then heated at 450°C under 9 atmospheres of oxygen. When the billet was internally oxidized so that no unoxidized parts remained, an agglomerated layer of SnO 2 was formed at the forefront of the oxidation, and no further oxygen entered the interior, and the progress of internal oxidation was stopped.
After extrusion processing into wire rods of 1.0 mm diameter and drawing processing into wire rods of 2.4 mm diameter, the wires were formed into rivet-shaped electrical contact materials with head diameters of 4 mm and 5 mm. Note that the wire drawing process could be performed using a die within a processing rate of 10 to 15%. The occurrence of cracks in 100 pieces of the thus obtained rivet type electrical contact materials of the example and the conventional example were observed, and the results shown in the table below were obtained.

【表】 上記の表で明らかなように実施例のリベツト型
電気接点材料は、従来例のリベツト型電気接点材
料に比べ著しく割れが少ないことが判る。これは
ひとえにAg合金を一部内部酸化して、酸化物の
凝集層を作らずに、外層に酸化物を分散したAg
−酸化物を作り内層にはAg合金を残し、これを
熱拡散処理してAg合金中に酸化物が分散した状
態にさせて、加工を容易にし、その後の未酸化部
分の内部酸化においても酸化割れが起きないから
に他ならない。 (発明の効果) 以上説明した通り本発明のAg−酸化物電気接
点材料の製造方法は、Ag合金を一部内部酸化し
て、酸化物の凝集層を作らずに、外層に酸化物の
分散したAg−酸化物を作り内層にはAg合金を残
し、これを熱拡散処理してAg合金中に酸化物が
分散した状態にさせるので、線引加工、圧延加工
等が容易となり、その後未酸化部分を酸化しても
酸化割れを起こすことが無く、著しく歩留りが向
上するという効果がある。
[Table] As is clear from the above table, the rivet-type electrical contact materials of the examples have significantly less cracking than the rivet-type electrical contact materials of the conventional examples. This is an Ag alloy in which oxides are dispersed in the outer layer by partially internally oxidizing the Ag alloy, without creating an agglomerated layer of oxides.
- An oxide is created, leaving an Ag alloy in the inner layer, which is then subjected to thermal diffusion treatment to disperse the oxide in the Ag alloy, making processing easier and allowing oxidation to occur during internal oxidation of unoxidized parts. This is because no cracks occur. (Effects of the Invention) As explained above, the method for producing the Ag-oxide electrical contact material of the present invention involves partially internally oxidizing the Ag alloy, and dispersing the oxide in the outer layer without forming an agglomerated layer of the oxide. The inner layer is made of Ag-oxide, and the Ag alloy is left in the inner layer, which is then heat-diffused to disperse the oxide in the Ag alloy, making wire drawing, rolling, etc. easier, and then unoxidized. Even if a portion is oxidized, oxidation cracking does not occur, and the yield is significantly improved.

Claims (1)

【特許請求の範囲】[Claims] 1 Ag合金を一部内部酸化して、内層にAg合金
を残すと共に外層にAg−酸化物を形成した粉末
又は粗粒若しくは線材或いは板材を作り、次にこ
れをAgの融点以下の温度で熱拡散処理を行つて
Ag合金中に酸化物が分散した状態にした後、圧
縮、焼結を繰り返し、押出、線引加工或いは圧延
加工等の塑性加工により所要形状になし、次いで
これの未酸化部分を内部酸化することを特徴とす
るAg−酸化物電気接点材料の製造方法。
1 Part of the Ag alloy is internally oxidized to leave the Ag alloy in the inner layer and to form a powder, coarse grains, wire or plate material with Ag-oxide formed in the outer layer, and then this is heated at a temperature below the melting point of Ag. Perform diffusion processing
After the oxide is dispersed in the Ag alloy, compression and sintering are repeated, and the desired shape is formed by plastic processing such as extrusion, wire drawing, or rolling, and then the unoxidized portions are internally oxidized. A method for producing an Ag-oxide electrical contact material characterized by:
JP12370585A 1985-06-07 1985-06-07 Manufacture of ag-oxide type electrical contact point material Granted JPS61281859A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12370585A JPS61281859A (en) 1985-06-07 1985-06-07 Manufacture of ag-oxide type electrical contact point material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12370585A JPS61281859A (en) 1985-06-07 1985-06-07 Manufacture of ag-oxide type electrical contact point material

Publications (2)

Publication Number Publication Date
JPS61281859A JPS61281859A (en) 1986-12-12
JPH0512427B2 true JPH0512427B2 (en) 1993-02-18

Family

ID=14867305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12370585A Granted JPS61281859A (en) 1985-06-07 1985-06-07 Manufacture of ag-oxide type electrical contact point material

Country Status (1)

Country Link
JP (1) JPS61281859A (en)

Also Published As

Publication number Publication date
JPS61281859A (en) 1986-12-12

Similar Documents

Publication Publication Date Title
JP3859348B2 (en) Method for producing alumina dispersion strengthened copper powder
US4112197A (en) Manufacture of improved electrical contact materials
JPH0512427B2 (en)
JPH0561334B2 (en)
JPH0574233A (en) Oxide ceramic superconductor complex and manufacture thereof
JPH0512426B2 (en)
JPS6363614B2 (en)
JP2670119B2 (en) Manufacturing method of electrical contact material
JP2697735B2 (en) Ag-oxide-based material and method for producing the same
JPH0475297B2 (en)
JPS633934B2 (en)
JPH04141916A (en) Manufacture of nb3sn compound superconducting wire
JP3122922B2 (en) Method of manufacturing silver-based composite tube
JPS6147894B2 (en)
JP2587437B2 (en) Method for producing Ag-oxide composite strip for electrical contact
JPH0475298B2 (en)
JP2777120B2 (en) Ag-oxide-based material and method for producing the same
JP2786487B2 (en) Manufacturing method of electrical contact material
JPS5949660B2 (en) Composite Ag-SnO alloy electrical contact material
JPH0530889B2 (en)
JPS633933B2 (en)
JP2590096B2 (en) Manufacturing method of sintered wire
JPH0375321A (en) Manufacture of oxide dispersion strengthened copper alloy
JPS633932B2 (en)
JPS6023192B2 (en) Method for manufacturing oxide-dispersed silver alloy wire