JPH0512399B2 - - Google Patents

Info

Publication number
JPH0512399B2
JPH0512399B2 JP21411585A JP21411585A JPH0512399B2 JP H0512399 B2 JPH0512399 B2 JP H0512399B2 JP 21411585 A JP21411585 A JP 21411585A JP 21411585 A JP21411585 A JP 21411585A JP H0512399 B2 JPH0512399 B2 JP H0512399B2
Authority
JP
Japan
Prior art keywords
catalyst
amount
specific gravity
catalysts
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21411585A
Other languages
Japanese (ja)
Other versions
JPS6272784A (en
Inventor
Takeshi Ootsu
Hiromi Tsuyama
Takahisa Hatono
Tatsuo Masuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
Catalysts and Chemicals Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Catalysts and Chemicals Industries Co Ltd filed Critical Catalysts and Chemicals Industries Co Ltd
Priority to JP21411585A priority Critical patent/JPS6272784A/en
Publication of JPS6272784A publication Critical patent/JPS6272784A/en
Publication of JPH0512399B2 publication Critical patent/JPH0512399B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は重質炭化水素油の流動接触分解法に関
するものであつて、さらに詳しくは、接触分解装
置から排出される触媒から、再使用可能な触媒を
比重差によつて選別し、これを接触分解装置に循
環する流動接触分解法に係る。 [従来の技術] 炭化水素の流動接触分解法では、基本的には反
応塔と再生塔で構成される接触分解装置が一般に
使用されている。この装置では、反応塔内に於け
る炭化水素油との接触によつて触媒はその表面に
カーボンが析出するため活性を失うが、カーボン
が析出した触媒は再生塔内でのカーボンバーニン
グによつて再び活性を取り戻すので、これを改め
て反応塔に供給するというサイクルが繰返されて
いる。しかし、カーボンバーニングによつて再生
されるとは言え、触媒は使用時間の経過とともに
漸次活性と選択性を失うため、装置内の触媒の一
部抜き出しと、これに見合う量の新触媒の補給を
定期的に行うことによつて、装置内の触媒の全体
としての活性を、所望の一定レベルに維持する方
策が通常採用されている。 この場合、装置内に補給された新触媒は、装置
内に既存の触媒と渾然一体となつて装置内を循環
し、しかも装置内から抜き出される触媒は、失活
した触媒のみが選別される訳ではないので、装置
からの抜き出し触媒には先に補給された新触媒や
未だ活性を有する触媒が含まれてしまうのが通例
である。従つて、装置から抜き出された触媒を、
従前の如く、廃棄処分に付してしまうことは、惜
しいことであると言える。特に、接触分解に供す
る原料炭化水素油が重質である場合には、触媒の
抜き出し量や抜き出し頻度が増加するため、抜き
出し触媒を廃棄してしまうことの不経済さはさら
に増大する。 こうした不経済さを改善する目的で、特開昭56
−157486号公報には、接触分解装置から抜き出し
た触媒を、着磁物と非着磁物とに区分し、非着磁
物を接触分解装置に戻すことが提案されている。
この提案はカーボン析出以外の触媒失活の一因
が、触媒に金属が沈着することにあり、沈着金属
が多い触媒ほど活性が貧弱であることに着目し、
沈着金属が多い触媒ほど磁石に着きやすいことを
利用して、抜き出し触媒を着磁物と非着磁物とに
区分し、沈着金属が少なく未だ活性を残している
であろう非着磁触媒の再使用を目論んだものであ
る。 [発明が解決しようとする問題点] 本発明は接触分解装置から抜き出された触媒を
そのまま廃棄してしまうことの不経済さを、特開
昭56−157486号公報の発明とは異なる手段で改善
せんとするものである。 [問題点を解決するための手段] 本発明は接触分解装置から抜き出された触媒
を、比重差によつて重い触媒と軽い触媒に区分
し、この軽い触媒を接触分解装置に戻すことを特
徴とする。 [作用] 接触分解装置の運動中に、装置から抜き出され
る触媒には金属が沈着しているが、その金属量は
必ずしも触媒粒毎に一様ではない。一般に接触分
解装置で使用される触媒粒は、カーボンの析出や
金属の沈着がない状態に於いて、それぞれほぼ一
様な比重を有しているのが通常である。このた
め、上記した粒子毎の沈着金属量の差は、個々の
触媒粒の比重差となつて現われ、沈着金属量の多
い触媒ほど当然のことながら比重も大きくなる。
そして、触媒の活性は一般に沈着金属が多いもの
ほど貧弱である。従つて、装置から抜き出された
触媒を比重差によつて重い触媒と軽い触媒に区分
することにより、沈着金属が少ない触媒、換言す
れば未だ活性を維持している触媒を、軽い触媒と
して選別することができるのである。 比重差を利用して触媒を選別するに際しては、
比重選鉱などで公知の手段を適宜採用することが
できる。例えば重液選鉱の如く、所望の比重を有
する液体を用意し、これに抜き出し触媒を供給す
れば、沈着金属が多い触媒は沈降し、沈着金属が
比較的少ない触媒は浮上又は液中に漂うので、未
だ活性を維持している触媒のみを回収することが
できるのである。この場合、沈降する触媒の量は
選別媒体に使用した液体の比重に依存するので、
接触分解装置に戻そうとする触媒の活性レベルを
勘案しながら、上記液体の比重を調節することを
可とする。選別媒体には空気などの気体も使用可
能である。 [実施例] 運転中の炭化水素油接触分解装置から、流動触
媒の一部を無作意に抜き出し、これを比重選別し
た。 1,1,2,2−テトラブロモタエン(比重=
2.959g/ml)と1,1,2,2−テトラクロロ
エタン(比重=1.600g/ml)を混合して比重2.6
g/mlの溶液を調製し、これに実装置から抜き出
した触媒(Aとする)の一部を加えて撹拌する
と、触媒は浮上するものと沈降するものに別れる
ので、浮上触媒(B−1とする)と沈降触媒(C
−1とする)をそれぞれ回収した。次に両触媒を
四塩化炭素で洗浄後、乾燥、焼成して溶液を除去
した後、それぞれについて沈着金属量の測定と活
性評価を行つた。 また、上記ハロゲン化炭化水素の混合割合を変
えて比重を変えた溶液を2種用意し、これら溶液
をそれぞれ上記の溶液に代えた以外は上の場合と
同じ操作で2種の浮上触媒(B−2及びB−3と
する)と、2種の沈降触媒(C−2及びC−3と
する)を得た。これらの各触媒についても沈降金
属量の測定と活性評価を行つた。結果をまとめて
表−1に示す。 尚、活性評価にはASTM MAT装置を使用し、
次の反応条件を採用した。 原料油 DSVGO 反応温度 482℃ WHSV 16 1/hr 触媒/油比 3
[Industrial Application Field] The present invention relates to a fluid catalytic cracking method for heavy hydrocarbon oils, and more specifically, the present invention relates to a fluid catalytic cracking method for heavy hydrocarbon oil, and more specifically, a reusable catalyst is separated from the catalyst discharged from a catalytic cracking unit based on the difference in specific gravity. This relates to a fluid catalytic cracking method in which the catalytic cracking process involves sorting the catalytic crackers and recycling them to a catalytic cracking device. [Prior Art] In the fluid catalytic cracking method of hydrocarbons, a catalytic cracking apparatus basically consisting of a reaction tower and a regeneration tower is generally used. In this device, the catalyst loses its activity due to carbon precipitated on its surface when it comes into contact with hydrocarbon oil in the reaction tower, but the catalyst with carbon deposited loses its activity due to carbon burning in the regeneration tower. Since it regains its activity, the cycle of supplying it to the reaction tower is repeated. However, although the catalyst is regenerated by carbon burning, it gradually loses its activity and selectivity over time, so it is necessary to remove a portion of the catalyst from the equipment and replenish it with a corresponding amount of new catalyst. Strategies are usually employed to maintain the overall activity of the catalyst within the apparatus at a desired constant level by periodic operation. In this case, the new catalyst replenished into the equipment circulates through the equipment harmoniously with the existing catalyst in the equipment, and only deactivated catalysts are sorted out from the equipment. Therefore, the catalyst taken out from the device usually contains fresh catalyst that was replenished earlier or catalyst that is still active. Therefore, the catalyst extracted from the device is
It can be said that it would be a shame to dispose of it as before. Particularly, when the raw material hydrocarbon oil to be subjected to catalytic cracking is heavy, the amount and frequency of catalyst removal increases, which further increases the uneconomical nature of discarding the extracted catalyst. In order to improve this uneconomical situation,
Japanese Patent No. 157486 proposes separating the catalyst extracted from the catalytic cracking device into magnetized and non-magnetized materials, and returning the non-magnetized material to the catalytic cracking device.
This proposal focuses on the fact that one cause of catalyst deactivation other than carbon deposition is the deposition of metals on the catalyst, and the catalyst with more deposited metals has poorer activity.
Taking advantage of the fact that catalysts with more deposited metal are more likely to stick to magnets, the extracted catalysts are divided into magnetized and non-magnetized catalysts, and non-magnetized catalysts with less deposited metal are likely to remain active. It is intended for reuse. [Problems to be Solved by the Invention] The present invention solves the uneconomical nature of directly disposing of the catalyst extracted from the catalytic cracker by means different from the invention of JP-A-56-157486. This is something that we are trying to improve. [Means for Solving the Problems] The present invention is characterized in that the catalyst extracted from the catalytic cracking device is divided into heavy catalyst and light catalyst based on the difference in specific gravity, and the light catalyst is returned to the catalytic cracking device. shall be. [Operation] During the operation of the catalytic cracking device, metal is deposited on the catalyst extracted from the device, but the amount of metal is not necessarily uniform for each catalyst particle. In general, catalyst particles used in a catalytic cracking apparatus usually have substantially uniform specific gravity in the absence of carbon precipitation or metal deposition. Therefore, the above-mentioned difference in the amount of deposited metal between particles appears as a difference in specific gravity between individual catalyst particles, and naturally the catalyst with a larger amount of deposited metal has a larger specific gravity.
Generally, the activity of the catalyst is poorer as the amount of deposited metal increases. Therefore, by classifying the catalyst extracted from the device into heavy catalysts and light catalysts based on the difference in specific gravity, catalysts with less deposited metal, in other words, catalysts that still maintain their activity, can be selected as light catalysts. It is possible. When selecting catalysts using the difference in specific gravity,
Known means such as gravity beneficiation can be appropriately employed. For example, if a liquid with a desired specific gravity is prepared, such as in heavy liquid beneficiation, and a extracted catalyst is supplied to it, the catalyst with a large amount of deposited metal will settle, and the catalyst with a relatively small amount of deposited metal will float or float in the liquid. , only those catalysts that still maintain their activity can be recovered. In this case, the amount of catalyst that settles depends on the specific gravity of the liquid used as the separation medium, so
It is possible to adjust the specific gravity of the liquid while taking into consideration the activity level of the catalyst to be returned to the catalytic cracker. Gases such as air can also be used as the sorting medium. [Example] A portion of the fluidized catalyst was randomly extracted from an operating hydrocarbon oil catalytic cracking apparatus and subjected to specific gravity selection. 1,1,2,2-tetrabromotaene (specific gravity =
2.959g/ml) and 1,1,2,2-tetrachloroethane (specific gravity = 1.600g/ml) to obtain a specific gravity of 2.6.
g/ml solution, add a part of the catalyst (referred to as A) extracted from the actual device, and stir it. The catalyst will be separated into those that float and those that settle. ) and precipitation catalyst (C
−1) were collected. Next, both catalysts were washed with carbon tetrachloride, dried, and calcined to remove the solution, and then the amount of deposited metal was measured and the activity of each catalyst was evaluated. In addition, two types of solutions with different specific gravity by changing the mixing ratio of the halogenated hydrocarbons were prepared, and two types of floating catalysts (B -2 and B-3) and two types of precipitated catalysts (referred to as C-2 and C-3) were obtained. For each of these catalysts, the amount of precipitated metal was measured and the activity was evaluated. The results are summarized in Table-1. In addition, an ASTM MAT device was used to evaluate the activity.
The following reaction conditions were adopted. Raw material DSVGO Reaction temperature 482℃ WHSV 16 1/hr Catalyst/oil ratio 3

【表】【table】

【表】 表−1から分るように、比重差によつて分離さ
れた軽い触媒B−1,B−2,B−3は、元の抜
き出し触媒Aよりも金属沈着量が少なく、転化
率、ガソリン収率が高い。また比重差分離に使用
する液体の比重を調整することによつて、浮上触
媒の活性を任意に調節することができる。さら
に、上記の軽い触媒B−1,B−2,B−3はい
ずれも接触分解装置に戻して再使用することがで
きる。 [効果] 本発明の方法に従つて、比重差により分離した
軽い触媒を装置に戻して再使用する場合の効果を
具体的に説明する。 今、金属含有量2ppm、比重331 lb/BBLの原
料油を20000BBL/日で流動接触分解装置に供給
し、装置内触媒の金属(V+Ni)沈着量を
5000ppmのレベルに維持して運転を継続するため
には、装置から定期的に0.13 lb/BBLの触媒を
抜き出し、これに見合う量の新触媒を装置に補給
しなければならないとした場合に於いて、装置に
補給される0.13 lb/BBLの新触媒に代えて、上
記実施例の触媒B−3と新触媒を3:7の重量比
で混合した混合物を装置に補給し、装置内触媒の
金属沈着量を上と同一レベルに維持する場合を考
える。 この場合、金属沈着量3070ppmの触媒B−3が
新触媒と3:7の割で混合されているので、装置
に補給される触媒(混合物)の平均金属沈着量は
920ppmとなり、この触媒について許容される原
料油からの金属沈着量は、(5000−920)ppmで約
4100ppmになる。 ところで、原料油の金属含有量と平衡触媒の金
属沈着量の関係は、D.G.Thiel.[O&GJ.,
Aug.18(1980)]によつて、 平衡触媒の金属沈着量(ppm)=原料油の供給量(lb/
日)×原料油の金属含有量(ppm)/触媒の補給量(lb
/日) とされている。従つて、触媒B−3と新触媒を混
合して装置に補給する場合の補給量を上の関係式
から算出すると、 触媒の補給量=20000(BBL/日)×311(lb/BBL)×2
(ppm)/4100(lb/日) となり、これは0.16 lb/BBLに相当する。 つまり、装置内触媒の金属沈着量を5000ppmの
レベルに維持するに際し、装置に供給すべき触媒
をすべて新触媒で賄う場合には、0.13 lb/BBL
の新触媒が必要であるのに対し、触媒B−3を上
記の混合比で併用した場合に必要な新触媒の量は
0.16×0.7=0.11 lb/BBLとなり、約15%(0.02
lb/BBL)の節約となる。
[Table] As can be seen from Table 1, the light catalysts B-1, B-2, and B-3, which were separated based on the difference in specific gravity, had a smaller amount of metal deposit than the original extracted catalyst A, and had a higher conversion rate. , high gasoline yield. Further, by adjusting the specific gravity of the liquid used for specific gravity separation, the activity of the floating catalyst can be adjusted as desired. Furthermore, all of the above-mentioned light catalysts B-1, B-2, and B-3 can be returned to the catalytic cracker and reused. [Effects] The effects when the light catalyst separated by the difference in specific gravity is returned to the apparatus and reused according to the method of the present invention will be specifically explained. Now, feed oil with a metal content of 2 ppm and a specific gravity of 331 lb/BBL is supplied to a fluid catalytic cracker at a rate of 20,000 BBL/day, and the amount of metal (V+Ni) deposited on the catalyst in the equipment is measured.
In order to maintain the 5000 ppm level and continue operation, 0.13 lb/BBL of catalyst must be periodically removed from the equipment and a corresponding amount of new catalyst must be replenished into the equipment. , instead of the new catalyst of 0.13 lb/BBL supplied to the apparatus, a mixture of catalyst B-3 of the above example and new catalyst in a weight ratio of 3:7 was supplied to the apparatus, and the metal of the catalyst in the apparatus was replenished. Consider the case where the amount of deposition is maintained at the same level as above. In this case, catalyst B-3 with a metal deposition amount of 3070 ppm is mixed with new catalyst at a ratio of 3:7, so the average metal deposition amount of the catalyst (mixture) supplied to the device is
920 ppm, and the allowable amount of metal deposition from feedstock for this catalyst is (5000−920) ppm, approximately
It becomes 4100ppm. By the way, the relationship between the metal content of feedstock oil and the amount of metal deposited on the equilibrium catalyst is determined by DGThiel.[O&GJ.,
Aug. 18 (1980)], the amount of metal deposited on the equilibrium catalyst (ppm) = the amount of feedstock oil supplied (lb/
day) × Metal content of feedstock oil (ppm) / Catalyst replenishment amount (lb
/day). Therefore, when calculating the amount of replenishment when mixing catalyst B-3 and new catalyst and replenishing the equipment from the above relational expression, the amount of catalyst replenishment = 20000 (BBL/day) x 311 (lb/BBL) x 2
(ppm)/4100 (lb/day), which is equivalent to 0.16 lb/BBL. In other words, when maintaining the amount of metal deposited on the catalyst in the equipment at a level of 5000 ppm, if all the catalyst to be supplied to the equipment is supplied with new catalyst, 0.13 lb/BBL
of new catalyst is required, whereas the amount of new catalyst required when catalyst B-3 is used in combination at the above mixing ratio is
0.16×0.7=0.11 lb/BBL, approximately 15% (0.02
lb/BBL).

Claims (1)

【特許請求の範囲】[Claims] 1 重質炭化水素油を流動触媒の存在下に接触分
解する方法に於いて、接触分解装置から排出され
る触媒を比重差によつて重い触媒と軽い触媒とに
区分し、軽い触媒を接触分解装置に戻して再使用
することを特徴とする重質炭化水素油の流動接触
分解法。
1 In a method of catalytically cracking heavy hydrocarbon oil in the presence of a fluidized catalyst, the catalyst discharged from the catalytic cracker is divided into heavy catalysts and light catalysts based on the difference in specific gravity, and the light catalyst is subjected to catalytic cracking. A fluid catalytic cracking method for heavy hydrocarbon oil, which is characterized by returning it to the equipment for reuse.
JP21411585A 1985-09-27 1985-09-27 Fluid catalytic cracking of heavy hydrocarbon oil Granted JPS6272784A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21411585A JPS6272784A (en) 1985-09-27 1985-09-27 Fluid catalytic cracking of heavy hydrocarbon oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21411585A JPS6272784A (en) 1985-09-27 1985-09-27 Fluid catalytic cracking of heavy hydrocarbon oil

Publications (2)

Publication Number Publication Date
JPS6272784A JPS6272784A (en) 1987-04-03
JPH0512399B2 true JPH0512399B2 (en) 1993-02-17

Family

ID=16650479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21411585A Granted JPS6272784A (en) 1985-09-27 1985-09-27 Fluid catalytic cracking of heavy hydrocarbon oil

Country Status (1)

Country Link
JP (1) JPS6272784A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7108570B2 (en) * 2019-04-01 2022-07-28 出光興産株式会社 Method for producing fluid catalytic cracking gasoline

Also Published As

Publication number Publication date
JPS6272784A (en) 1987-04-03

Similar Documents

Publication Publication Date Title
US2987470A (en) Demineralization of oils
EP0106052B1 (en) Demetallizing and decarbonizing heavy residual oil feeds
US5209840A (en) Separation of active catalyst particles from spent catalyst particles by air elutriation
SE438866B (en) PASSIVATIVE COMPOSITION CONSISTING OF A SILICONE CRACKING CATALYST TATTLE, PROCEDURE FOR ITS PREPARATION AND USE THEREOF IN CRACKING
US2447149A (en) Catalytic conversion of hydrocarbons
US2908630A (en) Process for cracking a plurality of hydrocarbon oils in a suspension of catalyst particles in a riser reactor
EP0466735A1 (en) Magnetic separation into low, intermediate and high metals and activity catalyst.
US4244810A (en) Fluidized catalytic cracking process for increased hydrogen production
US4252636A (en) Catalyst and process for conversion of hydrocarbons
US2689825A (en) Removal of metals from petroleum hydrocarbons followed by fluidized cracking
US2315024A (en) Conversion of hydrocarbons
US2498088A (en) Conversion of hydrocarbons with suspended catalyst
US2472723A (en) Method for removal of metal compounds from oil feed to fluid catalyst cracking
US2344900A (en) Treating hydrocarbon fluids
US2689823A (en) Fluid hydroforming process
US2631981A (en) Rejection of inactive material from a fluidized catalyst regenerator
JPH0512399B2 (en)
JPH0149439B2 (en)
US3074879A (en) Catalytic conversion of liquid hydrocarbons in the presence of suspended catalyst
US6194337B1 (en) Cracking catalyst with high magnetic susceptibility
US4415440A (en) Cracking catalyst improvement with gallium compounds
US2347747A (en) Suspended catalyst technique
US2799359A (en) Contacting solids and gases
US2903413A (en) Hydrogenation of a hydrocarbon oil feed for use in a catalytic cracking process to produce gasoline
US4297244A (en) Catalyst and process for conversion of hydrocarbons