JPH0512393B2 - - Google Patents

Info

Publication number
JPH0512393B2
JPH0512393B2 JP62003790A JP379087A JPH0512393B2 JP H0512393 B2 JPH0512393 B2 JP H0512393B2 JP 62003790 A JP62003790 A JP 62003790A JP 379087 A JP379087 A JP 379087A JP H0512393 B2 JPH0512393 B2 JP H0512393B2
Authority
JP
Japan
Prior art keywords
vinyl acetate
acid
acetate copolymer
ethylene
ppm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62003790A
Other languages
Japanese (ja)
Other versions
JPS63172761A (en
Inventor
Hiroshi Takita
Kenji Hasegawa
Teruo Iwanami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Synthetic Chemical Industry Co Ltd
Original Assignee
Nippon Synthetic Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Synthetic Chemical Industry Co Ltd filed Critical Nippon Synthetic Chemical Industry Co Ltd
Priority to JP379087A priority Critical patent/JPS63172761A/en
Priority to GB8717828A priority patent/GB2193966B/en
Priority to US07/079,112 priority patent/US4786685A/en
Priority to DE3725287A priority patent/DE3725287C2/en
Priority to FR878710941A priority patent/FR2602237B1/en
Publication of JPS63172761A publication Critical patent/JPS63172761A/en
Publication of JPH0512393B2 publication Critical patent/JPH0512393B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は、フイルム、シート、ボトル等の包装
材あるいはエンジニアリングプラスチツクスとし
て有用なポリカーボネート系樹脂やポリエステル
系樹脂の熱安定性を改善する技術に関する。 [従来の技術] ポリカーボネート系樹脂や、ポリエステル系樹
脂は食品等の酸素遮断性が必要とされる製品の包
装材あるいは機械器具部品、電気機器部品等のい
わゆるエンジニアリングプラスチツクスとして実
用に供されている。 しかして、かかる樹脂はそれぞれに固有のすぐ
れた物性を有しているのではあるが、近時の高度
な技術革新や高性能化の高い要請を受けて種々の
改良が行われている。 かかる改良技術の一つとして、酸素遮断性の向
上、積層構造物製造時における層間接着力の向
上、更には機械的、電気的特性の改善等のため
に、エチレン−酢酸ビニル共重合体ケン化物を配
合することが行われている。 [発明が解決しようとする問題点] しかし、本発明者等が検討したところ、上記組
成物においては耐衝撃性等の点で必ずしも充分な
改良が行われ難く、用途拡大のためにはかかる欠
点をも解決しなければならないことが判明した。 本発明者等は、かかる原因が微量水分の存在に
おいてポリエステル、ポリカーボネートの熱安定
性が不足することにあり、しかもエチレン−酢酸
ビニル共重合体ケン化物中に存在する不純物、特
にアルカリ成分が溶融成型時においてポリエステ
ル、ポリカーボネート等の一部を熱分解させる触
媒的作用をするため、耐衝撃強度等の機械的強度
の劣化をもたらすのではないかとの想定のもとに
工夫を重ねた結果、本発明を完成するに到つた。 [問題点を解決するための手段] 即ち、本発明は 「(1) ポリカーボネート系樹脂及びポリエステル
系樹脂より選ばれた熱可塑性樹脂100重量部
と (2) エチレン含量が20〜60モル%、酢酸ビニル
部分のケン化度が95モル%以上であり、かつ
灰分含量が1〜20ppmでアルカリ金属含量が
0.5〜5ppmのエチレン−酢酸ビニル共重合体
ケン化物0.1〜1重量部 とからなる熱安定性の良好な熱可塑性樹脂組成
物。」 を提供するものであり、灰分及びアルカリ金属の
含有量が著しく少ないエチレン−酢酸ビニル共重
合体ケン化物を使用する点に大きな特徴が存在す
る。 まず本発明で対象とする(1)成分の熱可塑性樹脂
はポリカーボネート系樹脂やポリエチレンテレフ
タレート、ポリブチレンテレフタレート等のポリ
エステル系樹脂である。 ポリカーボネートは通常、酸受容体及び分子量
調整剤の存在下での2価フエノールとホスゲン等
のカーボネート前駆体との反応、あるいは2価フ
エノールとジフエニルカーボネート等のカーボネ
ート前駆体とのエステル交換反応によつて製造さ
れる。2価フエノールとしては、ビスフエノール
Aが好ましい。ビスフエノールAの一部又は全部
を他の2価フエノールで置換しても良い。 又、ポリカーボネートはその一部が分岐されて
いても良く、例えば多官能性芳香族化合物を2価
フエノール又はカーボネート前駆体と反応させた
熱可塑性ランダム分岐ポリカーボネートであつて
も良い。 ポリエチレンテレフタレートは、テレフタル酸
又はジメチルテレフタレートとエチレングリコー
ルを主成分とし、これらの重縮合反応で製造され
るものであり、エチレングリコールの一部をシク
ロヘキサンジメタノール等の他のグリコールで置
換したもの等も含まれる。 ポリブチレンテレフタレートはジメチルテレフ
タレートと1,4−ブタンジオールとをエステル
交換反応させて生成したビス−(ω−ヒドロキシ
ブチル)−テレフタレトを重縮合させる方法、テ
レフタル酸と1,4−ブタンジオールとの重縮合
反応、テレフタル酸又はジメチルテレフタレート
と1,4−ジアセトキシブタンをエステル交換反
応させたのち重縮合をする方法等、任意の方法で
製造されるものである。 (1)としては更にポリエステルポリカーボネート
であつても良い。該樹脂は例えば、ビスフエノー
ルA等のジヒドロキシジアリール化合物とテレフ
タロイルクロリドとを塩化メチレンの様な有機溶
媒及びピリジンの様な酸結合剤の存在下で反応さ
せ、次いでこの反応物にホスゲンを導入して重縮
合させる溶液重合法、ジヒドロキシジアリール化
合物のアルカリ性水溶液とテレフタロイルクロリ
ドの有機溶媒溶液とを反応させ、次いでこの反応
混合物にホスゲンを導入して末端がクロロホーメ
ート基のオリゴマーとし、更に前記ジヒドロキシ
ジアリール化合物のアルカリ性水溶液を加えて重
縮合させる界面重合法によつて製造される。 次に本発明の(2)成分のエチレン−酢酸ビニル共
重合体ケン化物について説明する。 本発明の特徴点は上述した如く、エチレン−酢
酸ビニル共重合体ケン化物中に含有される灰分を
1〜20ppmに、且つアルカリ金属を0.5〜5ppmに
調整することである。つまり、上記ケン化物は通
常エチレン−酢酸ビニル共重合体をアルカリ触媒
でケン化して製造されるが、使用する工業用水や
試薬中に不純物として含有される金属塩やあるい
はケン化触媒のアルカリ金属水酸化物等が反応後
アルカリ金属の酢酸塩として残存するため、これ
らはケン化液から析出した樹脂中に含まれること
になるわけである。本発明ではかかる金属塩を上
記の範囲にすることによつて対象とする熱可塑性
樹脂の熱安定性の向上が発揮されるのである。 本発明でいう灰分とは、乾燥したエチレン−酢
酸ビニル共重合体ケン化物を白金蒸発皿にとり、
電熱器とガスバーナーを用いて炭化後、400℃の
電気炉に入れ、700℃まで徐々に昇温し、更に700
℃で3時間にわたつて完全に灰化後、電気炉より
取出し5分間放冷後、デシケーター中で25分間放
置し、灰分を精量して求めたもので定義され、そ
の含量は1〜20ppm、好ましくは1〜10ppmでな
ければならない。20ppm以上では得られる成型物
の機械的強度の低下及び表面外観の悪化が大とな
り実用的でない。また、1ppm未満でも熱可塑性
樹脂の劣化を招く。更に本発明では、上記灰分の
数値を限定すると共に、アルカリ金属の含有量も
0.5〜5ppm、好ましくは、0.5〜3ppmでなければ
ならない。かかる量以上のアルカリ金属の存在
は、前記と同様に対象とする熱可塑性樹脂の性質
を劣化させるという障害を生じる。また、
0.5ppm未満でも同様に樹脂の劣化を招く。 アルカリ金属は前記したのと同一の方法でエチ
レン−酢酸ビニル共重合体ケン化物を灰化後、灰
分を塩酸水溶液に加温下に溶解した溶液について
原子吸光法によつて定量される。 本発明のケン化物はエチレン−酢酸ビニル共重
合体をケン化して製造されるエチレン−酢酸ビニ
ル共重合体ケン化物の粉末、粒子、ペレツトを
酸、特に弱酸の水溶液で充分に洗浄し、灰分やア
ルカリ金属の原因となる塩類を除去後、更に望ま
しくは脱イオン水洗浄によつて樹脂に付着した酸
を除去し、乾燥することによつて得られる。 酸としては、酢酸、プロピオン酸、グリコール
酸、乳酸、アジピン酸、アゼライン酸、グリター
ル酸、コハク酸、安息香酸、イソフタル酸、テレ
フタル酸等が使用され得る。通常、pKa(25℃)
が3.5以上のものが有用である。 又、上記弱酸による処理を行つた後、脱イオン
水洗浄の前又は後に更に希薄な強酸、例えばシユ
ウ酸、マレイン酸等のpKa(25℃)が2.5以下の有
機酸やリン酸、硫酸、硝酸、塩酸等の無機酸等の
水溶液で処理することにより、効率良くアルカリ
金属の除去が実施可能であるのでその使用が望ま
しい。 本発明で用いるエチレン−酢酸ビニル共重合体
ケン化物はエチレン含量20〜60モル%、好ましく
は25〜55モル%、酢酸ビニル成分のケン化度95モ
ル%以上のものである。 エチレン含量が20モル%以下では対象とする熱
可塑性樹脂との相溶性が低下し、一方60モル%以
上では熱可塑性樹脂との組成物の熱安定性が充分
でない。又、ケン化度が95モル%以下では熱安定
性や耐湿性が低下する。 又、該共重合体ケン化物は更に少量のプロピレ
ン、イソブテン、α−オクテン、α−ドデセン、
α−オクタデセン等のα−オレフイン、不飽和カ
ルボン酸又はその塩、部分アルキルエステル、完
全アルキルエステル、ニトリル、アミド、無水物
や不飽和スルホン酸又はその塩等のコモノマーを
共重合成分として含有して差支えない。 (1)成分と(2)成分の混合比は(1)100重量部に対し、
(2)を0.1〜1重量部としなければならない。 (2)が0.1重量部以下では、エチレン−酢酸ビニ
ル共重合体ケン化物の混合による効果が認め難
く、一方1重量部以上では熱安定性の向上効果が
添加量に応じて必ずしも顕著に発揮されず、経済
的に不利である上、シート、フイルム、ボトル等
の用途では透明度が低下し、実用性に乏しくな
る。 (1)成分と(2)成分の混合物は、溶融成型に供して
目的とするペレツト、フイルム、シート、容器、
棒、管等任意の形状の成型物を製造する。 溶融成型法としては、射出成型法、押出成型
法、回転成型法、流動浸漬成型法、ブロー成型法
等が採用される。 組成物は、熱可塑性樹脂単独の場合とほぼ同じ
条件で成型可能であり、溶融成型温度は熱可塑性
樹脂の種類により異なるが、一般に200〜320℃が
適当である。 かかる成型時には(1)成分に対してエチレン含量
やケン化度が種々異なるエチレン−酢酸ビニル共
重合体ケン化物を2種以上併用することも勿論可
能である。又、溶融成型時においてはエチレン−
酢酸ビニル共重合体ケン化物以外に可塑剤(多価
アルコールなど)、安定剤、界面活性剤、架橋性
物質(エポキシ化合物、多価金属塩、無機又は有
機の多塩基酸又はその塩など)、充填剤、着色剤、
補強剤としての繊維(ガラス繊維、炭素繊維な
ど)、難燃化剤や難燃化助剤等を適当量配合する
ことができる。更に、又他の熱可塑性樹脂を適当
量配合することもでき、かかる他の熱可塑性樹脂
としてはポリオレフイン、ポリアミド、ポリ塩化
ビニル、ポリ塩化ビニリデン、ポリアセタール、
ポリスチレン、ABS、ポリウレタンなどが挙げ
られる。 又、本発明の組成物を用いて単層の成型物を製
造するのみならず、他の熱可塑性樹脂層との共押
出成型も重要である。 共押出成型の場合の相手側樹脂としては低密度
ポリエチレン、中密度ポリエチレン、高密度ポリ
エチレン、エチレン−酢酸ビニル共重合体、アイ
オノマー、エチレン−α−オレフイン(炭素数3
〜20のα−オレフイン)共重合体、エチレン−ア
クリル酸エステル共重合体、ポリプロピレン、プ
ロピレン−α−オレフイン(炭素数4〜20のα−
オレフイン)共重合体、ポリブテン、ポリペンテ
ンなどのオレフインの単独又は共重合体、あるい
はこれらのオレフインの単独又は共重合体を不飽
和カルボン酸又はそのエステルでグラフト変性し
たものなど広義のポリオレフイン系樹脂、ポリエ
ステル、ポリアミド、共重合ポリアミド、ポリ塩
化ビニル、ポリ塩化ビニリデン、アクリル系樹
脂、スチレン系樹脂、ビニルエステル系樹脂、ポ
リエステルエラストマー、ポリウレタンエラスト
マー、塩素化ポリエチレン、塩素化ポリプロピレ
ン、エチレン−酢酸ビニル共重合体ケン化物など
が挙げられる。 更に本発明の組成物から一旦フイルム、シート
などの成型物を得、これにポリオレフインなど他
の熱可塑性樹脂を押出コートしたり、他の任意の
基材(紙、金属箔、延伸または未延伸プラスチツ
クスフイルム又はシート、織布、不織布、木質面
など)を接着剤を用いてドライラミネートするこ
とも出来る。 なお溶融成型後の成型物、共押出成型物、溶融
コート成型物は必要に応じ熱処理、冷却処理、圧
延処理、一軸又は二軸延伸処理、印刷処理、ドラ
イラミネート処理、溶液又は溶融コート処理、製
袋加工、深しぼり加工、箱加工、チユーブ加工、
スプリツト加工等を行なうことができる。 [作用] 本発明の組成物から得られる成型物は、食品、
工業薬品、農薬等の包装材、一般機械器具部品、
自動車・船舶・航空機部品、光学・時計機器部
品、電幾機器部品、建材、日用品等の種々の用途
に使用し得る。 [実施例] 次に実施例を挙げて本発明の組成物を更に具体
的に説明する。以下、「部」又は「%」とあるの
は特に断わりのない限り重量基準で表わしたもの
である。尚、水とは脱イオン水を意味する。 エチレン−酢酸ビニル共重合体ケン化物の調製 エチレン含量40モル%のエチレン−酢酸ビニル
共重合体の40%メタノール溶液1000部を耐圧反応
器に入れ、撹拌しながら110℃に加熱した。続い
て水酸化ナトリウムの6%メタノール溶液40部及
びメタノール2500部を連続的に仕込むと共に副生
する酢酸メチル及び余分のメタノールを系から留
出させながら2.5時間ケン化反応を行ない、酢酸
ビニル成分のケン化度99.0モル%のエチレン−酢
酸ビニル共重合体ケン化物を得た。 ケン化終了液に30%含水メタノールを450部仕
込みながら余分のメタノールを留出させ、樹脂分
濃度39%の水/メタノール(組成比3/7)溶液
を製造した。 液温を50℃にした前記のエチレン−酢酸ビニル
共重合体ケン化物の水/メタノール混合液を孔径
4mmのノズルより1.5/時の速度にて5℃に維
持された水/メタノール(混合比9/1)凝固液
槽(巾100mm、長さ4000mm、深さ100mm)にストラ
ンド状に押出した。凝固終了後、凝固液槽の端部
に付設された引き取りローラー(線速2m/分)
を経て、ストランド状物をカツターで切断し、直
径4mm、長さ4mmの白色、多孔性のペレツトを製
造した。 灰分含有量7400ppm、ナトリウム金属含量
4800ppmのエチレン−酢酸ビニル共重合体ケン化
物を得た。 次に該ペレツト100部を0.3酢酸水溶液300部に
浸漬し、30℃で1時間攬拌して洗浄を2回繰返し
た。該スラリーを別したのち、得られたペレツ
トを再度水300部と混合し、スラリー化し、30℃
で1時間撹拌下に水洗を3回繰返した。 スラリーを別して乾燥した。 かくして得られたエチレン−酢酸ビニル共重合
体ケン化物はケン化度が99.0モル%、灰分6ppm、
ナトリウム金属含量2.7ppmであつた。 又、対照例に使用する灰分含量30ppm、ナトリ
ウム金属含量10ppmのエチレン−酢酸ビニル共重
合体ケン化物[]を上記方法に準じて製造し
た。 更に前記方法における水洗に先立ち、更に
0.003%リン酸水溶液230部に浸漬し、30℃で1時
間の撹拌洗浄操作を追加した以外は、同例と同じ
方法を行つて灰分含量10ppm、ナトリウム金属
1.4ppmのエチレン−酢酸ビニル共重合体ケン化
物[]を得た。 尚、灰分及びナトリウム金属の定量は以下に従
つた。 (灰分) 乾燥した試料約80gを精秤し、そのうちの約
10gを恒量化した白金蒸発皿に入れ、電熱器で
炭化した。炭化後、更に試料約10gずつを追加
し、同様の操作を繰返した。最後にガスバーナ
ーで加熱し、煙が出なくなるまで焼いた。 約400℃の電気炉内に前記の白金蒸発皿を入
れ、磁性ルツボ蓋で大半を覆い、700℃まで
徐々に昇温した。700℃に3時間保持して完全
灰化させた後、電気炉から取出し、5分間放冷
後、デシケーター中で25分間放置し、灰分を精
秤した。 (ナトリウム金属) 乾燥した試料約10gを精秤して白金ルツボに
入れ、上記と同一の方法で灰化した。白金ルツ
ボに特級塩酸2ml及び純水3mlを入れ、電熱器
で加熱して溶解した。上記溶液を50mlメスフラ
スコに純水で流し込み、更に標線まで純水を追
加して原子吸光分析用の試料とした。 別途、調製した標準液(ナトリウム金属
1ppm、塩酸約0.5N)を対照液として原子吸光
度の測定を行ない、吸光度の比率からナトリウ
ム金属の量を定量した。 測定条件は、次の通りである。 装 置:日立180−30形 原子吸光/炎光
分光光度計 波 長:589.0nm フレーム:アセチレン−空気 熱可塑性樹脂 次に示す樹脂を準備した。 ポリカーボネート 三菱瓦斯化学社製 「ユーピロンS−1000」 (融点 250℃) ポリエチレンテレフタレート 日本ユニペツト社
製 「RT 533」 (融点 255℃) ポリブチレンテレフタレート ゼネラルエレクト
リツク社製 「バロツクス 310」 (融点 232℃) 実施例1〜6/対照例1〜9 第1表に示す混合比率の組成物を第2表に示す
成型条件下に溶融成型を行つた。 得られた成型物の性能を第1表に示した。 対照例 10 前記エチレン−酢酸ビニル共重合体ケン化物
[]のペレツト100部を再度0.3%酢酸水溶液300
部に浸漬し、30℃で1時間攪拌して、洗浄を2回
繰り返した。該スラリーを濾別した後、得られた
ペレツトを再度水300部と混合し、スラリー化し、
30℃で1時間攪拌下に水洗を3回繰り返し、濾別
して乾燥した。 かくして得られたエチレン−酢酸ビニル共重合
体ケン化物は、ケン化度99.0モル%、灰分
0.8ppm、ナトリウム金属0.5ppmであつた。 かかるエチレン−酢酸ビニル共重合体ケン化物
を実施例1と同様にポリカーボネートに配合し、
同様に溶融成型を行つた後、衝撃強度及び透明度
(ヘイズ値)を測定した結果、それぞれ65Kg・
cm/cm及び2.0%であつた。 対照例 11 前記エチレン−酢酸ビニル共重合体ケン化物
[]を対照例10と同様に再度酸処理及び水洗を
行つて、ケン化度99.0モル%、灰分2ppm、ナト
リウム金属0.3ppmのエチレン−酢酸ビニル共重
合体ケン化物を得た。 かかるエチレン−酢酸ビニル共重合体ケン化物
を実施例3と同様にポリブチレンテレフタレート
に配合し、同様に溶融成型を行つた後、衝撃強度
及び透明度(ヘイズ値)を測定した結果、それぞ
れ4.0Kg・cm/cm及び5.8%であつた。 尚、衝撃強度、透明度の測定は以下の通りであ
る。 衝撃強度(射出成型品):アイゾツド、ノツチ
付 ASTM D 256に基づく(但しポリカーボネー
トのみは、試験片の厚さ1/8″) 透明度(押出成型品):ASTM D 1003に基
づき、村上色彩技術研究所製のヘイズメーターを
用いて膜厚50μのフイルムについて測定を行つ
た。 [効 果] 前記の如く本願の組成物からは、すぐれた物性
を有する成型物が得られ、包装材、エンジニアリ
ングプラスチツクスとして利用され得る。
[Industrial Field of Application] The present invention relates to a technique for improving the thermal stability of polycarbonate resins and polyester resins useful as packaging materials such as films, sheets, and bottles, or as engineering plastics. [Prior art] Polycarbonate resins and polyester resins are used in practical applications as packaging materials for products that require oxygen barrier properties such as foods, or as so-called engineering plastics for parts of machinery, appliances, and electrical equipment. . Although each of these resins has its own unique and excellent physical properties, various improvements have been made in response to recent advanced technological innovations and high demands for higher performance. As one such improvement technology, saponified ethylene-vinyl acetate copolymer has been developed to improve oxygen barrier properties, improve interlayer adhesion during the production of laminated structures, and further improve mechanical and electrical properties. It is being carried out to mix. [Problems to be Solved by the Invention] However, the inventors of the present invention have investigated that it is difficult to sufficiently improve the impact resistance, etc. of the above-mentioned composition, and such drawbacks are necessary for expanding the use of the composition. It turned out that we also had to solve the problem. The present inventors believe that the cause of this is that polyester and polycarbonate lack thermal stability in the presence of trace amounts of moisture, and that impurities, especially alkali components, present in the saponified ethylene-vinyl acetate copolymer are melt-molded. The present invention was developed based on the assumption that the catalytic action of partially thermally decomposing polyester, polycarbonate, etc. may lead to deterioration of mechanical strength such as impact strength. I have come to complete it. [Means for Solving the Problems] That is, the present invention consists of: (1) 100 parts by weight of a thermoplastic resin selected from polycarbonate resins and polyester resins; (2) ethylene content of 20 to 60 mol%; acetic acid; The saponification degree of the vinyl part is 95 mol% or more, the ash content is 1 to 20 ppm, and the alkali metal content is
A thermoplastic resin composition with good thermal stability comprising 0.1 to 1 part by weight of a saponified ethylene-vinyl acetate copolymer in an amount of 0.5 to 5 ppm. '', and its major feature is that it uses a saponified ethylene-vinyl acetate copolymer with extremely low ash and alkali metal contents. First, the thermoplastic resin of component (1) targeted by the present invention is a polycarbonate resin, a polyester resin such as polyethylene terephthalate, polybutylene terephthalate, etc. Polycarbonates are typically prepared by reaction of dihydric phenols with carbonate precursors such as phosgene or by transesterification of dihydric phenols with carbonate precursors such as diphenyl carbonate in the presence of an acid acceptor and a molecular weight modifier. manufactured by As the divalent phenol, bisphenol A is preferred. Part or all of bisphenol A may be replaced with other divalent phenols. Further, the polycarbonate may be partially branched; for example, it may be a thermoplastic randomly branched polycarbonate obtained by reacting a polyfunctional aromatic compound with a dihydric phenol or a carbonate precursor. Polyethylene terephthalate is mainly composed of terephthalic acid or dimethyl terephthalate and ethylene glycol, and is produced by the polycondensation reaction of these. Polyethylene terephthalate is also produced by replacing a portion of ethylene glycol with other glycols such as cyclohexanedimethanol. included. Polybutylene terephthalate can be produced by polycondensation of bis-(ω-hydroxybutyl)-terephthalate produced by transesterification of dimethyl terephthalate and 1,4-butanediol, or by polycondensation of terephthalic acid and 1,4-butanediol. It can be produced by any method such as a condensation reaction, a transesterification reaction of terephthalic acid or dimethyl terephthalate and 1,4-diacetoxybutane, and then polycondensation. (1) may also be polyester polycarbonate. The resin is produced, for example, by reacting a dihydroxydiaryl compound such as bisphenol A with terephthaloyl chloride in the presence of an organic solvent such as methylene chloride and an acid binder such as pyridine, and then introducing phosgene into the reaction product. A solution polymerization method in which an alkaline aqueous solution of a dihydroxydiaryl compound and a solution of terephthaloyl chloride in an organic solvent are reacted, and then phosgene is introduced into the reaction mixture to form an oligomer with a chloroformate group at the end. It is produced by an interfacial polymerization method in which an alkaline aqueous solution of the dihydroxydiaryl compound is added and polycondensed. Next, the saponified ethylene-vinyl acetate copolymer, component (2) of the present invention, will be explained. As mentioned above, the feature of the present invention is that the ash content contained in the saponified ethylene-vinyl acetate copolymer is adjusted to 1 to 20 ppm, and the alkali metal content is adjusted to 0.5 to 5 ppm. In other words, the above-mentioned saponified products are usually produced by saponifying ethylene-vinyl acetate copolymer with an alkali catalyst, but metal salts contained as impurities in the industrial water and reagents used, or alkali metal water as a saponification catalyst, Since oxides and the like remain as alkali metal acetates after the reaction, they are contained in the resin precipitated from the saponification solution. In the present invention, by controlling the amount of the metal salt within the above range, the thermal stability of the target thermoplastic resin can be improved. The ash in the present invention refers to dry saponified ethylene-vinyl acetate copolymer taken in a platinum evaporation dish,
After carbonizing using an electric heater and a gas burner, it is placed in an electric furnace at 400℃, and the temperature is gradually raised to 700℃, and then heated to 700℃.
After being completely incinerated at ℃ for 3 hours, it is taken out from the electric furnace, left to cool for 5 minutes, and then left in a desiccator for 25 minutes.The ash content is determined by measuring the ash content, and its content is 1 to 20 ppm. , preferably 1 to 10 ppm. If it exceeds 20 ppm, the mechanical strength of the obtained molded product will decrease significantly and the surface appearance will deteriorate, making it impractical. Moreover, if it is less than 1 ppm, it causes deterioration of the thermoplastic resin. Furthermore, in the present invention, in addition to limiting the above-mentioned ash content value, the alkali metal content is also limited.
It should be between 0.5 and 5 ppm, preferably between 0.5 and 3 ppm. The presence of an alkali metal in an amount exceeding this amount causes the problem of deteriorating the properties of the target thermoplastic resin, as described above. Also,
If the amount is less than 0.5 ppm, resin deterioration will occur as well. The alkali metal is determined by atomic absorption spectrometry using a solution obtained by incinerating the saponified ethylene-vinyl acetate copolymer in the same manner as described above, and then dissolving the ash in an aqueous hydrochloric acid solution under heating. The saponified product of the present invention is produced by saponifying ethylene-vinyl acetate copolymer. Powder, particles, and pellets of saponified ethylene-vinyl acetate copolymer are thoroughly washed with an acid, especially an aqueous solution of a weak acid, to remove ash and remove the ash. After removing the salts that cause alkali metals, the resin is further desirably washed with deionized water to remove the acid adhering to the resin, and then dried. As the acid, acetic acid, propionic acid, glycolic acid, lactic acid, adipic acid, azelaic acid, glitaric acid, succinic acid, benzoic acid, isophthalic acid, terephthalic acid, etc. can be used. Typically pKa (25℃)
A value of 3.5 or higher is useful. In addition, after performing the treatment with the above weak acid, and before or after washing with deionized water, further dilute strong acids such as organic acids with a pKa (at 25°C) of 2.5 or less such as oxalic acid and maleic acid, phosphoric acid, sulfuric acid, and nitric acid may be used. By treating with an aqueous solution of an inorganic acid such as hydrochloric acid, it is possible to efficiently remove the alkali metal, so it is preferable to use that solution. The saponified ethylene-vinyl acetate copolymer used in the present invention has an ethylene content of 20 to 60 mol%, preferably 25 to 55 mol%, and a degree of saponification of the vinyl acetate component of 95 mol% or more. If the ethylene content is less than 20 mol%, the compatibility with the target thermoplastic resin will decrease, while if it is more than 60 mol%, the thermal stability of the composition with the thermoplastic resin will not be sufficient. Furthermore, if the degree of saponification is less than 95 mol%, thermal stability and moisture resistance will decrease. In addition, the saponified copolymer further contains small amounts of propylene, isobutene, α-octene, α-dodecene,
Contains comonomers such as α-olefins such as α-octadecene, unsaturated carboxylic acids or their salts, partial alkyl esters, complete alkyl esters, nitriles, amides, anhydrides, and unsaturated sulfonic acids or their salts as copolymerization components. No problem. The mixing ratio of component (1) and component (2) is 100 parts by weight of (1).
(2) shall be 0.1 to 1 part by weight. If (2) is less than 0.1 part by weight, it is difficult to see the effect of mixing the saponified ethylene-vinyl acetate copolymer, while if it is more than 1 part by weight, the effect of improving thermal stability will not necessarily be noticeable depending on the amount added. Not only is it economically disadvantageous, but also the transparency decreases in applications such as sheets, films, and bottles, making it impractical. The mixture of components (1) and (2) can be melt-molded to form the desired pellets, films, sheets, containers, etc.
Manufacture molded products of arbitrary shapes such as rods and pipes. As the melt molding method, an injection molding method, an extrusion molding method, a rotational molding method, a fluidized immersion molding method, a blow molding method, etc. are adopted. The composition can be molded under almost the same conditions as when the thermoplastic resin is used alone, and the melt molding temperature varies depending on the type of thermoplastic resin, but is generally suitably 200 to 320°C. During such molding, it is of course possible to use in combination two or more types of saponified ethylene-vinyl acetate copolymers having various ethylene contents and saponification degrees for component (1). Also, during melt molding, ethylene-
In addition to the saponified vinyl acetate copolymer, plasticizers (polyhydric alcohols, etc.), stabilizers, surfactants, crosslinking substances (epoxy compounds, polyvalent metal salts, inorganic or organic polybasic acids or their salts, etc.), fillers, colorants,
Appropriate amounts of fibers (glass fibers, carbon fibers, etc.) as reinforcing agents, flame retardants, flame retardant aids, etc. can be blended. Furthermore, other thermoplastic resins can be blended in appropriate amounts, such as polyolefin, polyamide, polyvinyl chloride, polyvinylidene chloride, polyacetal,
Examples include polystyrene, ABS, polyurethane, etc. Furthermore, it is important not only to produce a single-layer molded product using the composition of the present invention, but also to coextrude it with other thermoplastic resin layers. In the case of coextrusion molding, the partner resins include low-density polyethylene, medium-density polyethylene, high-density polyethylene, ethylene-vinyl acetate copolymer, ionomer, ethylene-α-olefin (carbon number 3).
~20 α-olefins) copolymers, ethylene-acrylic acid ester copolymers, polypropylene, propylene-α-olefins (α-olefins having 4 to 20 carbon atoms)
Polyolefin resins and polyesters in a broad sense, such as olefin (olefin) copolymers, mono or copolymers of olefins such as polybutene and polypentene, and mono or copolymers of these olefins graft-modified with unsaturated carboxylic acids or esters thereof. , polyamide, copolyamide, polyvinyl chloride, polyvinylidene chloride, acrylic resin, styrene resin, vinyl ester resin, polyester elastomer, polyurethane elastomer, chlorinated polyethylene, chlorinated polypropylene, ethylene-vinyl acetate copolymer Examples include chemical substances. Furthermore, once a molded product such as a film or sheet is obtained from the composition of the present invention, it may be extrusion coated with other thermoplastic resin such as polyolefin or coated with any other base material (paper, metal foil, stretched or unstretched plastic). (film or sheet, woven fabric, non-woven fabric, wooden surface, etc.) can also be dry laminated using an adhesive. Molded products after melt molding, coextrusion molded products, and melt coated molded products may be subjected to heat treatment, cooling treatment, rolling treatment, uniaxial or biaxial stretching treatment, printing treatment, dry lamination treatment, solution or melt coating treatment, and manufacturing as necessary. Bag processing, deep drawing processing, box processing, tube processing,
Split processing etc. can be performed. [Function] The molded product obtained from the composition of the present invention can be used for foods,
Packaging materials for industrial chemicals and agricultural chemicals, general machinery parts,
It can be used in a variety of applications such as automobile, ship, and aircraft parts, optical and clock equipment parts, electrical and mechanical equipment parts, building materials, and daily necessities. [Example] Next, the composition of the present invention will be explained in more detail with reference to Examples. Hereinafter, "parts" or "%" are expressed on a weight basis unless otherwise specified. Note that water means deionized water. Preparation of saponified ethylene-vinyl acetate copolymer 1000 parts of a 40% methanol solution of an ethylene-vinyl acetate copolymer with an ethylene content of 40 mol% was placed in a pressure-resistant reactor and heated to 110° C. with stirring. Next, 40 parts of a 6% methanol solution of sodium hydroxide and 2,500 parts of methanol were continuously charged, and a saponification reaction was carried out for 2.5 hours while distilling by-product methyl acetate and excess methanol from the system, to remove the vinyl acetate component. A saponified ethylene-vinyl acetate copolymer having a saponification degree of 99.0 mol% was obtained. While adding 450 parts of 30% water-containing methanol to the saponified liquid, excess methanol was distilled off to produce a water/methanol (3/7 composition ratio) solution with a resin concentration of 39%. A water/methanol mixture of the saponified ethylene-vinyl acetate copolymer at a temperature of 50°C was passed through a nozzle with a hole diameter of 4 mm at a rate of 1.5/hour to a water/methanol mixture maintained at 5°C (mixing ratio 9). /1) It was extruded into a strand shape into a coagulation liquid tank (width 100 mm, length 4000 mm, depth 100 mm). After coagulation, a take-up roller attached to the end of the coagulation tank (linear speed 2 m/min)
After that, the strand-like material was cut with a cutter to produce white, porous pellets with a diameter of 4 mm and a length of 4 mm. Ash content 7400ppm, sodium metal content
A saponified ethylene-vinyl acetate copolymer of 4800 ppm was obtained. Next, 100 parts of the pellets were immersed in 300 parts of a 0.3 acetic acid aqueous solution, stirred at 30°C for 1 hour, and washed twice. After separating the slurry, the obtained pellets were mixed again with 300 parts of water to form a slurry and heated at 30°C.
Washing with water was repeated three times while stirring for 1 hour. The slurry was separated and dried. The saponified ethylene-vinyl acetate copolymer thus obtained had a degree of saponification of 99.0 mol%, an ash content of 6 ppm,
The sodium metal content was 2.7 ppm. In addition, a saponified ethylene-vinyl acetate copolymer with an ash content of 30 ppm and a sodium metal content of 10 ppm to be used as a control example was produced according to the above method. Furthermore, prior to washing with water in the above method, further
The ash content was 10 ppm, sodium metal
A 1.4 ppm saponified ethylene-vinyl acetate copolymer [] was obtained. Incidentally, the ash content and sodium metal were determined in accordance with the following. (Ash content) Accurately weigh approximately 80g of the dried sample, and approximately
10 g was placed in a platinum evaporating dish with constant weight and carbonized using an electric heater. After carbonization, approximately 10 g of each sample was added and the same operation was repeated. Finally, I heated it with a gas burner and baked it until there was no smoke. The platinum evaporation dish was placed in an electric furnace at about 400°C, most of it covered with a magnetic crucible lid, and the temperature was gradually raised to 700°C. After being completely incinerated by holding at 700°C for 3 hours, it was taken out from the electric furnace, left to cool for 5 minutes, and then left in a desiccator for 25 minutes, and the ash content was accurately weighed. (Sodium metal) Approximately 10 g of the dried sample was accurately weighed, placed in a platinum crucible, and incinerated in the same manner as above. 2 ml of special grade hydrochloric acid and 3 ml of pure water were placed in a platinum crucible and heated with an electric heater to dissolve them. The above solution was poured into a 50 ml volumetric flask with pure water, and pure water was added up to the marked line to prepare a sample for atomic absorption spectrometry. Separately prepared standard solution (sodium metal
Atomic absorbance was measured using 1ppm, approximately 0.5N hydrochloric acid as a control solution, and the amount of sodium metal was determined from the absorbance ratio. The measurement conditions are as follows. Equipment: Hitachi 180-30 atomic absorption/flame spectrophotometer Wavelength: 589.0 nm Frame: Acetylene-air thermoplastic resin The following resin was prepared. Polycarbonate “Iupilon S-1000” manufactured by Mitsubishi Gas Chemical Co., Ltd. (melting point 250℃) Polyethylene terephthalate “RT 533” manufactured by Nippon Unipet Co., Ltd. (melting point 255℃) Polybutylene terephthalate “Barox 310” manufactured by General Electric Company (melting point 232℃) Implemented Examples 1 to 6/Comparative Examples 1 to 9 Compositions having the mixing ratios shown in Table 1 were melt-molded under the molding conditions shown in Table 2. The performance of the obtained molded product is shown in Table 1. Control example 10 100 parts of the pellets of the saponified ethylene-vinyl acetate copolymer [ ] were again mixed with 300 parts of a 0.3% acetic acid aqueous solution.
The sample was immersed in a portion of the sample, stirred at 30°C for 1 hour, and washed twice. After filtering the slurry, the obtained pellets were mixed with 300 parts of water again to form a slurry,
Washing with water was repeated three times while stirring at 30° C. for 1 hour, and the mixture was filtered and dried. The saponified ethylene-vinyl acetate copolymer thus obtained had a saponification degree of 99.0 mol% and an ash content.
0.8ppm and sodium metal 0.5ppm. The saponified ethylene-vinyl acetate copolymer was blended with polycarbonate in the same manner as in Example 1,
After melt-molding in the same way, the impact strength and transparency (haze value) were measured, and the results were 65Kg.
cm/cm and 2.0%. Control Example 11 The saponified ethylene-vinyl acetate copolymer [] was treated with acid and washed with water again in the same manner as in Control Example 10 to obtain ethylene-vinyl acetate with a degree of saponification of 99.0 mol%, ash content of 2 ppm, and sodium metal 0.3 ppm. A saponified copolymer was obtained. The saponified ethylene-vinyl acetate copolymer was blended with polybutylene terephthalate in the same manner as in Example 3, and after melt-molding in the same manner, the impact strength and transparency (haze value) were measured, and the result was 4.0 Kg. cm/cm and 5.8%. The impact strength and transparency were measured as follows. Impact strength (injection molded products): Based on ASTM D 256 with izotted and notched (for polycarbonate only, the test piece thickness is 1/8") Transparency (extrusion molded products): Based on ASTM D 1003, Murakami color technology research Measurements were carried out on a film with a film thickness of 50 μm using a manufactured haze meter. [Effects] As mentioned above, the composition of the present application allows molded products with excellent physical properties to be obtained, and can be used in packaging materials and engineering plastics. It can be used as

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 (1) ポリカーボネート系樹脂及びポリエステ
ル系樹脂より選ばれた熱可塑性樹脂100重量部
と (2) エチレン含量が20〜60モル%、酢酸ビニル
部分のケン化度が95モル%以上であり、かつ灰
分含量が1〜20ppmでアルカリ金属含量が0.5
〜5ppmのエチレン−酢酸ビニル共重合体ケン
化物0.1〜1重量部 とからなる熱安定性の良好な熱可塑性樹脂組成
物。
[Scope of Claims] 1 (1) 100 parts by weight of a thermoplastic resin selected from polycarbonate resins and polyester resins; and (2) ethylene content of 20 to 60 mol% and saponification degree of vinyl acetate portion of 95 mols. % or more, and the ash content is 1 to 20 ppm and the alkali metal content is 0.5
A thermoplastic resin composition with good thermal stability, comprising 0.1 to 1 part by weight of a saponified ethylene-vinyl acetate copolymer of ~5 ppm.
JP379087A 1986-08-01 1987-01-09 Thermoplastic resin composition having good thermal stability Granted JPS63172761A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP379087A JPS63172761A (en) 1987-01-09 1987-01-09 Thermoplastic resin composition having good thermal stability
GB8717828A GB2193966B (en) 1986-08-01 1987-07-28 Thermoplastic resin composition
US07/079,112 US4786685A (en) 1986-08-01 1987-07-29 Thermoplastic resin composition
DE3725287A DE3725287C2 (en) 1986-08-01 1987-07-30 Thermoplastic resin composition
FR878710941A FR2602237B1 (en) 1986-08-01 1987-07-31 THERMOPLASTIC RESIN COMPOSITION

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP379087A JPS63172761A (en) 1987-01-09 1987-01-09 Thermoplastic resin composition having good thermal stability

Publications (2)

Publication Number Publication Date
JPS63172761A JPS63172761A (en) 1988-07-16
JPH0512393B2 true JPH0512393B2 (en) 1993-02-17

Family

ID=11566983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP379087A Granted JPS63172761A (en) 1986-08-01 1987-01-09 Thermoplastic resin composition having good thermal stability

Country Status (1)

Country Link
JP (1) JPS63172761A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0216151A (en) * 1988-07-05 1990-01-19 Polyplastics Co Polybutylene terephthalate resin composition and molding
JP4492767B2 (en) * 2000-02-25 2010-06-30 三菱瓦斯化学株式会社 Resin composition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5173557A (en) * 1974-12-23 1976-06-25 Teijin Chemicals Ltd HORIKAABONEETOJUSHISOSEIBUTSU
JPS60148442A (en) * 1983-12-29 1985-08-05 三菱樹脂株式会社 Plastic blow bottle
JPS61152542A (en) * 1984-12-26 1986-07-11 東洋製罐株式会社 Oriented molded plastic vessel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5173557A (en) * 1974-12-23 1976-06-25 Teijin Chemicals Ltd HORIKAABONEETOJUSHISOSEIBUTSU
JPS60148442A (en) * 1983-12-29 1985-08-05 三菱樹脂株式会社 Plastic blow bottle
JPS61152542A (en) * 1984-12-26 1986-07-11 東洋製罐株式会社 Oriented molded plastic vessel

Also Published As

Publication number Publication date
JPS63172761A (en) 1988-07-16

Similar Documents

Publication Publication Date Title
US4786685A (en) Thermoplastic resin composition
BR122015024276B1 (en) compartmentalized resin pellets
JPH02178348A (en) Polyethylene terephthalate molding compound
JP2597960B2 (en) Ethylene-vinyl acetate copolymer saponified composition with improved properties
JP2006089643A (en) Resin composition and molded body thereof
KR19990078208A (en) Transparent polyester film with high oxygen barrier and additional functionality, its use and process for its production
WO2011024686A1 (en) Multi-layer structure
GB2076832A (en) Blends of polyethylene terephtalate based polyesters and styrene- maleic anhydride copolymers
JPH0512393B2 (en)
US4857589A (en) Hydrolyzed ethylene-vinyl acetate copolymer
JP5979996B2 (en) Method for producing multilayer stretched film
JPWO2019130989A1 (en) Ethylene-vinyl alcohol copolymer-containing resin composition, and molded articles and packaging materials comprising the same.
JP2003112385A (en) Gas barrier laminated film
JP2004018650A (en) Gas barrier composition, coating agent and film
JP7079270B2 (en) Method for Producing Ethylene-Vinyl Alcohol Copolymer-Containing Resin Composition
JPH0463102B2 (en)
JP2668822B2 (en) Resin composition
JP2828300B2 (en) Ethylene-vinyl acetate copolymer saponified composition having improved properties and use thereof
JP2001342243A (en) Aromatic liquid crystal polyester film and method for producing the same
JP3650459B2 (en) Liquid crystal polyester resin composition film and method for producing the same
RU2415164C2 (en) Polyester polymer composition, preparation method thereof and moulded article
JP2860127B2 (en) Resin composition and its use
KR20140147804A (en) Method for producing flame-retardant polyester, and flame-retardant master batch
WO2021049637A1 (en) Biodegradable laminated sheet, sheet for forming containers, and biodegradable container
JP5491106B2 (en) Multilayer structure

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees