JPS6023192B2 - Method for manufacturing oxide-dispersed silver alloy wire - Google Patents

Method for manufacturing oxide-dispersed silver alloy wire

Info

Publication number
JPS6023192B2
JPS6023192B2 JP1527176A JP1527176A JPS6023192B2 JP S6023192 B2 JPS6023192 B2 JP S6023192B2 JP 1527176 A JP1527176 A JP 1527176A JP 1527176 A JP1527176 A JP 1527176A JP S6023192 B2 JPS6023192 B2 JP S6023192B2
Authority
JP
Japan
Prior art keywords
oxide
alloy wire
silver alloy
dispersed
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1527176A
Other languages
Japanese (ja)
Other versions
JPS5298664A (en
Inventor
健也 本吉
光生 長田
廉 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP1527176A priority Critical patent/JPS6023192B2/en
Publication of JPS5298664A publication Critical patent/JPS5298664A/en
Publication of JPS6023192B2 publication Critical patent/JPS6023192B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Metal Extraction Processes (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Manufacture Of Switches (AREA)
  • Wire Processing (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Powder Metallurgy (AREA)
  • Conductive Materials (AREA)
  • Extrusion Of Metal (AREA)

Description

【発明の詳細な説明】 本発明は酸化物分散型銀合金線の製造方法に関する。[Detailed description of the invention] The present invention relates to a method for producing an oxide-dispersed silver alloy wire.

銀に酸化カドミウム、酸化インジウム、酸化錫、酸化ア
ンチモン、酸化亜鉛、酸化マンガンなどの酸化物粒子を
分散させた酸化物分散型銀合金は通電性がよくアーク熱
やジュール熱下での耐落着性、耐消耗性がすぐれている
ため、気中接点として電磁開閉器、リレー、サーモスタ
ット、ノーフューズプレーカ−など多方面に応用されて
いる。これらの合金は酸化物形成元素を銀に固溶させ、
酸素を含む雰囲気中で加熱して溶質元素を選択的に酸化
させ、酸化物を分散させるいわゆる内部酸化法により製
造される場合が多い。この製造方法の利点は第1に酸化
物の分散状態を制御しやすく、上記性能を十分発輝させ
るのに好都合であること。
Oxide-dispersed silver alloys, in which oxide particles such as cadmium oxide, indium oxide, tin oxide, antimony oxide, zinc oxide, and manganese oxide are dispersed in silver, have good electrical conductivity and are resistant to deposition under arc heat and Joule heat. Because of its excellent wear resistance, it is used as an air contact in a wide range of applications, including electromagnetic switches, relays, thermostats, and no-fuse breakers. These alloys have oxide-forming elements dissolved in silver,
It is often produced by a so-called internal oxidation method in which solute elements are selectively oxidized by heating in an oxygen-containing atmosphere and oxides are dispersed. The first advantage of this manufacturing method is that it is easy to control the dispersion state of the oxide, which is convenient for fully enhancing the above-mentioned performance.

第2に銀は酸素中でも酸化せず内部酸化雰囲気の形成が
容易で製造性がすぐれていることである。
Second, silver does not oxidize even in oxygen, making it easy to form an internal oxidizing atmosphere, resulting in excellent manufacturability.

しかしながら、次の如き問題があり、応用できる形状、
寸法に制限があった。即ち、第1に合金組議、特に酸化
物の分散状態の均一性に関する問題である。酸素を含む
雰囲気での加熱により表面層から徐々に酸化物を分散し
ていくが中心部と表面層の酸化物の粒子径及び分散状態
が異なりその結果中心部における接点性能を低下させる
場合があり安定した特性を得るため表面部分を接点の接
触面として使用する場合が多かった。第2の問題は寸法
上の問題である。
However, there are the following problems, and the shape that can be applied is
There were size restrictions. That is, the first problem is the alloy composition, particularly the uniformity of the dispersion state of the oxide. Although the oxide is gradually dispersed from the surface layer by heating in an oxygen-containing atmosphere, the particle size and dispersion state of the oxide in the center and surface layers are different, which may reduce the contact performance in the center. In order to obtain stable characteristics, the surface portion was often used as the contact surface of the contact. The second problem is a dimensional problem.

即ち、表面層から内部酸化を進めていく場合、大型の素
材を中心まで酸化するには非常に長い時間を要し、生産
上の問題を生じる。のみならず前記中心部と表面部の酸
化物の分散の不均一さも酸化時間が長い程顕著になる。
これらの問題が除去できれば該合金の断面を接点面とす
ることができるので該合金線を製造しへッダー加工によ
り支持体の一部に該合金を接合した接点を連続的に製造
したり、従来打抜きなどにより製造していた該合金片は
榛材を鱒断で切り出したりすることにより歩蟹りよく製
造することが可能になり、談合金の使用範囲が拡大する
だけでなく、生産性の向上をも期待できる。
That is, when proceeding with internal oxidation from the surface layer, it takes a very long time to oxidize a large material to the center, which causes problems in production. In addition, the longer the oxidation time, the more significant the non-uniformity of the oxide dispersion between the center and the surface becomes.
If these problems can be eliminated, the cross section of the alloy can be used as the contact surface, so it is possible to manufacture the alloy wire and continuously manufacture contacts in which the alloy is bonded to a part of the support by header processing. The alloy pieces, which were previously manufactured by punching, can now be manufactured quickly and easily by cutting out bamboo wood using trout cutting, which not only expands the scope of use of the alloy, but also improves productivity. You can also expect

ところで、銀合金線を内部酸化して生じる線材の断面に
おける酸化物分散状態の不均一性は、種々の合金につい
て研究した結果次の如き理由によって生じることが明ら
かになった。
By the way, as a result of research on various alloys, it has become clear that the non-uniformity of the oxide dispersion state in the cross section of the wire produced by internal oxidation of the silver alloy wire is caused by the following reasons.

即ち、溶質濃度NM(o)を持つ半径Rの銀固溶体合金
線を酸素圧Poの雰囲気中で加熱する場合、t時間後の
内部酸化層の厚さは第1図に示す如くR−rは‘11式
で与えられる。ここでN。
That is, when a silver solid solution alloy wire of radius R and solute concentration NM(o) is heated in an atmosphere of oxygen pressure Po, the thickness of the internal oxidation layer after t hours is R-r as shown in FIG. It is given by formula '11. N here.

Sは線材表面における酸素濃度でノPoに比例し、Do
は合金中の酸素の拡散係数、nは生成する酸化物の種類
によって決まる定数である。従って、線村の径万向の位
置rにおける酸化速度は‘2ー式で表わされ一定ではな
い。内部酸化によって生成する酸化物粒子は酸化速度が
大きい程微細になり、酸化速度が遅くなると粗大化する
ことが知られている。
S is the oxygen concentration on the wire surface, which is proportional to Po, and Do
is the diffusion coefficient of oxygen in the alloy, and n is a constant determined by the type of oxide produced. Therefore, the oxidation rate at position r in all directions of the line village is expressed by the equation '2' and is not constant. It is known that the higher the oxidation rate, the finer the oxide particles generated by internal oxidation, and the slower the oxidation rate, the coarser the oxide particles become.

この結果、r三1/駅において最も粗大化した酸化物が
分散し、中心部では極めて微細な酸化物を分散している
As a result, the coarsest oxide is dispersed at the r31/station, and the extremely fine oxide is dispersed at the center.

第2図aは2柳◇のAg−15%Cd合金線を750℃
空気中で加熱し、内部酸化せしめたAg合金線の断面に
おける硬度分布であるが、r三R/3において最も硬度
が低下している。
Figure 2 a shows the Ag-15%Cd alloy wire of Niyanagi ◇ at 750°C.
This is the hardness distribution in the cross section of an Ag alloy wire heated in air and internally oxidized, and the hardness is the lowest at r3R/3.

中心部の微細な酸化物は材質の硬化には役立つが接点性
能に対してはのぞましくない場合が多い。
Although the fine oxide in the center is useful for hardening the material, it is often undesirable for contact performance.

本発明は、上記の如き問題を次に述べる方法により解決
した。
The present invention has solved the above problems by the method described below.

第3図に示すように銀および酸化物形成元素の固溶体粉
末と、酸化物粉末を混合、成形又は更に鱗結し、円柱状
金属体1を形成し、これを溶解鋳造又は更に切削加工し
て作られた銀および酸化物形成元素の固溶体でできた円
筒状金属体2に挿入し複合体3とする。
As shown in FIG. 3, a solid solution powder of silver and oxide-forming elements and an oxide powder are mixed, molded, or further scaled to form a cylindrical metal body 1, which is then melted and cast or further cut. It is inserted into a cylindrical metal body 2 made of the prepared solid solution of silver and oxide-forming elements to form a composite body 3.

本発明の方法の目的は、芯部および外殻部における酸化
物含有量を一定にし、粒子径を制御して、実質的に均質
な線材を製造することにあるから固熔体粉末の組成は、
酸化物を混合した後に、酸化物構成元素の平均濃度が外
殻部を構成する固溶体中の酸化物構成元素濃度と等しく
なるようにする。
The purpose of the method of the present invention is to make a substantially homogeneous wire rod by keeping the oxide content constant in the core and the outer shell and controlling the particle size, so the composition of the solid melt powder is ,
After mixing the oxides, the average concentration of the oxide constituent elements is made equal to the concentration of the oxide constituent elements in the solid solution constituting the outer shell.

この範囲において、酸化物の混合率は任意に選んで良い
が、10Vol%以下であることがのぞましい。10V
ol%を越えると、以下に述べる伸線において、芯部の
強度が不足して、所定の寸法にすることが困難になるか
らである。
Within this range, the mixing ratio of the oxides may be arbitrarily selected, but it is preferably 10 Vol% or less. 10V
This is because if it exceeds ol%, the strength of the core will be insufficient in the wire drawing described below, and it will be difficult to form it into a predetermined size.

しかしながら仲線を行なわずに、たとえばスェージを行
なう場合は芯部の強度不足はあまり問題にならない。
However, if, for example, swaging is performed without performing a tie line, the lack of strength of the core is not so much of a problem.

一方酸化物粉末の混合率の下限は、最終的に分散される
量によって制限されるものであるが、十分な効果を発輝
するために0.5%以上であることがのぞましい。該複
合体を押出又は鍛造又はスェージ又は伸線などの塑性加
工を行ない線材第3図bとする。
On the other hand, the lower limit of the mixing ratio of the oxide powder is limited by the amount ultimately dispersed, but it is preferably 0.5% or more in order to achieve a sufficient effect. The composite is subjected to plastic working such as extrusion, forging, swaging, or wire drawing to form a wire rod in FIG. 3b.

該線村を内部酸化するのであるから5側ふ以下の寸法と
することがこのましいが、この制限は厳しいものではな
く、更に太いものにも応用できる。複合体の半径Rcに
対する芯部の円柱状金属体の半径rcは0くrcくRc
/2である。rcがRc/2を越えると、実質的に円筒
状金属体を内部酸化して得られる材質の特性を大幅に変
えてしまうからである。
Since the wire is to be internally oxidized, it is preferable to make it smaller than the 5th side, but this restriction is not strict and can be applied to even thicker wires. The radius rc of the cylindrical metal body of the core with respect to the radius Rc of the composite body is 0 rc and Rc
/2. This is because if rc exceeds Rc/2, the characteristics of the material obtained by substantially internally oxidizing the cylindrical metal body will be significantly changed.

rcが大きくなるにつれて塑性加工性は低下するので、
できればrc<Rc/3がのぞましい。該線材を目的の
酸化物粒径を得るに適した温度および酸素圧で酸化し、
酸化物を分散した銀合金線とする。
As rc increases, plastic workability decreases, so
Preferably, rc<Rc/3. Oxidize the wire at a temperature and oxygen pressure suitable for obtaining the desired oxide particle size,
A silver alloy wire with oxide dispersed therein.

酸化温度は600q0以上85び0以下であることがの
ぞましい。
The oxidation temperature is preferably 600q0 or more and 850q0 or less.

それ以下の温度では外殻部金属体の結晶粒に沿って凝集
酸化物が生成し、内部酸化中に亀裂を生じる場合もある
。850ooを越えると生成酸化物は箸るしく粗大化し
て接点材料として、適さない場合がある。
At lower temperatures, agglomerated oxides may form along the crystal grains of the outer shell metal body, and cracks may occur during internal oxidation. If it exceeds 850 oo, the produced oxide becomes extremely coarse and may not be suitable as a contact material.

酸素圧は0.21気圧以上であることがのぞましい。0
.2気圧以下であると、酸化温度が著るしく低い場合と
同様の問題が生じる。
Preferably, the oxygen pressure is 0.21 atm or higher. 0
.. If the pressure is less than 2 atmospheres, the same problems as in the case where the oxidation temperature is extremely low will occur.

酸化条件は、酸化のはじめから終りまで一定であっても
良く、途中で、たとえば外殻部金属体の酸化が完了した
時に変えても良い。酸化物形成元素としては、たとえば
カドミウムが用し、らる。
The oxidation conditions may be constant from the beginning to the end of the oxidation, or may be changed during the oxidation, for example, when the oxidation of the outer shell metal body is completed. As the oxide-forming element, for example, cadmium is used.

内部酸化によって生じる中心部と外殻部の材質的不均一
は酸化物形成元素濃度が高い程顕著になるが、カドミウ
ムは銀中に15%以上含有され得、材質的不均一が生じ
やすい。酸化物形成元素に、その10%以下の量の酸化
物の形態、粒度、分散状態を制御する他の添加物を含ん
でいてもよい。
Material non-uniformity between the center and the outer shell caused by internal oxidation becomes more pronounced as the concentration of oxide-forming elements increases, but cadmium can be contained in silver in an amount of 15% or more, and material non-uniformity is likely to occur. The oxide-forming elements may contain up to 10% of other additives that control the morphology, particle size, and dispersion of the oxide.

本発明の方法は、本質的には酸化物の形態、粒度分散状
態を制御することにあるから‐乙ある。
The method of the present invention essentially consists in controlling the morphology and particle size distribution state of the oxide.

添加物の代表として銀、アンチモン、インジウムをあげ
ることができる。添加物の量が10%以下と制限される
のは、10%を越えると、酸化物の形態、粒度、分散状
態を制御するだけでなく、酸化物の質を変えてしまうか
らである。
Representative additives include silver, antimony, and indium. The amount of additives is limited to 10% or less because if it exceeds 10%, it not only controls the morphology, particle size, and dispersion state of the oxide, but also changes the quality of the oxide.

酸化物粉末の径は0.5ム以上5一以下である。The diameter of the oxide powder is 0.5 mm or more and 5 mm or less.

本発明の方法は内部酸化によって中心部に生成する酸化
物が異常に微細化するのを改善するのであるから、0.
5ム以下では、その目的を達成することができない一方
5仏を越えると、十分な接点性能を与えることが困難に
なる。得られた銀合金線は第4図に示すように芯部2に
酸化物粉末として混合された酸化物3および内部酸化に
より生成された酸化物4が分散し、外殻部5には、内部
酸化により生成された酸化物4のみが分散している。本
発明の方法によって製造された合金線はへッダー加工に
より、第5図のようなリベット型複合接点aや円板状接
点bを連続的に、しかも歩隣よく製造することが可能に
なり、該合金の使用範囲が拡大するだけでなく、生産性
の向上が期待できる。
The method of the present invention improves the abnormal refinement of oxides generated in the center due to internal oxidation, so 0.
If it is less than 5 mm, the purpose cannot be achieved, while if it exceeds 5 mm, it becomes difficult to provide sufficient contact performance. As shown in FIG. 4, in the obtained silver alloy wire, the oxide 3 mixed as oxide powder and the oxide 4 generated by internal oxidation are dispersed in the core part 2, and the inner part is dispersed in the outer shell part 5. Only the oxide 4 produced by oxidation is dispersed. By header processing the alloy wire manufactured by the method of the present invention, it becomes possible to manufacture rivet-type composite contacts a and disc-shaped contacts b as shown in FIG. 5 continuously and in good order. Not only will the range of use of this alloy be expanded, but it can also be expected to improve productivity.

以下に実施例を示す。Examples are shown below.

実施例 1 銀一15M%カドミウム合金からなる肉厚25胸の外径
7W奴ぐ長さ10仇吻の円筒状金属体を作り頃霧法によ
って作製された25仇hesh以下の銀一1触れ%カド
ミウム合金粉末に、平均粒径2.5仏の酸化カドミウム
粉末を4.5wt%混合して4のn/めで成形した後7
00qoで窒素中で燐結した円柱の競結体を前記円筒状
金属体に挿入し、800℃で窒素中で加熱した後、押出
比1:20で熱間押出した。
Example 1 A cylindrical metal body with a wall thickness of 25 mm, an outer diameter of 7 W, and a length of 10 mm was made of a silver-15 M% cadmium alloy. After mixing 4.5wt% of cadmium oxide powder with an average particle size of 2.5 degrees to cadmium alloy powder and molding it at n/m of 4,
A cylindrical composite body phosphorized in nitrogen at 00qo was inserted into the cylindrical metal body, heated at 800° C. in nitrogen, and then hot extruded at an extrusion ratio of 1:20.

該押出材を中間暁鈍しながら冷間で伸線し2側ぐの線材
とした。線材断面における酸化カドミウムを分散した芯
部は約0.6柳ぐであった。該線材を75ぴ0で空気中
で加熱し内部酸化した。得られた合金線の硬度分布を第
2図bに示す。上記に詳述した本発明の方法によれば、
酸化物粉末の粒度、混合率内部酸化条件を適当に選ぶこ
とにより、たとえば硬度のような見掛け上の特性だけで
なく、断面における接点性能が安定な銀合金線を得るこ
とができる。
The extruded material was drawn in the cold while being dulled in the middle to obtain a two-way wire rod. The core portion in which cadmium oxide was dispersed in the cross section of the wire was approximately 0.6 mm. The wire was internally oxidized by heating in air at 75 mm. The hardness distribution of the obtained alloy wire is shown in FIG. 2b. According to the method of the invention detailed above,
By appropriately selecting the particle size of the oxide powder, the mixing ratio, and the internal oxidation conditions, it is possible to obtain a silver alloy wire with stable contact performance in cross section as well as apparent properties such as hardness.

のみならず、芯部においては、酸化される溶質の濃度が
低減されているので、{1}式からも明らかなように酸
化時間を短縮できる。実施例 2 銀一15M%カドミウム−IM%錫からなる肉厚25側
の外径7仇帆?長さ100腕の円筒状金属体を作り、噂
霧法によって作製された25肌esh以下の銀一1印K
%−/%錫合金粉末に平均粒径2.5Aの酸化カドミウ
ム粉末を4.5肌%混合して4ton/めで成形した後
700qoで窒素中で焼結した。
Furthermore, since the concentration of the solute to be oxidized is reduced in the core, the oxidation time can be shortened, as is clear from equation {1}. Example 2 Made of silver, 15M% cadmium, and IM% tin, the outer diameter of the wall thickness of 25 mm is 7 mm. A cylindrical metal body with a length of 100 arms was made, and a Ginichi 1 mark K of 25 skins or less was created using the gossip method.
%-/% tin alloy powder was mixed with 4.5% of cadmium oxide powder having an average particle size of 2.5A, molded at 4 tons/second, and then sintered at 700 qo in nitrogen.

円柱の晩結体を前記円筒状金属体に挿入し、800℃で
窒素中で加熱した後、押出比1:20で熱間押出した。
該押出材を中間焼鈍しながら冷間で伸線2肋◇の線材と
した。線材断面における酸化カドミウムを分散した芯部
は0.6側ぐであった。該線材を750℃で空気中で加
熱し内部酸化した。得られた合金線の硬度分布を第2図
cに示す。実験例 1 Ag−15wt%カドミウム合金の2肋ぐの線材を作成
し、75000において空気中および1気圧、酸素中で
加熱し、中心部まで内部酸化した。
The cylindrical late compact was inserted into the cylindrical metal body, heated at 800° C. in nitrogen, and then hot extruded at an extrusion ratio of 1:20.
The extruded material was cold-drawn into a wire rod with two ribs ◇ while being intermediately annealed. The core portion in which cadmium oxide was dispersed in the cross section of the wire had a width of 0.6. The wire was heated in air at 750° C. to internally oxidize it. The hardness distribution of the obtained alloy wire is shown in FIG. 2c. Experimental Example 1 A two-walled wire rod of Ag-15wt% cadmium alloy was prepared and heated at 75,000 in air and 1 atm in oxygen to internally oxidize it to the center.

得られた線材の硬度分布を第1図aに示す。中心部はい
ずれも微細な酸化物を分散し、外殻部と異なる紙議を有
していた。
The hardness distribution of the obtained wire is shown in Figure 1a. The center part had fine oxides dispersed in each case and had a different texture from the outer shell part.

実施例 3 実施例1によって得られた合金線を用いて、ヘッダー加
工により第5図aに示す如き4側少の複合接点を製作し
た。
Example 3 Using the alloy wire obtained in Example 1, a composite contact with four sides as shown in FIG. 5a was manufactured by header processing.

複合接点の断面組議は第4図のように外殻部1と中心部
2では箸るしく異っていたが、ASTM試験(100V
.30A)結果第6図の如き、開閉回数と消耗量を示し
、試験後の接点表面部は平滑であった。実施例 4 実施例3により製作た複合援点を220V.125船で
遮断試験(0試験)した。
As shown in Figure 4, the cross-sectional assembly of the composite contact was significantly different between the outer shell part 1 and the center part 2, but in the ASTM test (100V
.. 30A) Results As shown in Figure 6, the number of openings and closings and the amount of wear were shown, and the contact surface portion after the test was smooth. Example 4 The composite support point produced according to Example 3 was heated to 220V. A cutoff test (0 test) was conducted on 125 ships.

3回の作動による消耗量は15側夕/1対以下で表面は
平滑であった。
The amount of wear due to three operations was less than 15 days/1 pair, and the surface was smooth.

実験例 2実験例1によって製作された合金線を用いて
、実施例3と同様の複合接点を製作し、220V.12
50Aで遮断試験した。
Experimental Example 2 Using the alloy wire manufactured in Experimental Example 1, a composite contact similar to that in Example 3 was manufactured, and a 220V. 12
A cut-off test was conducted at 50A.

3回の作動による消耗量は平均4仇奴夕/1対であった
The average amount of wear due to three activations was 4 enemies per pair.

試験後の接点の中心部は凹状になっていた。After the test, the center of the contact was concave.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は内部酸化中の線材の横断面を示す。 第2図は線材の怪方向の硬度分布でありaは従釆の製法
によるものb,cは、本発明の方法により製造された線
材の硬度分布である第3図は、本発明の方法によるa複
合体およびb線材である。 1は円柱状金属体、2は円筒状金属体、3は複合体であ
る。 第4図は本発明の方法によって得られた合金線の断面の
模式図で2は芯部、5は外殻部、3および4は酸化物で
ある。第5図は本発明の方法によって得られた合金線を
用いて製造されたりペット型複合接点および円板状接点
bの断面である。1は外殻部、2は中心部である。 第6図はASTM試験による開閉回数と消耗量の関係で
ある。 才!図 才2図 才3図 才4図 才5図 才6図
FIG. 1 shows a cross section of the wire during internal oxidation. Figure 2 shows the hardness distribution of the wire rod in the opposite direction, a is obtained by the manufacturing method of the secondary method, b and c are the hardness distribution of the wire rod manufactured by the method of the present invention, and Figure 3 is the hardness distribution of the wire rod manufactured by the method of the present invention. A composite and b wire. 1 is a cylindrical metal body, 2 is a cylindrical metal body, and 3 is a composite body. FIG. 4 is a schematic cross-sectional view of an alloy wire obtained by the method of the present invention, in which 2 is a core, 5 is an outer shell, and 3 and 4 are oxides. FIG. 5 is a cross section of a pet-type composite contact and a disc-shaped contact b manufactured using the alloy wire obtained by the method of the present invention. 1 is the outer shell portion, and 2 is the center portion. FIG. 6 shows the relationship between the number of openings and closings and the amount of wear as determined by the ASTM test. Talent! 2 figures, 3 figures, 4 figures, 5 figures, 6 figures

Claims (1)

【特許請求の範囲】 1 酸化物を分散した銀合金線の製造において酸化物形
成元素を固溶体として含有する円筒状外殻部と、外殻部
より酸化物構成元素の少ない銀合金粉末と酸化物粉末を
混合、成形、又は更に焼結して成る円柱状芯部により円
柱状複合体を構成し熱間加工又は冷間加工により銀合金
で被覆された銀−酸化物合金線とした後、空気中又は酸
素中又はその組合せにより加熱酸化し銀−酸化物合金線
とすることを特徴とする酸化物分散型銀合金線の製造方
法。 2 円柱状芯部が複合体の直径の7/100以上1/3
以下である特許請求の範囲第1項記載の酸化物分散型銀
合金線の製造方法。 3 酸化物の混合率が0.5%以上10Vol%以下で
ある特許請求の範囲第1項又は第2項記載の酸化物分散
型銀合金線の製造方法。 4 酸化物の径が0.5μ以上5μ以下である特許請求
の範囲第1項又は第2項又は第3項記載の酸化物分散型
銀合金線の製造方法。 5 酸化物粉末が酸化カドミウムである特許請求の範囲
第1項、第2項、第3項又は第4項記載の酸化物分散型
銀合金線の製造方法。 6 銀合金粉末が噴霧粉末である特許請求の範囲第1項
、第2項、第3項、第4項又は第5項記載の酸化物分散
型銀合金線の製造方法。 7 酸化物形成元素がカドミウムである特許請求の範囲
第1項、第2項、第3項又は第6項記載の酸化物分散型
銀合金線の製造方法。 8 酸化物形成元素にその10%以下の錫、アンチモン
、インジウムを含有する特許請求の範囲第1項、第2項
、第3項又は第6項記載の酸化物分散型銀合金線の製造
方法。
[Scope of Claims] 1. In the production of a silver alloy wire in which oxides are dispersed, a cylindrical outer shell portion containing an oxide-forming element as a solid solution, a silver alloy powder and an oxide containing fewer oxide constituent elements than the outer shell portion. A cylindrical composite is formed from a cylindrical core formed by mixing, molding, or further sintering the powder, and after forming a silver-oxide alloy wire coated with a silver alloy by hot working or cold working, the wire is heated with air. 1. A method for producing an oxide-dispersed silver alloy wire, the method comprising heating and oxidizing it in oxygen or oxygen or a combination thereof to obtain a silver-oxide alloy wire. 2 The cylindrical core is 7/100 or more and 1/3 of the diameter of the composite.
A method for manufacturing an oxide-dispersed silver alloy wire according to claim 1, which is as follows. 3. The method for producing an oxide-dispersed silver alloy wire according to claim 1 or 2, wherein the mixing ratio of the oxide is 0.5% or more and 10 Vol% or less. 4. The method for manufacturing an oxide-dispersed silver alloy wire according to claim 1, 2, or 3, wherein the diameter of the oxide is 0.5 μ or more and 5 μ or less. 5. The method for producing an oxide-dispersed silver alloy wire according to claim 1, 2, 3, or 4, wherein the oxide powder is cadmium oxide. 6. The method for producing an oxide-dispersed silver alloy wire according to claim 1, 2, 3, 4, or 5, wherein the silver alloy powder is a spray powder. 7. The method for producing an oxide-dispersed silver alloy wire according to claim 1, 2, 3, or 6, wherein the oxide-forming element is cadmium. 8. A method for producing an oxide-dispersed silver alloy wire according to claim 1, 2, 3, or 6, wherein the oxide-forming element contains 10% or less of tin, antimony, or indium. .
JP1527176A 1976-02-14 1976-02-14 Method for manufacturing oxide-dispersed silver alloy wire Expired JPS6023192B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1527176A JPS6023192B2 (en) 1976-02-14 1976-02-14 Method for manufacturing oxide-dispersed silver alloy wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1527176A JPS6023192B2 (en) 1976-02-14 1976-02-14 Method for manufacturing oxide-dispersed silver alloy wire

Publications (2)

Publication Number Publication Date
JPS5298664A JPS5298664A (en) 1977-08-18
JPS6023192B2 true JPS6023192B2 (en) 1985-06-06

Family

ID=11884186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1527176A Expired JPS6023192B2 (en) 1976-02-14 1976-02-14 Method for manufacturing oxide-dispersed silver alloy wire

Country Status (1)

Country Link
JP (1) JPS6023192B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63133577U (en) * 1987-02-20 1988-09-01

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63133577U (en) * 1987-02-20 1988-09-01

Also Published As

Publication number Publication date
JPS5298664A (en) 1977-08-18

Similar Documents

Publication Publication Date Title
US4243413A (en) Integrated Ag-SnO alloy electrical contact materials
JP3789304B2 (en) Method for producing Ag-ZnO-based electrical contact material and electrical contact material thereof
US3545067A (en) Method of making preoxidized silver-cadmium oxide material having a fine silver backing
US3930849A (en) Electrical contact material of the ag-cdo type and method of making same
JPS6023192B2 (en) Method for manufacturing oxide-dispersed silver alloy wire
KR20090062864A (en) Agzno electric contact material
US4112197A (en) Manufacture of improved electrical contact materials
US3674446A (en) Electrical contact material
US4514238A (en) Internally oxidized Ag-Sn-Bi alloy electrical contact materials
JPS60236413A (en) Method of producing oxide dispersive silver alloy electric contact
JPS6048578B2 (en) electrical contact materials
JPS598010B2 (en) Electrical contact materials and manufacturing methods
JPS6147894B2 (en)
JPS633933B2 (en)
CA1072265A (en) Manufacture of improved electrical contact materials
JPS633932B2 (en)
JPS6231058B2 (en)
JPS5918808B2 (en) Method for manufacturing oxide dispersed alloy wire
JP2587437B2 (en) Method for producing Ag-oxide composite strip for electrical contact
JPS633934B2 (en)
JPS598009B2 (en) Method for manufacturing electrical contact materials
JPH0530889B2 (en)
KR0141671B1 (en) Method for manufacturing ag-oxidation chip using an internal oxidation method
JP2777120B2 (en) Ag-oxide-based material and method for producing the same
JPS6254043A (en) Manufacture of silver-tin oxide type electrical contact point material