JPH05123026A - Controller for lifting and lowering reaping part in combine - Google Patents

Controller for lifting and lowering reaping part in combine

Info

Publication number
JPH05123026A
JPH05123026A JP3311869A JP31186991A JPH05123026A JP H05123026 A JPH05123026 A JP H05123026A JP 3311869 A JP3311869 A JP 3311869A JP 31186991 A JP31186991 A JP 31186991A JP H05123026 A JPH05123026 A JP H05123026A
Authority
JP
Japan
Prior art keywords
distance
lowering
combine
traveling speed
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3311869A
Other languages
Japanese (ja)
Other versions
JP3185286B2 (en
Inventor
Fumio Yoshimura
文夫 吉邨
Hiromasa Kikuzawa
尋正 菊沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iseki and Co Ltd
Iseki Agricultural Machinery Mfg Co Ltd
Original Assignee
Iseki and Co Ltd
Iseki Agricultural Machinery Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iseki and Co Ltd, Iseki Agricultural Machinery Mfg Co Ltd filed Critical Iseki and Co Ltd
Priority to JP31186991A priority Critical patent/JP3185286B2/en
Publication of JPH05123026A publication Critical patent/JPH05123026A/en
Application granted granted Critical
Publication of JP3185286B2 publication Critical patent/JP3185286B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Harvester Elements (AREA)

Abstract

PURPOSE:To set the lowering starting distance of a reaping part with a lowering starting distance setting means according to the travel speed of a combine and optimize and speed up the reaping operation by sensing the travel speed of the combine with a travel speed sensing means. CONSTITUTION:When the travel speed of a machine body is sensed with a travel speed sensor, a lowering starting distance (L) of a reaping part (A), i.e., the distance between the lowering starting point (Q) of the reaping part and unreaped crop groups 31 is calculated according to the sensed travel speed. When the distance to the unreaped crop groups 31 in the front is sensed with a front sensor 7 and the sensed value is smaller than the lowering starting distance (L), the reaping part (A) starts lowering. When the travel speed is high, i.e., the sensed value of the travel speed sensor 12 is large, the lowering starting distance (L) can be set at a large value. Thereby, a fear of the reaping part (A) reaching the unreaped crop groups 31 before completing the lowering operation of the reaping part (A) can be eliminated.

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、コンバインの刈取部を
昇降制御するための刈取部昇降制御装置に関するもので
ある。 【0002】 【従来の技術】従来のコンバインにおける刈取部昇降装
置の制御例を図6を参照して説明すると、まず、条刈り
(図6においてA−B方向の刈取り)の終了後に刈取部
を上昇させ、所謂αターン(図中C〜D)による回行作
動を行って未刈穀桿群31に対向する姿勢になるように
移動する。次に、光ビームセンサなどの前方センサ7で
機体1から未刈穀桿群31までの距離を計測しつつ、未
刈穀桿群31に向け前進する。そして前記前方センサ7
の検出した未刈穀桿群までの距離が予め設定された下降
開始距離を下回ったことを条件に、刈取部を所定の刈取
高さに下降させ、未刈穀桿群の横刈り(図6中D−E方
向)を開始するものである。 【0003】 【発明が解決しようとする課題】しかし、刈取部が上昇
位置から下降位置に移行するには一定の時間を要する。
従って、この従来の装置では、機体1の走行速度が速い
場合には、刈取部の下降作動の終了前に機体1が未刈穀
桿群31に到達してしまい、刈取が適切に行われない虞
があった。またこの問題点は、刈取作業の高速化を図る
際の障害となっていた。 【0004】そこで本発明は、この問題点を解決し、機
体の走行速度にかかわらず、刈取作業の適正化、高速化
を実現することを目的とする。 【0005】 【課題を解決するための手段】上記の問題点を解決すべ
く、本発明のコンバインにおける刈取部昇降制御装置
は、コンバインとその前方の未刈作物との間の距離を計
測する距離計測手段と、コンバインの走行速度を検出す
る走行速度検出手段と、当該走行速度検出手段の検出値
に応じて、刈取部下降開始地点と未刈作物との間の距離
を設定する下降開始距離設定手段と、前記距離計測手段
の検出値が設定下降開始距離を下回ったときに刈取部が
下降を開始するように刈取部昇降装置を制御する制御手
段と、を備えてなるものである。 【0006】 【作用】本発明においては、距離計測手段はコンバイン
とその前方の未刈作物との間の距離を計測する。いま、
走行速度検出手段がコンバインの走行速度を検出する
と、下降開始距離設定手段は、走行速度検出手段が検出
した走行速度に応じて、刈取部の下降開始距離を設定す
る。ここで、下降開始距離とは、刈取部が下降を開始す
る際の刈取部と未刈作物との間の距離をいう。制御手段
は、距離計測手段の検出値が設定下降開始距離を下回っ
たときに刈取部が下降を開始するように昇降装置を制御
する。 【0007】このように本発明では、コンバインの走行
速度の大小に応じて下降開始距離を大小に設定するの
で、機体が未刈作物に到達したときには刈取部の下降作
動が終了していて刈取作業に円滑に移行でき、もってコ
ンバインの走行速度にかかわりなく刈取作業の適正化、
高速化が実現できる。 【0008】 【実施例】本発明第1実施例につき、以下に図面を参照
して説明する。図1は本発明を実施するコンバインであ
って、機体1の前端に刈取フレーム5の後端部5aを回
動自在に取付け、その刈取フレーム5の各部には、作物
を整列させる分草器2、作物を起立させる引起し装置
3、作物基部を切断する切断装置4A、切断後の穀物を
脱穀部(図示省略)に搬送する搬送装置4Bを装着して
なる。これら分草器2、引起し装置3、切断装置4A、
搬送装置4Bおよび刈取フレーム5は刈取部Aを構成
し、この刈取部Aは、刈取フレーム5に接続した油圧シ
リンダ6の伸縮駆動により刈取フレーム5の後端部5a
を支点に上昇・下降可能とする。この刈取フレーム5の
後端部5aには、刈取部Aの上昇角度を検出すべきポテ
ンショメータなどからなる昇降角度センサ9(図2参
照)を設ける。 【0009】7は機体1の走行中に、前方の未刈作物群
と機体1との間の距離を測定する距離計測手段としての
前方センサであり、また8は後述する刈高さの制御に用
いる刈高センサである。これら前方センサ7および刈高
センサ8には超音波センサなどを用い、それぞれ送信部
および受信部からなる。 【0010】10はエンジン、11は走行部である。エ
ンジン10と走行部11との動力伝達経路中の適宜の中
間軸には、走行部11の走行速度を検出する走行速度検
出手段としての走行速度センサ12(図2参照)を設け
る。 【0011】次に、第1実施例の制御部の構成例につい
て、図2を参照して説明する。21は本実施例のコンバ
インの各部を後述のように関連して制御するためのマイ
クロコンピュータであり、その入力側には、上述した前
方センサ7、刈高センサ8、昇降角度センサ9、走行速
度センサ12のほか、穀桿検出用の接触型の穀桿センサ
22などを、入力インターフェース23を介して電気的
に接続する。またマイクロコンピュータ21の出力側に
は、前記油圧シリンダ6を伸縮駆動するための刈取上昇
ソレノイド24、刈取下降ソレノイド25などを、出力
インターフェース26を介して電気的に接続する。 【0012】次に、第1実施例の制御の一例について、
図3のフローチャートなどを参照して説明する。 【0013】まず、機体1が条刈りを終了した後、所謂
αターンによる回行作動を経て、横刈りのための後進を
終了すると(図6中Dの位置)、前方センサ7の送信部
が、未刈作物群31(図4参照)に向けて超音波を送信
する(S1)。次に、前方センサ7の受信部が超音波
(反射波)を受信したか否かが判定され(S2)、否定
判定の場合には、一定時間の経過後に、前方センサ7の
送信部が再び超音波を送信する(S3,S1)。 【0014】ステップS2において肯定判定の場合に
は、走行速度センサ12の検出値vを読み込み(S
4)、その検出値vに応じて、所定の下降開始距離Lを
次の(1)式を用いて算出する(S5)。ここで、下降
開始距離Lとは、図4で示すように刈取部Aが下降を開
始する刈取部下降開始地点Qと未刈作物群31との間の
距離をいう。 【0015】L=l+v・t……(1) ここで、(1)式において、tは刈取部Aの下降に要す
る一定時間を示す(図4参照)。またlは下降終了位置
Pと未刈作物群31との間の距離を示し、このlの値
は、作業能率等を考慮して定めるものとする。 【0016】次に、前方センサ7の受信部の検出値に基
いて、機体1と未刈作物群31との間の距離を算出する
と共に、この未刈作物群31までの距離を、ステップS
5で算出した下降開始距離Lと比較する(S6)。その
比較の結果、未刈作物群31までの距離が下降開始距離
Lを上回ったときには、再び前方センサ7により未刈作
物群31までの距離を測定し(S1)、未刈作物群31
までの距離が下降開始距離Lを下回るまで、上述の制御
を繰り返す。 【0017】そして、ステップS6における比較の結
果、未刈作物群31までの距離が下降開始距離Lを下回
った旨が判別されたときには、刈取下降ソレノイド24
が励磁され、油圧シリンダ6が後退作動して、刈取部A
が刈取フレーム5の後端部5aを支点に下降を開始する
(S7)。この下降作動は、昇降角度センサ9の検出値
が所定値になることにより終了するが、この下降に要す
る時間は常に一定値tであるので、刈取部Aの下降動作
は所定の下降終了位置P、すなわち未刈作物群31に対
し距離l手前の地点で終了する。 【0018】このようにして昇降角度センサ9の検出値
を用いた自動昇降制御が終了すると、その後は、刈高セ
ンサ8で地表面と刈取部Aとの間隔を検出し、その検出
値を所定の目標刈高さ(例えば地表面から5cm)に一致
させる制御に移行する。従って、以後は刈取部Aの刈高
さHは常に目標刈高さに維持される。 【0019】このように第1実施例では、走行速度セン
サ12が機体の走行速度を検出すると、その検出された
走行速度に応じて、刈取部Aの下降開始距離Lを算出
し、前方センサ7が機体とその前方の未刈作物群31と
の間の距離を検出し、その検出値が下降開始距離Lを下
回ったときに、刈取部Aの下降を開始するように構成し
た。従って、走行速度センサ12の検出値の大小に応じ
て下降開始距離Lを大小に設定できるので、刈取部Aが
未刈作物群31に到達したときには、刈取部Aの下降作
動が完了していて刈取作業に円滑に移行でき、もって機
体1の走行速度にかかわりなく刈取作業の適正化、高速
化が実現できる。 【0020】次に、本発明に関連する第2実施例につい
て説明する。この第2実施例は、上述の第1実施例にお
ける刈取部Aの下降に要する時間tを短縮すると共に、
刈取部Aの前方センサ7の検出精度を向上することを目
的としたものである。この第2実施例の機械的構成は上
記第1実施例と同様であり、その制御が以下のように異
なるのみであるので、その説明は省略する。 【0021】しかして、第2実施例における制御の一例
について説明する。まず、刈取部Aを上昇した姿勢で、
機体がいわゆるαターン(図6参照)による回行作動を
終了して後進を停止し(図6中Dの位置)、未刈作物群
31に向け前進を開始する。次に、図5において、後進
停止位置Dから所定距離Sだけ前進した旨が走行速度セ
ンサ12の検出値に基いて検出されると、これに応じて
刈取下降ソレノイド25が励磁され、油圧シリンダ6が
後退作動して刈取部Aが第1段階の下降を開始する。こ
の第1段階の下降は、昇降角度センサ9の検出値が所定
値に一致するまで行われ、その結果、刈取部Aは所定の
高さ位置H2、例えば地表面から約15cmの高さまで下
降する(図5中E)。なお、上述の所定距離Sは、機体
1が条刈りを行う工程で生じた轍である圃場の凹部Tを
通過して機体1の姿勢が略水平に回復するまでに要する
距離を考慮して、例えば30cmとする。 【0022】次に、走行速度センサ12の検出値を読み
込み、その検出値に応じて、次の(2)式を用いて、下
降開始距離L2を算出する(S5)。 【0023】L2=l+v・t2……(1) ここで、(2)式においてvは走行速度センサ12の検
出値、t2は刈取部Aの下降に要する一定時間を示す
(図5参照)。またlは下降終了位置Pと未刈作物群3
1との間の距離を示す。 【0024】次に、機体1が引き続き前進して、前方セ
ンサ7の検出値が、上記(2)式で設定される下降開始
距離L2(例えば走行速度が1.25m/秒のときは約
70cm) を下回ると、このことを条件に、刈取部Aが第
2段階の下降を開始する。この第2段階の下降は、刈高
センサ8の検出値すなわち地表面と刈取部Aとの間隔が
所定値H(例えば地表面から5cm)になるまで行われ
る。そしてこの第2段階の下降が終了すると、以後は刈
高センサ8の検出値が所定値Hと一致するように刈取部
Aを昇降する制御に移行する。 【0025】このように第2実施例では、後進停止位置
Dから所定距離Sだけ前進した時点で刈取部Aを途中ま
で(H2の高さまで)強制的に下降させる第1段階の下
降をあらかじめ行い、その後、前方センサ7の検出値
(未刈作物群31までの距離)が下降開始距離L2を下
回った時点で、刈取部Aを最終的な刈高さHまで下降さ
せる第2段階の下降を行うように構成した。従って、あ
らかじめ第1段階の制御を行っているので、第2段階の
下降に要する時間t2が短くて足りる。また、このよう
に第2段階の下降に要する時間t2が短くて足りること
から、下降開始距離L2がより近距離となり、前方セン
サ7による検出がより確実となって検出の精度が向上で
きるという利点がある。 【0026】 【発明の効果】以上詳述したように、本発明では、コン
バインの走行速度の大小に応じて下降開始距離を大小に
設定するので、機体が未刈作物に到達したときには刈取
部の下降作動が終了していて刈取作業に円滑に移行で
き、もってコンバインの走行速度にかかわりなく刈取作
業の適正化が実現できるという効果を奏する。従って、
刈取作業の一層の高速化に貢献すること大であるといえ
る。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a raising and lowering control device for a mowing section for vertically moving a mowing section of a combine. 2. Description of the Related Art A conventional control example of a raising and lowering unit for a mowing section in a combine will be described with reference to FIG. 6. First, after the end of the line cutting (cutting in the direction AB in FIG. 6), the cutting section is removed. It is moved up so as to be in a posture facing the uncut grain rod group 31 by performing a circular operation by so-called α-turn (C to D in the figure). Next, the front sensor 7 such as a light beam sensor measures the distance from the machine body 1 to the uncut grain rod group 31, and moves forward toward the uncut grain rod group 31. And the front sensor 7
On the condition that the distance to the uncut grain rod group detected by is less than the preset descent start distance, the mowing unit is lowered to a predetermined cutting height, and lateral cutting of the uncut grain rod group (Fig. 6) is performed. The middle D-E direction) is started. However, it takes a certain amount of time for the cutting unit to move from the raised position to the lowered position.
Therefore, in this conventional device, when the traveling speed of the machine body 1 is high, the machine body 1 reaches the uncut grain rod group 31 before the end of the lowering operation of the cutting unit, and the cutting is not properly performed. I was afraid. In addition, this problem has been an obstacle to speeding up the cutting work. SUMMARY OF THE INVENTION Therefore, an object of the present invention is to solve this problem and to realize proper and high-speed reaping work regardless of the traveling speed of the machine body. In order to solve the above-mentioned problems, the harvesting part raising / lowering control device in the combine of the present invention measures the distance between the combine and the uncut crop in front of it. Measuring means, traveling speed detection means for detecting the traveling speed of the combine, and, according to the detection value of the traveling speed detection means, a descending start distance setting for setting the distance between the cutting section descending start point and the uncut crop Means and control means for controlling the reaper unit elevating device so that the reaper unit starts to descend when the detected value of the distance measuring unit falls below the set descending start distance. In the present invention, the distance measuring means measures the distance between the combine and the uncut crop in front of it. Now
When the traveling speed detecting means detects the traveling speed of the combine, the descent start distance setting means sets the descending start distance of the mowing unit according to the traveling speed detected by the traveling speed detecting means. Here, the descent start distance refers to the distance between the mowing unit and the uncut crop when the mowing unit starts descent. The control means controls the lifting device so that the reaper starts to descend when the detection value of the distance measuring means falls below the set descending start distance. As described above, according to the present invention, since the descending start distance is set to be large or small according to the traveling speed of the combine, the descending operation of the mowing unit is completed when the machine reaches the uncut crop, and the mowing operation is completed. It is possible to smoothly shift to, and to optimize the cutting work regardless of the combine traveling speed,
Higher speed can be realized. A first embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a combine for implementing the present invention, in which a rear end portion 5a of a mowing frame 5 is rotatably attached to a front end of a machine body 1, and a weeder 2 for aligning crops is provided at each part of the mowing frame 5. The raising device 3 for raising the crop, the cutting device 4A for cutting the crop base, and the carrying device 4B for carrying the cut grain to the threshing unit (not shown) are mounted. These weaving device 2, raising device 3, cutting device 4A,
The carrying device 4B and the mowing frame 5 constitute a mowing section A, and the mowing section A is extended and retracted by a hydraulic cylinder 6 connected to the mowing frame 5 so that the rear end portion 5a of the mowing frame 5 is moved.
It is possible to move up and down around the fulcrum An elevation angle sensor 9 (see FIG. 2) including a potentiometer or the like for detecting the rising angle of the mowing section A is provided at the rear end 5a of the mowing frame 5. Reference numeral 7 is a front sensor as a distance measuring means for measuring a distance between the front uncut crop group and the body 1 while the body 1 is running, and 8 is for controlling a cutting height which will be described later. This is the cutting height sensor used. An ultrasonic sensor or the like is used for the front sensor 7 and the cutting height sensor 8, and each of them comprises a transmitter and a receiver. Reference numeral 10 is an engine, and 11 is a traveling section. A traveling speed sensor 12 (see FIG. 2) as traveling speed detecting means for detecting the traveling speed of the traveling portion 11 is provided on an appropriate intermediate shaft in the power transmission path between the engine 10 and the traveling portion 11. Next, a configuration example of the control unit of the first embodiment will be described with reference to FIG. Reference numeral 21 denotes a microcomputer for controlling the respective parts of the combine of this embodiment in a related manner as described later, and the input side thereof has the front sensor 7, the cutting height sensor 8, the elevation angle sensor 9, and the traveling speed. In addition to the sensor 12, a contact type grain rod sensor 22 for grain rod detection and the like are electrically connected via an input interface 23. The output side of the microcomputer 21 is electrically connected with a mowing rising solenoid 24, a mowing descending solenoid 25, etc. for driving the hydraulic cylinder 6 to extend and contract, through an output interface 26. Next, regarding an example of the control of the first embodiment,
This will be described with reference to the flowchart of FIG. First, after the machine body 1 has finished cutting, after passing through a so-called α-turn, the reverse movement for side cutting is completed (position D in FIG. 6). , Ultrasonic waves are transmitted toward the uncut crop group 31 (see FIG. 4) (S1). Next, it is determined whether or not the reception unit of the front sensor 7 has received an ultrasonic wave (reflected wave) (S2), and in the case of a negative determination, the transmission unit of the front sensor 7 is re-established after a certain period of time has elapsed. Ultrasonic waves are transmitted (S3, S1). If a positive determination is made in step S2, the detection value v of the traveling speed sensor 12 is read (S
4) Then, according to the detected value v, a predetermined descent start distance L is calculated using the following equation (1) (S5). Here, the descent start distance L refers to the distance between the mowing section descent start point Q where the mowing section A starts to descend and the uncut crop group 31, as shown in FIG. 4. L = l + v · t (1) Here, in the equation (1), t represents a constant time required for the lowering of the reaper A (see FIG. 4). Further, l indicates the distance between the descending end position P and the uncut crop group 31, and the value of this l is determined in consideration of work efficiency and the like. Next, the distance between the machine body 1 and the uncut crop group 31 is calculated based on the detection value of the reception section of the front sensor 7, and the distance to the uncut crop group 31 is calculated in step S.
It is compared with the descent start distance L calculated in 5 (S6). As a result of the comparison, when the distance to the uncut crop group 31 exceeds the descent start distance L, the distance to the uncut crop group 31 is measured again by the front sensor 7 (S1), and the uncut crop group 31 is measured.
The above-mentioned control is repeated until the distance to is less than the descending start distance L. Then, as a result of the comparison in step S6, when it is determined that the distance to the uncut crop group 31 is less than the lowering start distance L, the cutting lowering solenoid 24
Is excited, the hydraulic cylinder 6 moves backward, and the mowing unit A
Starts descending with the rear end 5a of the mowing frame 5 as a fulcrum (S7). This lowering operation ends when the detection value of the up-and-down angle sensor 9 reaches a predetermined value. However, since the time required for this lowering is always a constant value t, the lowering operation of the mowing unit A is performed at a predetermined lowering end position P. That is, the process ends at the point before the distance l with respect to the uncut crop group 31. When the automatic raising / lowering control using the detected value of the raising / lowering angle sensor 9 is completed in this way, thereafter, the cutting height sensor 8 detects the distance between the ground surface and the cutting section A, and the detected value is predetermined. The control shifts to match the target cutting height (for example, 5 cm from the ground surface). Therefore, thereafter, the cutting height H of the cutting unit A is always maintained at the target cutting height. As described above, in the first embodiment, when the traveling speed sensor 12 detects the traveling speed of the machine body, the lowering start distance L of the cutting section A is calculated according to the detected traveling speed, and the front sensor 7 is used. Detects the distance between the machine body and the uncut crop group 31 in front of the machine body, and when the detected value is less than the lowering start distance L, the lowering of the cutting unit A is started. Therefore, the descending start distance L can be set to be large or small in accordance with the magnitude of the detected value of the traveling speed sensor 12, so that when the reaping section A reaches the uncut crop group 31, the lowering operation of the reaping section A is completed. It is possible to smoothly shift to the reaping work, so that the reaping work can be optimized and speeded up regardless of the traveling speed of the machine body 1. Next, a second embodiment related to the present invention will be described. The second embodiment shortens the time t required for lowering the mowing unit A in the first embodiment described above, and
The purpose is to improve the detection accuracy of the front sensor 7 of the reaping unit A. The mechanical structure of the second embodiment is similar to that of the first embodiment, and the control is different as follows, so the description thereof will be omitted. Now, an example of control in the second embodiment will be described. First, with the reaper A raised,
The machine ends the so-called α-turn (see FIG. 6) and stops the backward movement (position D in FIG. 6), and starts forward toward the uncut crop group 31. Next, in FIG. 5, when the fact that the vehicle has moved forward from the reverse stop position D by the predetermined distance S is detected based on the detection value of the traveling speed sensor 12, the reaping lowering solenoid 25 is excited accordingly, and the hydraulic cylinder 6 Moves backward and the mowing unit A starts to descend in the first stage. This first-stage descent is performed until the detection value of the up-and-down angle sensor 9 coincides with a predetermined value, and as a result, the mowing unit A descends to a predetermined height position H2, for example, a height of about 15 cm from the ground surface. (E in FIG. 5). In addition, the above-mentioned predetermined distance S takes into consideration the distance required for the posture of the machine body 1 to recover to be substantially horizontal after passing through the recess T of the field, which is a rut generated in the step of the machine body 1, For example, 30 cm. Next, the detected value of the traveling speed sensor 12 is read, and the descent start distance L2 is calculated according to the detected value using the following equation (2) (S5). L2 = l + vt2 (1) Here, in the equation (2), v is a detection value of the traveling speed sensor 12, and t2 is a constant time required for the cutting unit A to descend (see FIG. 5). In addition, l is the descending end position P and the uncut crop group 3
The distance to 1 is shown. Next, the machine body 1 continues to move forward, and the value detected by the front sensor 7 causes the descending start distance L2 set by the above equation (2) (for example, about 70 cm when the traveling speed is 1.25 m / sec). ), The reaper A starts to descend in the second stage under this condition. The second step of descending is performed until the detection value of the cutting height sensor 8, that is, the distance between the ground surface and the cutting unit A reaches a predetermined value H (for example, 5 cm from the ground surface). Then, when the lowering of the second stage is completed, thereafter, the control proceeds to the control of raising and lowering the cutting unit A so that the detection value of the cutting height sensor 8 matches the predetermined value H. As described above, in the second embodiment, the first stage of descending forcibly lowering the reaping section A halfway (to the height of H2) at the time point when the vehicle moves forward from the reverse stop position D by the predetermined distance S is performed in advance. After that, when the detection value of the front sensor 7 (distance to the uncut crop group 31) becomes less than the falling start distance L2, the second step of lowering the cutting unit A to the final cutting height H is performed. Configured to do. Therefore, since the control of the first stage is performed in advance, the time t2 required for the lowering of the second stage can be short. In addition, since the time t2 required for the second step descent is short and sufficient as described above, the descent start distance L2 becomes shorter, and the detection by the front sensor 7 becomes more reliable and the detection accuracy can be improved. There is. As described above in detail, in the present invention, the descending start distance is set to a large value according to the traveling speed of the combine, so when the machine reaches the uncut crop, Since the descending operation is completed, it is possible to smoothly shift to the mowing work, and thus, the mowing work can be optimized regardless of the traveling speed of the combine. Therefore,
It can be said that it greatly contributes to further speeding up the cutting work.

【図面の簡単な説明】 【図1】本発明を実施するコンバインを示す略側面図で
ある。 【図2】第1実施例の制御部の構成例を示す略図であ
る。 【図3】第1実施例の制御の一例を示すフローチャート
である。 【図4】第1実施例における刈取部の昇降の状態を示す
略側面図である。 【図5】第2実施例における刈取部の昇降の状態を示す
略側面図である。 【図6】コンバインが条刈りから横刈りに移行する場合
の移動軌跡を示す略平面図である。 【符号の説明】 1 機体 6 油圧シリンダ 7 前方センサ 9 昇降角度センサ 11 走行部 12 走行速度センサ 21 マイクロコンピュータ A 刈取部
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic side view showing a combine for implementing the present invention. FIG. 2 is a schematic diagram showing a configuration example of a control unit of the first embodiment. FIG. 3 is a flowchart showing an example of control according to the first embodiment. FIG. 4 is a schematic side view showing a state where the reaping unit is lifted and lowered in the first embodiment. FIG. 5 is a schematic side view showing a state in which a mowing unit according to a second embodiment is raised and lowered. FIG. 6 is a schematic plan view showing a movement trajectory of the combine when shifting from row cutting to side cutting. [Explanation of Codes] 1 Airframe 6 Hydraulic cylinder 7 Front sensor 9 Lifting angle sensor 11 Traveling section 12 Traveling speed sensor 21 Microcomputer A Mowing section

Claims (1)

【特許請求の範囲】 コンバインとその前方の未刈作物との間の距離を計測す
る距離計測手段と、 コンバインの走行速度を検出する走行速度検出手段と、 当該走行速度検出手段の検出値に応じて、刈取部下降開
始地点と未刈作物との間の距離を設定する下降開始距離
設定手段と、 前記距離計測手段の検出値が設定下降開始距離を下回っ
たときに刈取部が下降を開始するように刈取部昇降装置
を制御する制御手段と、 を備えてなるコンバインにおける刈取部昇降制御装置。
Claims: Distance measuring means for measuring a distance between a combine and an uncut crop in front of the combine, traveling speed detecting means for detecting a traveling speed of the combine, and a detection value of the traveling speed detecting means. The descent start distance setting means for setting the distance between the mowing section descent start point and the uncut crop, and the mowing section starts descent when the detection value of the distance measuring means falls below the set descent start distance. A control means for controlling the reaper section lifting device as described above, and a reaper section lifting control device in a combine, comprising:
JP31186991A 1991-10-30 1991-10-30 Elevator control device for harvester in combine Expired - Fee Related JP3185286B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31186991A JP3185286B2 (en) 1991-10-30 1991-10-30 Elevator control device for harvester in combine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31186991A JP3185286B2 (en) 1991-10-30 1991-10-30 Elevator control device for harvester in combine

Publications (2)

Publication Number Publication Date
JPH05123026A true JPH05123026A (en) 1993-05-21
JP3185286B2 JP3185286B2 (en) 2001-07-09

Family

ID=18022398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31186991A Expired - Fee Related JP3185286B2 (en) 1991-10-30 1991-10-30 Elevator control device for harvester in combine

Country Status (1)

Country Link
JP (1) JP3185286B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022099637A (en) * 2020-12-23 2022-07-05 井関農機株式会社 combine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022099637A (en) * 2020-12-23 2022-07-05 井関農機株式会社 combine

Also Published As

Publication number Publication date
JP3185286B2 (en) 2001-07-09

Similar Documents

Publication Publication Date Title
JPH05123026A (en) Controller for lifting and lowering reaping part in combine
JP2797446B2 (en) Combine cutting height control device
JP3541150B2 (en) Work vehicle lift control device
JP2005304399A (en) Traveling vehicle body control system for combine harvester
JP2945584B2 (en) Work vehicle lift control device
JP3664595B2 (en) Mowing harvester
JP2855680B2 (en) Combine cutting height control device
JP3583038B2 (en) Work vehicle lift control device
JP3057699B2 (en) Combine cutting height control device
JP2508746B2 (en) Cutting height controller for combine harvester
JP2000270607A (en) Reaping harvester
JP2651068B2 (en) Combine handling depth control device
JP3203129B2 (en) Elevating device of reaper
JPH0558682B2 (en)
JP2001128526A (en) Device for controlling lifting of working vehicle
JP2022088118A (en) Harvesting machine
JPH0548087B2 (en)
JP3057696B2 (en) Combine cutting blade device
JPS63202313A (en) Stalk reaping height control system of combine
KR940000186B1 (en) Combine
JP2525503B2 (en) Combine handling depth control device
JPH0595715A (en) Lift control unit for reaping component in reaping harvester
JP2517889B2 (en) Automatic cutting height control method for combine harvesters
JP2934998B2 (en) Combine harvester
JPS5834987Y2 (en) reaping harvester

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010403

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees