JPH0512420B2 - - Google Patents

Info

Publication number
JPH0512420B2
JPH0512420B2 JP62221631A JP22163187A JPH0512420B2 JP H0512420 B2 JPH0512420 B2 JP H0512420B2 JP 62221631 A JP62221631 A JP 62221631A JP 22163187 A JP22163187 A JP 22163187A JP H0512420 B2 JPH0512420 B2 JP H0512420B2
Authority
JP
Japan
Prior art keywords
erosion
resistance
cavitation
abrasion
ceramic particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62221631A
Other languages
Japanese (ja)
Other versions
JPS6465276A (en
Inventor
Keiichi Matsumura
Masuo Morita
Takashi Kubota
Kentaro Akaha
Hisashi Hiraishi
Minoru Hineno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Kubota Corp
Original Assignee
Fuji Electric Co Ltd
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Kubota Corp filed Critical Fuji Electric Co Ltd
Priority to JP62221631A priority Critical patent/JPS6465276A/en
Publication of JPS6465276A publication Critical patent/JPS6465276A/en
Publication of JPH0512420B2 publication Critical patent/JPH0512420B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3046Co as the principal constituent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Hydraulic Turbines (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、水車部品やポンプ部品等の材料とし
て有用な耐キヤビテーシヨン性および耐土砂摩耗
用性にすぐれた金属−セラミツク複合材料に関す
る。 〔従来の技術〕 揚水発電所における落水により運転する水車や
揚水を目的とするポンプ、あるいは水車とポンプ
を兼ねたポンプ水車等は、長期の使用により、キ
ヤビテーシヨン壊食や土砂摩耗浸食をうける。 キヤビテーシヨン壊食は、水の流れの中の速度
変化に伴う圧力変化によつて生じる。すなわち、
流体の局部的な圧力がその流体温度における蒸気
圧以下に低下するとキヤビテイ(気泡)が生じ、
次に圧力が蒸気圧まで上昇するとキヤビテイの崩
壊が始まり、キヤビテイ崩壊の際に衝撃波が生じ
る。この圧力変化の繰返しにより部材が破壊され
るのがキヤビテーシヨン壊食である。他方、土砂
摩耗浸食は、水中に土砂が混入している場合に、
その土砂が水と共に部材表面に衝突・接触し、そ
の繰返しにより部材に摩耗が生じることをいう。 上記キヤビテーシヨン壊食と土砂摩耗浸食とが
特に問題となる水車部品について、フランシス水
車を例に挙げて説明する。第1図はフランシス水
車の軸心を通る要部断面を示している。1はケー
シング、3は羽根、5はランナであり、圧力水は
ケーシング1からゲイドペン2を介してランナの
羽根3の入口側4から羽根3に流入し、水車ラン
ナ5に水動力を加えて仕事を伝達したのち、羽根
3の出口側6から流出する。この水動力の仕事に
より水車ランナ5が回転する。第2図は、壊食発
生部を説明するためのランナ5近傍断面説明図で
あり、第2図のP矢視図およびQ矢視図をそれぞ
れ第3図および第4図に示す。図中、7は羽根3
の入口側6において圧力水が直接当る正圧面、8
は羽根3の正圧面と反対側の負圧面である。キヤ
ビテーシヨン壊食が生じ易い個所は前記のように
流水速度の変化による圧力変化が生起する個所で
あり、図中斜線で示したA領域、すなわちランナ
の羽根3の負圧面8側におけるランナバンド10
の付根部である。また、水車部品の土砂摩耗浸食
が生じ易い個所は、前記キヤビテーシヨン壊食が
生じ易い領域とほぼ同じである。 水車ランナは、キヤビテーシヨン壊食や土砂摩
耗浸食をうけると初期の効率を維持できなくな
り、その寿命は壊食・浸食によつて大きく左右さ
れるので、水車ランナは、できるだけ壊食・浸食
に対する抵抗性にすぐれたものであることを要す
る。水車ランナの壊食に最も大きな関係をもつの
は、その材質および羽根の形状であることが知ら
れているが、羽根の形状は、当初の設計効率との
関係もあるので、壊食防止の観点だけから一方的
に形状変更を加えることはできない。このため、
壊食防止は材質の面から検討されるのが一般であ
り、従来より耐キヤビテーシヨン壊食性と耐土砂
摩耗浸食性の点から、13Cr−3.8Ni系鋳鋼
(A6NM)に代表されるステンレス鋳鋼が広く使
用されている。 〔発明が解決しようとする問題点〕 ステンレス鋳鋼品は、水車部品やポンプ部品等
の材料として、他材料に比しすぐれているけれど
も、その耐キヤビテーシヨン壊食性、耐土砂摩耗
浸食性は必ずしも十分ではなく、水車ランナで
は、数年の使用により水車効率が著しく低下して
しまうものも少くない。 本発明は上記に鑑み、水車部品やポンプ部品等
の耐キヤビテーシヨン壊食性および耐土砂摩耗浸
食性を改善するための新規材料を提供しようとす
るものである。 〔問題点を解決するための手段および作用〕 本発明の耐キヤビテーシヨン・耐土砂摩耗用材
料は、金属基地と、該金属基地中に分散相として
混在するセラミツク粒子とからなる複合組織を有
する、金属−セラミツク複合材料であつて、 前記金属基地は、Co:50〜65%,Cr:10〜40
%,W:5〜15%,Fe:4.5%以下、および不可
避不純物からなるコバルト基合金であり、 前記セラミツク粒子は、炭化物系セラミツク粒
子であつて、複合組織に占める割合は5〜30重量
%であることを特徴としている。 水車部品等に生じるキヤビテーシヨン壊食は、
前述のようにキヤビテイが崩壊する際の衝撃圧の
繰返しによる衝撃疲労の1種であるから、部品材
料の強度・靱性および加工硬化能の向上により、
その耐キヤビテーシヨン性の強化が可能となる。
また、同種の材料では、硬度の高いもの程、耐キ
ヤビテーシヨン性能にすぐれる傾向にある。本発
明は、基材金属の材質の選択、およびセラミツク
粒子との複合組織化によつて、キヤビテーシヨン
壊食に対する抵抗性を強化し、併せて土砂摩耗浸
食に対する抵抗性を向上させている。すなわち、
本発明の複合材料における基地金属であるコバル
ト基合金は、それ自身、他の金属材料に比し、耐
キヤビテーシヨン性能の点で良好な強度・靱性お
よび加工硬化能を備えている金属材料であり、他
方セラミツク粒子もまた強度が高く、極めて硬質
の粒子であるので、基地金属中に分散して、基地
の強度および硬度を大きく高め、かつその粒子の
分散強化機構により転位の移動を効果的に阻止
し、結果として従来の金属材料では得られない卓
抜した耐キヤビテーシヨン壊食性を実現する。ま
た、基地中のセラミツク粒子の分散効果によつて
高硬度が与えられる結果、土砂摩耗浸食に対して
も従来の金属材料では得られないすぐれた抵抗性
が確保されるのである。 基地金属に分散相として混在するセラミツク粒
子は、前記のように高強度・高靱性かつ高硬度で
ある程、好ましく、また基地金属との濡れ性がよ
く、その界面において強固に接合していることが
必要である。かかる観点から、炭化物系セラミツ
ク、就中炭化クロム(Cr3C2)、炭化珪素(SiC)、
炭化タングステン(WC)等が好ましく用いられ
る。その粒径は特に限定されないけれども、複合
組織に均一性、および転位阻止効果等の点から、
0.1〜10μmの範囲が適当である。 複合組織におけるセラミツク粒子の混在量(重
量%)〔セラミツク粒子/(基地金属+セラミツ
ク粒子)×100〕は、5〜60重量%とする。このセ
ラミツク粒子の混在量は、耐キヤビテーシヨン壊
食性および耐土砂摩耗浸食性との総合評価にもと
づいて決定されたものであり、5重量%を下限値
とするのは、それより少いと、耐キヤビテーシヨ
ン壊食性および耐土砂摩耗浸食性を十分に確保し
難いからであり、他方60重量%を上限とするの
は、それを越えると、複合材料の靱性の劣化によ
り、却つて耐キヤビテーシヨン壊食性の低下をみ
るからである。 本発明の複合材料の基地を構成するコバルト基
合金の成分限定理由を示せば次のとおりである。 Co:50〜65% Coは基地金属の基本成分である。Coは強度お
よび耐食性の確保に欠かせぬ元素であり、オース
テナイト地の安定化にも強力な作用を有する。ま
た、耐キヤビテーシヨン壊食性の向上に奏効す
る。これらの特性を確保するために、少なくとも
50%以上であることを要する。 Cr:10〜40% Crは耐食性、殊に耐粒界腐食性の向上に大き
な効果を示し、耐応力腐食割れ性の改善に奏効す
る。また、組織の安定化、強度向上効果を有す
る。ただし、Crは強力なフエライト生成元素で
あるので、オーステナイト地確保のためには、オ
ーステナイト生成元素(Co、Mn等)との量的な
バランスを考慮すべきであり、また多量の添加は
靱性の急激な低下を招く。これらの点から、10〜
40%とする。 W:5〜15% Wは強度向上に著効を示し、土砂摩耗に対する
抵抗性の強化と耐キヤビテーシヨン壊食性の強化
に奏効する。このためには少なくとも5%の添加
を必要とするが、多量に添加すると靱性の劣化を
引起すので15%を上限とする。 Fe:4.5%以下 Feは、コバルト合金に不可避的に付随する通
常の不純分である。その量が4.5%をこえると、
耐食性が著しく損なわれるので、4.5%を上限と
する。 基地金属は上記Co,Cr,W,Feを必須元素と
し、所望により、Coの一部が0.5〜5%のAl、0.5
〜2%のNb、0.5〜2%のTi、0.5〜2%のCu等
の1種もしくは2種以上の元素を以て置換された
ものであつてもよい。 なお、基地金属は、C,Si,Mn,P,S等の
混在が許容される。例えば、Cは1.5%以下、Si
は1.5%以下、Mnは1.5%以下、Pは0.3%以下、
Sは0.3%以下混入しても本発明の趣旨が損なわ
れることはない。 本発明の複合材料は、鋳造法、焼結法、または
溶接法等により水車部品、ポンプ部品等に適用す
ることができる。鋳造法によれば、基地金属の溶
湯にセラミツク粉末を添加混合し、均一な固液混
合物として目的とする部品を鋳造することがで
き、また焼結法によれば、基地金属の粉末とセラ
ミツク粉末の均一な粉末混合物を焼結材料とし、
加圧成形および焼結工程を経て目的とする部材を
得ることができる。また、溶接法による場合は、
基地金属の粉末とセラミツク粉末との粉末混合物
を溶接材料とし、例えばタングステン不活性ガス
アーク溶接(TIG溶接)やプラズマ粉体溶接
(PAT溶接)法により、部材表面に複合組織に有
する肉盛層を形成することができる。特に、溶接
法による場合は、部材の表面全体に対してはむろ
んのこと、その一部にのみ選択的に肉盛層を形成
することができるので、水車部品等にあつては、
第2図〜第4図に示したように、耐キヤビテーシ
ヨン壊食や土砂摩耗浸食の生じ易い部分(A領
域)だけを肉盛層で被覆することとすれば、設計
上および価格上、最も効率よく部材の保護と耐久
性の向上を図ることができる。溶接法により形成
される肉盛層は、溶接入熱により部材表面に十分
に融着し接合強度が高いので、剥離の問題もな
く、長期に亘つて保護層として機能する。なお、
溶接法等を適用する場合の原料粉末混合物は、ハ
ンドリング性や得られる複合組織の均一性等の点
から、適当な粒径に造粒された造粒粉(好ましく
は、φ100〜200μm)として使用するとよい。 〔実施例〕 金属と炭化物系セラミツク粒子とからなる粉末
混合物、または金属単体粉末を溶接肉盛材とし、
TIG溶接法により、13Cr−3.8Ni系鋳鋼板材
(10W×200L×50t,mm)の板面に層厚3〜4mmの
肉盛層を形成した。これらの供試材から試片を切
り出し、キヤビテーシヨン壊食試験、および土砂
摩耗試験を行つた。第1表に、供試材と、それぞ
れの試験結果を示す。表中、No.1〜12は発明例、
No.11〜14は比較例である。比較例No.1〜14のう
ち、No.11は、セラミツク粒子を含まない例、No.12
は適量のセラミツク粒子を含んでいるが、基地金
属が本発明の規定の成分組成からはずれている
例、No.13はセラミツク粒子量が本発明の上限規定
値からはずれている例、No.14は、従来の水車ラン
ナ材料として汎用されている13Cr−3.8Ni鋳鋼
(A6NM)の鋳造材である。表中、「総合評価」
の欄における「◎」は、効果顕著、「○」は効果
有、「△」は効果小、「×」は効果なし、を表わし
ている。 〔I〕キヤビテーシヨン壊食試験 振動式壊食試験法により、下記条件で試片の壊
食減量(mg/15Hr)を測定する。 周波数:19.0KHz、環境:水中(22±1℃)、
最大変位振幅:30μm、時間:15Hr 〔〕土砂摩耗試験 第1図参照。容器(内径:φ220)(a)の側面に
試片(TP)を固定し、容器内の土砂混入酸水溶
液(PH4、土砂66重量%)(b)を翼(c)の高速回転
(1700rpm)により攪拌して高速流を形成し、50
時間後の試片の摩耗減量を測定する。表中、「土
砂摩耗食比」は、従来の水車ランナ材である
13Cr−3.8Ni鋳鋼の摩耗減量を1とする試験片の
摩耗減量比をあらわしている。 第1表に示したように、発明例は、従来材であ
るNo.14(13Cr−3.8Ni鋳鋼)に比し、キヤビテー
シヨン壊食量は著しく少く、また土砂摩耗量も大
幅に減少し、耐キヤビテーシヨン性および耐土砂
摩耗性のいずれにもすぐれている。なお、他の比
較例No.11〜13については、耐キヤビテーシヨン壊
食性および耐土砂摩耗性の両特性の総合的評価に
おいていずれも発明例の材質に及ばない。
[Industrial Application Field] The present invention relates to a metal-ceramic composite material that is useful as a material for water turbine parts, pump parts, etc. and has excellent cavitation resistance and earth and sand abrasion resistance. [Prior Art] Water turbines operated by falling water in pumped storage power plants, pumps for the purpose of pumping water, or pump water turbines that function as both a water wheel and a pump are subject to cavitation erosion and erosion due to abrasion of earth and sand after long-term use. Cavitation erosion is caused by pressure changes associated with velocity changes in a water stream. That is,
When the local pressure of a fluid decreases below the vapor pressure at the fluid temperature, cavities (bubbles) are formed.
Next, when the pressure rises to vapor pressure, the cavity begins to collapse, and a shock wave is generated when the cavity collapses. Cavitation erosion is the destruction of a member due to repeated pressure changes. On the other hand, sediment abrasion erosion occurs when sediment is mixed in water.
The earth and sand collide with and come into contact with the surface of the component along with the water, and this repetition causes wear on the component. A description will be given of water turbine parts in which cavitation erosion and soil abrasion erosion are particularly problematic, using a Francis water turbine as an example. Figure 1 shows a cross section of the main part of a Francis turbine passing through its axis. 1 is a casing, 3 is a blade, and 5 is a runner. Pressure water flows from the casing 1 to the blade 3 from the inlet side 4 of the blade 3 of the runner via the gade pen 2, and applies hydraulic power to the water turbine runner 5 to perform work. After being transmitted, it flows out from the outlet side 6 of the blade 3. The water wheel runner 5 rotates due to the work of this water power. FIG. 2 is an explanatory cross-sectional view of the vicinity of the runner 5 for explaining the portion where erosion occurs, and FIGS. 3 and 4 respectively show a view in the direction of the P arrow and a view in the direction of the Q arrow in FIG. 2. In the diagram, 7 is the blade 3
a positive pressure surface directly hit by pressure water on the inlet side 6 of the
is the negative pressure side of the blade 3 opposite to the positive pressure side. The locations where cavitation erosion is likely to occur are locations where pressure changes occur due to changes in flowing water velocity as described above, and are the areas A indicated by diagonal lines in the figure, that is, the runner band 10 on the suction surface 8 side of the runner blade 3.
It is the base of the. In addition, the areas where the water turbine parts are likely to undergo earth and sand abrasion erosion are almost the same as the areas where the cavitation erosion is likely to occur. If a water turbine runner is subjected to cavitation erosion or sediment abrasion erosion, it will no longer be able to maintain its initial efficiency, and its lifespan will be greatly affected by erosion and erosion. It must be of excellent quality. It is known that the material and the shape of the blades have the greatest influence on erosion of a water turbine runner, but the shape of the blades also has a relationship with the efficiency of the original design, so it is important to prevent corrosion. It is not possible to unilaterally change the shape solely from a viewpoint. For this reason,
Corrosion prevention is generally considered from the perspective of materials, and stainless steel cast steels such as 13Cr-3.8Ni cast steel (A6NM) have been widely used from the viewpoint of cavitation corrosion resistance and soil abrasion erosion resistance. It is used. [Problems to be solved by the invention] Stainless steel casting products are superior to other materials as materials for water turbine parts, pump parts, etc., but their cavitation erosion resistance and sediment abrasion and erosion resistance are not necessarily sufficient. In many cases, the efficiency of water turbine runners decreases significantly after several years of use. In view of the above, it is an object of the present invention to provide a new material for improving the cavitation erosion resistance and soil abrasion erosion resistance of water turbine parts, pump parts, etc. [Means and effects for solving the problems] The anti-cavitation and anti-sediment wear material of the present invention is made of a metal having a composite structure consisting of a metal base and ceramic particles mixed as a dispersed phase in the metal base. - A ceramic composite material, wherein the metal base comprises Co: 50 to 65% and Cr: 10 to 40%.
%, W: 5 to 15%, Fe: 4.5% or less, and inevitable impurities, and the ceramic particles are carbide-based ceramic particles and account for 5 to 30% by weight in the composite structure. It is characterized by being Cavitation erosion that occurs in water turbine parts, etc.
As mentioned above, this is a type of impact fatigue due to repeated impact pressure when the cavity collapses, so by improving the strength, toughness and work hardening ability of the component material,
It becomes possible to strengthen its cavitation resistance.
Furthermore, among similar materials, those with higher hardness tend to have better cavitation resistance. The present invention enhances the resistance to cavitation erosion and improves the resistance to earth and sand abrasion erosion by selecting the material of the base metal and forming a composite structure with ceramic particles. That is,
The cobalt-based alloy, which is the base metal in the composite material of the present invention, is itself a metal material that has better strength, toughness, and work hardening ability in terms of cavitation resistance than other metal materials, On the other hand, ceramic particles also have high strength and are extremely hard particles, so they can be dispersed in the base metal to greatly increase the strength and hardness of the base, and the dispersion-strengthening mechanism of the particles can effectively prevent the movement of dislocations. As a result, it achieves outstanding cavitation and erosion resistance that cannot be obtained with conventional metal materials. Furthermore, as a result of the high hardness imparted by the dispersion effect of the ceramic particles in the matrix, excellent resistance to earth and sand abrasion and erosion is ensured, which cannot be obtained with conventional metal materials. The ceramic particles mixed in the base metal as a dispersed phase should preferably have high strength, high toughness, and high hardness as described above, and should also have good wettability with the base metal and be firmly bonded at the interface. is necessary. From this point of view, carbide ceramics, especially chromium carbide (Cr 3 C 2 ), silicon carbide (SiC),
Tungsten carbide (WC) or the like is preferably used. Although the particle size is not particularly limited, from the viewpoint of uniformity in the composite structure and dislocation prevention effect,
A range of 0.1 to 10 μm is suitable. The amount (wt%) of ceramic particles mixed in the composite structure [ceramic particles/(base metal + ceramic particles) x 100] is 5 to 60 wt%. The amount of ceramic particles mixed in is determined based on a comprehensive evaluation of cavitation erosion resistance and earth and sand abrasion erosion resistance. This is because it is difficult to ensure sufficient erosion resistance and soil abrasion and erosion resistance.On the other hand, the reason why the upper limit is 60% by weight is that if it exceeds 60%, the toughness of the composite material deteriorates, and the cavitation erosion resistance deteriorates. This is because you see. The reasons for limiting the components of the cobalt-based alloy constituting the base of the composite material of the present invention are as follows. Co: 50-65% Co is the basic component of the base metal. Co is an essential element for ensuring strength and corrosion resistance, and also has a strong effect on stabilizing austenite. It is also effective in improving cavitation erosion resistance. To ensure these characteristics, at least
Must be 50% or more. Cr: 10-40% Cr has a great effect on improving corrosion resistance, especially intergranular corrosion resistance, and is effective in improving stress corrosion cracking resistance. It also has the effect of stabilizing the structure and improving strength. However, since Cr is a strong ferrite-forming element, the quantitative balance with the austenite-forming elements (Co, Mn, etc.) should be considered in order to secure the austenite region, and addition of a large amount may affect the toughness. This results in a rapid decline. From these points, 10~
It shall be 40%. W: 5 to 15% W has a remarkable effect on improving strength, and is effective in enhancing resistance to earth and sand abrasion and cavitation erosion resistance. For this purpose, it is necessary to add at least 5%, but adding a large amount causes deterioration of toughness, so the upper limit is set at 15%. Fe: 4.5% or less Fe is a normal impurity that inevitably accompanies cobalt alloys. If the amount exceeds 4.5%,
Since corrosion resistance is significantly impaired, the upper limit is set at 4.5%. The base metal has the above-mentioned Co, Cr, W, and Fe as essential elements, and if desired, a part of Co is 0.5 to 5% Al, 0.5
It may be substituted with one or more elements such as ~2% Nb, 0.5~2% Ti, and 0.5~2% Cu. Note that the base metal may include C, Si, Mn, P, S, and the like. For example, C is 1.5% or less, Si
is 1.5% or less, Mn is 1.5% or less, P is 0.3% or less,
Even if 0.3% or less of S is mixed, the purpose of the present invention will not be impaired. The composite material of the present invention can be applied to water turbine parts, pump parts, etc. by casting, sintering, welding, or the like. According to the casting method, ceramic powder is added to and mixed with the molten base metal, and the desired part can be cast as a uniform solid-liquid mixture, and according to the sintering method, the base metal powder and ceramic powder are mixed together. A uniform powder mixture of is used as the sintering material,
The desired member can be obtained through pressure molding and sintering steps. In addition, when using the welding method,
A powder mixture of base metal powder and ceramic powder is used as a welding material, and a build-up layer with a composite structure is formed on the surface of the component by, for example, tungsten inert gas arc welding (TIG welding) or plasma powder welding (PAT welding). can do. In particular, when using the welding method, it is possible to selectively form a build-up layer not only on the entire surface of the member, but also only on a part of it.
As shown in Figures 2 to 4, if only the areas where anti-cavitation erosion and soil abrasion erosion are likely to occur (area A) are covered with a built-up layer, it is most efficient in terms of design and cost. It is possible to protect components and improve durability. The build-up layer formed by the welding method is sufficiently fused to the surface of the component by the welding heat input and has high bonding strength, so it functions as a protective layer for a long time without any problem of peeling. In addition,
When applying the welding method, etc., the raw powder mixture is used as granulated powder (preferably φ100 to 200 μm) that is granulated to an appropriate particle size from the viewpoint of handling properties and uniformity of the resulting composite structure. It's good to do that. [Example] A powder mixture consisting of metal and carbide ceramic particles or a single metal powder is used as a welding overlay material,
A built-up layer with a thickness of 3 to 4 mm was formed on the surface of a 13Cr-3.8Ni cast steel plate (10 W x 200 L x 50 t , mm) by TIG welding. Specimens were cut from these test materials and subjected to cavitation erosion tests and earth and sand abrasion tests. Table 1 shows the test materials and their test results. In the table, No. 1 to 12 are invention examples,
Nos. 11 to 14 are comparative examples. Among Comparative Examples No. 1 to 14, No. 11 is an example that does not contain ceramic particles, and No. 12 is an example that does not contain ceramic particles.
contains an appropriate amount of ceramic particles, but the base metal deviates from the specified composition of the present invention, No. 13 is an example in which the amount of ceramic particles deviates from the upper limit specified by the present invention, No. 14 is a cast material of 13Cr-3.8Ni cast steel (A6NM), which is commonly used as a conventional water turbine runner material. In the table, "Comprehensive evaluation"
In the column, "◎" indicates a significant effect, "○" indicates an effect, "△" indicates a small effect, and "x" indicates no effect. [I] Cavitation erosion test Measure the erosion loss (mg/15Hr) of the specimen under the following conditions using the vibration erosion test method. Frequency: 19.0KHz, Environment: Underwater (22±1℃),
Maximum displacement amplitude: 30μm, time: 15Hr [] Earth and sand abrasion test See Figure 1. A sample (TP) is fixed on the side of a container (inner diameter: φ220) (a), and the acid aqueous solution containing soil and sand (PH4, 66% by weight of soil) (b) is rotated at high speed (1700 rpm) by a blade (c). Stir by to form a high-velocity flow, 50
Measure the abrasion loss of the specimen after a certain period of time. In the table, "earth and sand abrasion corrosion ratio" is for conventional water turbine runner material.
It represents the wear loss ratio of the test piece, assuming that the wear loss of 13Cr-3.8Ni cast steel is 1. As shown in Table 1, compared to the conventional material No. 14 (13Cr-3.8Ni cast steel), the invention example has a significantly smaller amount of cavitation erosion and a significant reduction in the amount of earth and sand abrasion, resulting in improved cavitation resistance. It has excellent durability and soil abrasion resistance. In addition, regarding the other comparative examples Nos. 11 to 13, all of them are inferior to the material of the invention example in the comprehensive evaluation of both cavitation erosion resistance and earth and sand abrasion resistance properties.

〔発明の効果〕〔Effect of the invention〕

本発明の複合材料は、耐キヤビテーシヨン壊食
性および耐土砂摩耗浸食性にすぐれているので、
例えば水車部品やポンプ部品に適用することによ
り、これらの部品のキヤビテーシヨン壊食や土砂
摩耗浸食を効果的に抑制し、長期に亘る安定した
使用を可能にする。
The composite material of the present invention has excellent cavitation erosion resistance and soil abrasion erosion resistance.
For example, by applying it to water turbine parts and pump parts, cavitation erosion and soil abrasion erosion of these parts can be effectively suppressed, allowing stable use over a long period of time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は水車の要部断面図、第2図は水車の壊
食発生部説明図、第3図は第2図のP矢視図、第
4図は第2図のQ矢視図、第5図は土砂摩耗試験
要領説明図である。 1……ケーシング、2……ガイド弁、3……羽
根、5……水車ランナ。
Fig. 1 is a sectional view of the main part of the water turbine, Fig. 2 is an explanatory diagram of the erosion-generated part of the water turbine, Fig. 3 is a view in the direction of the P arrow in Fig. 2, Fig. 4 is a view in the direction of the Q arrow in Fig. 2, FIG. 5 is an explanatory diagram of soil abrasion test procedures. 1...Casing, 2...Guide valve, 3...Blade, 5...Water wheel runner.

Claims (1)

【特許請求の範囲】[Claims] 1 金属基地と、該金属基地中に分散相として混
在するセラミツク粒子とからなる複合組織を有
し、前記金属基地は、Co:50〜65%,Cr:10〜
40%,W:5〜15%,Fe:4.5%以下、および不
可避不純物からなるコバルト基合金であり、前記
セラミツク粒子は、炭化物系セラミツク粒子であ
つて、複合組織に占める割合は5〜60重量%であ
ることを特徴とする耐キヤビテーシヨン・耐土砂
摩耗用複合材料。
1 It has a composite structure consisting of a metal base and ceramic particles mixed as a dispersed phase in the metal base, and the metal base has Co: 50 to 65%, Cr: 10 to
40%, W: 5 to 15%, Fe: 4.5% or less, and inevitable impurities.The ceramic particles are carbide ceramic particles, and the proportion of the composite structure is 5 to 60% by weight % cavitation-resistant and earth-and-sand wear-resistant composite material.
JP62221631A 1987-09-03 1987-09-03 Composite material combining cavitation resistance with earth and sand abrasion resistance Granted JPS6465276A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62221631A JPS6465276A (en) 1987-09-03 1987-09-03 Composite material combining cavitation resistance with earth and sand abrasion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62221631A JPS6465276A (en) 1987-09-03 1987-09-03 Composite material combining cavitation resistance with earth and sand abrasion resistance

Publications (2)

Publication Number Publication Date
JPS6465276A JPS6465276A (en) 1989-03-10
JPH0512420B2 true JPH0512420B2 (en) 1993-02-18

Family

ID=16769793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62221631A Granted JPS6465276A (en) 1987-09-03 1987-09-03 Composite material combining cavitation resistance with earth and sand abrasion resistance

Country Status (1)

Country Link
JP (1) JPS6465276A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03146297A (en) * 1989-11-02 1991-06-21 Kubota Corp Composite member for cavitation resistance and earth and sand wear resistance
JP2013181190A (en) * 2012-02-29 2013-09-12 Seiko Instruments Inc Co-BASED ALLOY FOR LIVING BODY AND STENT
EP3023511B1 (en) * 2014-11-24 2021-07-28 Safran Aero Boosters SA Composition and abradable seal of an axial turbomachine compressor housing
CN104745889A (en) * 2015-04-23 2015-07-01 杜卫卫 Cobalt-chromium-tungsten alloy and manufacturing method thereof

Also Published As

Publication number Publication date
JPS6465276A (en) 1989-03-10

Similar Documents

Publication Publication Date Title
JPS6343462B2 (en)
EP0181570A1 (en) Valve
BE898069A (en) WEAR RESISTANT STAINLESS STEEL.
US4080198A (en) Erosion and corrosion resistant alloys containing chromium, nickel and molybdenum
US4431446A (en) High cavitation erosion resistance stainless steel and hydraulic machines being made of the same
JPH06170584A (en) High-c-and high-si-content weld metal powder and equipment member having its coating layer
CN102069318A (en) Cavitation-resistant stainless steel soldering wire and welding method thereof
US3925064A (en) High corrosion fatigue strength stainless steel
JPH0512420B2 (en)
JPH01318763A (en) Water wheel rotor blade
JPH0637689B2 (en) Composite material for cavitation resistance and earth and sand resistance
JP2571432B2 (en) Composite material for anti-cavitation and anti-sand wear
JPH0672286B2 (en) ▲ High ▼ Austenitic stainless steel with excellent temperature strength
US5360592A (en) Abrasion and corrosion resistant alloys
JPH03146297A (en) Composite member for cavitation resistance and earth and sand wear resistance
JP3080380B2 (en) Water turbine, equipment, and method of manufacturing the same
Vasilescu et al. Hardfacing corrosion and wear resistant alloys
Raj et al. Comparative study of mechanical, corrosion and erosion—corrosion properties of cast hyper-duplex and super-duplex stainless steels
JP3220329B2 (en) Fluid equipment
JPH07243539A (en) Needle valve
GB2167088A (en) Nuclear grade steels
JPH08254173A (en) Water turbine and manufacture thereof
JPH0494890A (en) Erosion resistant coating material and method for forming this
JPH03107577A (en) Hydraulic turbine and hydraulic turbine bucket
JPH0572454B2 (en)