JPH05121433A - Method for forming ldd construction for mos transistor - Google Patents
Method for forming ldd construction for mos transistorInfo
- Publication number
- JPH05121433A JPH05121433A JP30827291A JP30827291A JPH05121433A JP H05121433 A JPH05121433 A JP H05121433A JP 30827291 A JP30827291 A JP 30827291A JP 30827291 A JP30827291 A JP 30827291A JP H05121433 A JPH05121433 A JP H05121433A
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- gate electrode
- impurities
- ion implantation
- forming
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は、MOSトランジスタ
のLDD(Lightly Doped Drain)構造の形成方法に関す
るものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming an LDD (Lightly Doped Drain) structure of a MOS transistor.
【0002】[0002]
【従来の技術】従来、MOSトランジスタのLDD構造
は、図3に示すようにして形成されている。まず図3
(a)に示すように基板1上にゲート電極2を形成し、
そのゲート電極2をマスクとして低濃度の不純物3をイ
オン注入法によって基板1中に打ち込む。次に、基板1
上にSiO2 等の膜(ここではSiO2 膜とする)4を
CVD(Camical Vapour Deposition)法によって図3
(b)に示すように形成する。そのSiO2 膜4をRI
E(Reactive Ion Etch)法などの異方性エッチング方法
にて全面エッチングを行い、図3(c)に示すようにゲ
ート電極2の側壁部にのみSiO2 膜4を残す。この残
存SiO2 膜4とゲート電極2をマスクとして高濃度の
不純物5をイオン注入法によって図3(d)に示すよう
に基板1中に打ち込む。最後にアニールすることによっ
て図3(e)に示すように基板1中に低濃度拡散領域6
と高濃度拡散領域7を形成する。2. Description of the Related Art Conventionally, an LDD structure of a MOS transistor is formed as shown in FIG. First, Fig. 3
Forming a gate electrode 2 on the substrate 1 as shown in FIG.
Using the gate electrode 2 as a mask, a low concentration impurity 3 is implanted into the substrate 1 by an ion implantation method. Next, substrate 1
A film such as SiO 2 (here, a SiO 2 film) 4 is formed on the upper surface by CVD (Camical Vapor Deposition) method.
It is formed as shown in FIG. The SiO 2 film 4 is RI
The entire surface is etched by an anisotropic etching method such as E (Reactive Ion Etch) method, and the SiO 2 film 4 is left only on the side wall of the gate electrode 2 as shown in FIG. Using the remaining SiO 2 film 4 and the gate electrode 2 as a mask, a high concentration impurity 5 is implanted into the substrate 1 by an ion implantation method as shown in FIG. Finally, by annealing, the low concentration diffusion region 6 is formed in the substrate 1 as shown in FIG.
And a high concentration diffusion region 7 is formed.
【0003】図4は、上記LDD構造の形成方法をCM
OSトランジスタに適用した場合である。まず図4
(a)に示すように基板1に素子分離酸化膜8とゲート
電極2を形成した後、PMOSトランジスタ形成領域9
側をレジストパターン10で覆った上で、NMOSトラ
ンジスタ形成領域11の基板1内に低濃度の不純物3a
をゲート電極2をマスクとしてイオン注入法で打ち込
む。次に図4(b)に示すようにNMOSトランジスタ
形成領域11側をレジストパターン12で覆った上で、
PMOSトランジスタ形成領域9の基板1内に低濃度の
不純物3bをゲート電極2をマスクとしてイオン注入法
で打ち込む。その後、基板1上の全面に図4(c)に示
すようにSiO2 膜4を形成し、このSiO2 膜4を異
方性エッチング法で全面エッチングすることにより図4
(d)に示すようにゲート電極2の側壁部にのみSiO
2 膜4を残す。その後、図4(e)に示すようにPMO
Sトランジスタ形成領域9側をレジストパターン13で
覆った上で、NMOSトランジスタ形成領域11の基板
1内に高濃度の不純物5aをゲート電極2およびSiO
2 膜4をマスクとしてイオン注入法で打ち込む。続い
て、図4(f)に示すようにNMOSトランジスタ形成
領域11側をレジストパターン14で覆った上で、PM
OSトランジスタ形成領域9の基板1内に高濃度の不純
物5bをゲート電極2およびSiO2 膜4をマスクとし
てイオン注入法で打ち込む。最後にアニールすることに
よって図4(g)に示すように基板1中にNMOSトラ
ンジスタの低濃度拡散領域6aと高濃度拡散領域7aお
よび、PMOSトランジスタの低濃度拡散領域6bと高
濃度拡散領域7bを形成する。FIG. 4 shows a method for forming the above LDD structure in a CM.
This is the case when applied to an OS transistor. Figure 4
After forming the element isolation oxide film 8 and the gate electrode 2 on the substrate 1 as shown in FIG.
After covering the side with the resist pattern 10, the low-concentration impurities 3a are formed in the substrate 1 in the NMOS transistor formation region 11.
Is implanted by ion implantation using the gate electrode 2 as a mask. Next, as shown in FIG. 4B, after covering the NMOS transistor formation region 11 side with a resist pattern 12,
A low-concentration impurity 3b is implanted into the substrate 1 in the PMOS transistor formation region 9 by ion implantation using the gate electrode 2 as a mask. After that, an SiO 2 film 4 is formed on the entire surface of the substrate 1 as shown in FIG. 4C, and the entire surface of the SiO 2 film 4 is etched by an anisotropic etching method to obtain the structure shown in FIG.
As shown in (d), SiO is formed only on the side wall of the gate electrode 2.
2 Leave the film 4. After that, as shown in FIG.
After covering the S transistor formation region 9 side with a resist pattern 13, a high concentration impurity 5a is added to the gate electrode 2 and the SiO 2 in the substrate 1 of the NMOS transistor formation region 11.
2 Ion implantation is performed using the film 4 as a mask. Then, as shown in FIG. 4F, after covering the NMOS transistor formation region 11 side with a resist pattern 14, PM
A high-concentration impurity 5b is implanted into the substrate 1 in the OS transistor formation region 9 by the ion implantation method using the gate electrode 2 and the SiO 2 film 4 as a mask. Finally, by annealing, as shown in FIG. 4 (g), the low concentration diffusion region 6a and the high concentration diffusion region 7a of the NMOS transistor and the low concentration diffusion region 6b and the high concentration diffusion region 7b of the PMOS transistor are formed in the substrate 1. Form.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、以上の
ような従来の形成方法では、LDD構造(低濃度と高濃
度の拡散領域)を形成するために、CMOSトランジス
タを例にとると、レジストパターンを形成するためのホ
トリソ工程が4回、イオン注入工程が4回、SiO2 膜
の形成・エッチング工程が各1回必要で、工程が複雑に
なるという欠点があった。また、SiO2 膜の形成・エ
ッチングによって形成するゲート電極側壁部のSiO2
膜形状の制御が困難であり、LDD構造がバラツクとい
う欠点があった。However, in the conventional forming method as described above, in order to form the LDD structure (low concentration and high concentration diffusion regions), taking a CMOS transistor as an example, a resist pattern is formed. The photolithography process for formation requires four times, the ion implantation process requires four times, and the SiO 2 film forming / etching process requires one time each, which is a drawback that the process becomes complicated. Further, SiO 2 gate electrode side wall portions formed by forming etching of SiO 2 film
It is difficult to control the film shape and the LDD structure varies.
【0005】この発明は上記の点に鑑みなされたもの
で、簡略な工程で制御性良くLDD構造を形成すること
ができるMOSトランジスタのLDD構造形成方法を提
供することを目的とする。The present invention has been made in view of the above points, and an object thereof is to provide a method for forming an LDD structure of a MOS transistor capable of forming an LDD structure with good controllability in a simple process.
【0006】[0006]
【課題を解決するための手段】この発明は、MOSトラ
ンジスタのLDD構造の形成方法において、ゲート電極
の形成後、基板の垂直方向より高濃度の不純物をイオン
注入法により打ち込む工程と、基板を回転させながら、
斜め方向より低濃度の不純物をイオン注入法により打ち
込む工程とを行うようにしたものである。According to the present invention, in a method for forming an LDD structure of a MOS transistor, after forming a gate electrode, a step of implanting an impurity having a higher concentration than a vertical direction of the substrate by an ion implantation method and rotating the substrate. While letting
The step of implanting a low concentration impurity from the oblique direction by an ion implantation method is performed.
【0007】[0007]
【作用】基板を回転させながら、斜め方向より低濃度の
不純物を打ち込むと、ゲート電極の両側端の下部に低濃
度の不純物を打ち込むことが可能となるので、垂直方向
より打ち込んだ高濃度不純物領域(高濃度拡散領域)よ
りゲート電極内側に突出させて低濃度不純物領域(低濃
度拡散領域)を形成することが可能となり、LDD構造
が得られる。そして、この方法によれば、ゲート電極側
壁に対するSiO2 膜の形成工程が不要となる。また、
CMOSトランジスタに適用した場合は、一方側をレジ
ストパターンで覆った状態で、他方側の高濃度と低濃度
のイオン注入を連続して行うことができるので、ホトリ
ソ工程は2回ですむ。なお、不純物の打ち込み時、ゲー
ト電極の全外周のうち両側端と直角な2辺側において
は、公知のように素子分離酸化膜で不純物の打ち込みが
阻止される。したがって、不純物は、前述の低濃度不純
物の打ち込み具合のところで記したようにゲート電極の
両側端側のみに打ち込まれることになり、左右一対ソー
ス・ドレインとしての拡散領域が形成されることにな
る。When a low-concentration impurity is implanted obliquely while rotating the substrate, it is possible to implant a low-concentration impurity under the both side ends of the gate electrode. It becomes possible to form a low-concentration impurity region (low-concentration diffusion region) by protruding from the (high-concentration diffusion region) to the inside of the gate electrode, and an LDD structure is obtained. Further, according to this method, the step of forming the SiO 2 film on the side wall of the gate electrode becomes unnecessary. Also,
When applied to a CMOS transistor, high-concentration and low-concentration ion implantation on the other side can be continuously performed with one side covered with a resist pattern, so that the photolithography process only needs to be performed twice. When implanting impurities, the element isolation oxide film prevents implantation of impurities on the two sides of the entire outer circumference of the gate electrode, which are perpendicular to both ends. Therefore, the impurities are implanted only on both side ends of the gate electrode as described in the above-mentioned implantation condition of the low-concentration impurities, so that a diffusion region as a pair of left and right source / drain is formed.
【0008】[0008]
【実施例】以下この発明の実施例を図面を参照して説明
する。図1はこの発明の第1の実施例で、この発明の基
本例である。まず図1(a)に示すように、基板21に
ゲート電極22を形成後、該基板21を水平な状態に保
ち、その基板21に対して垂直方向から高濃度の不純物
23をゲート電極22をマスクとしてイオン注入法で打
ち込む。次に、図1(b)に示すように、基板21を水
平状態から垂直方向に30°〜45°程度傾けた状態と
し、さらに、その傾斜角を保持した状態で基板21を回
転させながら、該基板21に対して垂直方向から低濃度
の不純物24を同じくゲート電極22をマスクとしてイ
オン注入法で打ち込む。すると、不純物24は基板21
に対して斜めから打ち込まれるようになり、しかもその
基板21が回転しているので、ゲート電極22の両側端
の下部に不純物24を打ち込むことが可能となる。した
がって、次にアニールを行うと、図1(c)に示すよう
に基板21内には、高濃度不純物23による高濃度拡散
領域25よりゲート電極内側に突出して低濃度不純物2
4による低濃度拡散領域26が形成され、LDD構造が
得られる。なお、不純物23,24の打ち込み時、ゲー
ト電極22の全外周のうち両側端と直角な2辺側におい
ては、公知のように素子分離酸化膜(図示せず)で不純
物の打ち込みが阻止される。したがって、不純物23,
24は、低濃度不純物のところで記したようにゲート電
極22の両側端側のみに打ち込まれ、図1(c)に示す
ように左右一対ソース・ドレインとして拡散領域25,
26が形成される。また、実際にはゲート電極22と基
板21間にゲート絶縁膜が介在される。Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a first embodiment of the present invention, which is a basic example of the present invention. First, as shown in FIG. 1A, after forming a gate electrode 22 on a substrate 21, the substrate 21 is kept in a horizontal state, and a high-concentration impurity 23 is added to the substrate 21 in a vertical direction with respect to the gate electrode 22. Ion implantation is used as a mask. Next, as shown in FIG. 1B, the substrate 21 is tilted from the horizontal state in the vertical direction by about 30 ° to 45 °, and further, while rotating the substrate 21 while maintaining the tilt angle, A low-concentration impurity 24 is vertically implanted into the substrate 21 by ion implantation using the gate electrode 22 as a mask. Then, the impurities 24 are removed from the substrate 21.
Since the substrate 21 is rotated obliquely with respect to the gate electrode 22, the impurities 24 can be implanted into the lower portions of both side ends of the gate electrode 22. Therefore, when annealing is performed next, as shown in FIG. 1C, in the substrate 21, the low-concentration impurity 2 is projected from the high-concentration diffusion region 25 of the high-concentration impurity 23 to the inside of the gate electrode.
4, the low-concentration diffusion region 26 is formed, and the LDD structure is obtained. When the impurities 23 and 24 are implanted, the element isolation oxide film (not shown) prevents implantation of impurities on the two sides of the entire outer periphery of the gate electrode 22 which are perpendicular to both ends. . Therefore, the impurities 23,
24 is implanted only on both side ends of the gate electrode 22 as described for the low concentration impurity, and as shown in FIG.
26 is formed. In addition, a gate insulating film is actually interposed between the gate electrode 22 and the substrate 21.
【0009】図2はこの発明の第2の実施例で、この発
明をCMOSトランジスタに適用した場合である。まず
図2(a)に示すように基板31に素子分離酸化膜32
とゲート電極33を形成した後、PMOSトランジスタ
形成領域34側をレジストパターン35で覆う。そし
て、その基板31を水平状態にして垂直方向からNMO
Sトランジスタ形成領域36の基板31内に高濃度の不
純物37をゲート電極33をマスクとして、イオン注入
法で打ち込む。次に、図2(b)に示すように基板31
を傾斜させ、さらにその傾斜角度を保持して基板31を
回転させながら、垂直方向よりNMOSトランジスタ形
成領域36の基板31内に低濃度の不純物38をゲート
電極33をマスクとしてイオン注入法で打ち込む。低濃
度の不純物38は基板31に対しては斜めから打ち込ま
れるようになる。次にレジストパターン35を除去し
て、今度は図2(c)に示すように基板31のNMOS
トランジスタ形成領域36側をレジストパターン39で
覆った上で該基板31を水平とし、その状態で垂直方向
からPMOSトランジスタ形成領域34の基板31内に
高濃度の不純物40をゲート電極33をマスクとしてイ
オン注入法で打ち込む。次に、図2(d)に示すように
基板31を傾斜させ、さらにその傾斜角度を保持して基
板31を回転させながら、垂直方向よりPMOSトラン
ジスタ形成領域34の基板31内に低濃度の不純物41
をゲート電極33をマスクとしてイオン注入法で打ち込
む。低濃度の不純物41は基板31に対しては斜めから
打ち込まれるようになる。最後にアニールを行う。この
アニールにより図2(e)に示すように、PMOSトラ
ンジスタ形成領域34の基板31内、およびNMOSト
ランジスタ形成領域36の基板31内に高濃度拡散領域
42と低濃度拡散領域43がそれぞれ左右一対ソース・
ドレインとして形成される。しかも、基板31を回転さ
せながら斜め方向から低濃度の不純物38,41を打ち
込んだことにより、低濃度拡散領域43は高濃度拡散領
域42よりゲート電極33の内側(ゲート電極33の両
側端下部)に突出した形となり、LDD構造が得られ
る。FIG. 2 shows a second embodiment of the present invention in which the present invention is applied to a CMOS transistor. First, as shown in FIG. 2A, a device isolation oxide film 32 is formed on a substrate 31.
After forming the gate electrode 33 and the gate electrode 33, the PMOS transistor formation region 34 side is covered with a resist pattern 35. Then, with the substrate 31 in a horizontal state, the NMO is
A high-concentration impurity 37 is implanted into the substrate 31 in the S-transistor formation region 36 by ion implantation using the gate electrode 33 as a mask. Next, as shown in FIG.
Is tilted, and while the substrate 31 is rotated while maintaining the tilt angle, a low concentration impurity 38 is vertically implanted into the substrate 31 in the NMOS transistor forming region 36 by using the gate electrode 33 as a mask. The low-concentration impurities 38 are obliquely implanted into the substrate 31. Next, the resist pattern 35 is removed, and this time, as shown in FIG. 2C, the NMOS of the substrate 31 is removed.
The transistor formation region 36 side is covered with a resist pattern 39, the substrate 31 is made horizontal, and in that state, a high concentration impurity 40 is ion-deposited in the substrate 31 of the PMOS transistor formation region 34 from the vertical direction using the gate electrode 33 as a mask. Drive by injection method. Next, as shown in FIG. 2D, the substrate 31 is tilted, and while the tilt angle is maintained and the substrate 31 is rotated, impurities of a low concentration are vertically introduced into the substrate 31 in the PMOS transistor formation region 34 from the vertical direction. 41
Is implanted by ion implantation using the gate electrode 33 as a mask. The low-concentration impurities 41 are obliquely implanted into the substrate 31. Finally, annealing is performed. As a result of this annealing, as shown in FIG. 2E, a pair of left and right high-concentration diffusion regions 42 and low-concentration diffusion regions 43 are formed in the substrate 31 of the PMOS transistor formation region 34 and in the substrate 31 of the NMOS transistor formation region 36, respectively.・
Formed as a drain. Moreover, since the low-concentration impurities 38 and 41 are implanted obliquely while the substrate 31 is rotated, the low-concentration diffusion region 43 is located inside the gate electrode 33 with respect to the high-concentration diffusion region 42 (below both side ends of the gate electrode 33). The LDD structure is obtained as a result of the protruding shape.
【0010】[0010]
【発明の効果】以上詳細に説明したように、この発明に
よれば、ゲート電極の形成後、基板の垂直方向から高濃
度の不純物をイオン注入する工程と、基板を回転させな
がら斜め方向より低濃度の不純物をイオン注入する工程
を行ってLDD構造を形成するようにしたので、例えば
CMOSトランジスタにおいて、レジストパターンを形
成するためのホトリソ工程を2回とすることができ、か
つゲート電極側壁に対するSiO2 膜の形成工程を削減
することができ、工程の簡略化を図ることができる。ま
た、ゲート電極側壁に対するSiO2 膜の形成工程を削
減できることによって、工程のバラツキ要因を減らすこ
とが可能となり、再現性の良いLDD構造を得ることが
できる。As described above in detail, according to the present invention, after the gate electrode is formed, a step of ion-implanting a high concentration impurity from the vertical direction of the substrate, and a step of lowering the impurity concentration from the oblique direction while rotating the substrate. Since the LDD structure is formed by performing the step of ion-implanting impurities of a high concentration, for example, in a CMOS transistor, the photolithography step for forming a resist pattern can be performed twice and the SiO 2 on the side wall of the gate electrode can be formed. The number of steps for forming the two films can be reduced, and the steps can be simplified. Further, since the number of steps of forming the SiO 2 film on the side wall of the gate electrode can be reduced, it is possible to reduce the factor of process variation and obtain an LDD structure with good reproducibility.
【図1】この発明の第1の実施例を示す工程断面図であ
る。FIG. 1 is a process sectional view showing a first embodiment of the present invention.
【図2】この発明の第2の実施例を示す工程断面図であ
る。FIG. 2 is a process sectional view showing a second embodiment of the present invention.
【図3】従来の形成方法を示す工程断面図である。3A to 3D are process cross-sectional views showing a conventional forming method.
【図4】従来の方法のCMOSトランジスタ適用例を示
す工程断面図である。FIG. 4 is a process cross-sectional view showing an application example of a CMOS transistor of a conventional method.
21,31 基板 22,33 ゲート電極 23,37,40 高濃度不純物 24,38,41 低濃度不純物 25,42 高濃度拡散領域 26,43 低濃度拡散領域 21, 31 Substrate 22, 33 Gate electrode 23, 37, 40 High concentration impurity 24, 38, 41 Low concentration impurity 25, 42 High concentration diffusion region 26, 43 Low concentration diffusion region
フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 8617−4M H01L 21/265 F 8617−4M L Continuation of front page (51) Int.Cl. 5 Identification number Office reference number FI technical display location 8617-4M H01L 21/265 F 8617-4ML
Claims (1)
方法において、ゲート電極の形成後、 (a)基板の垂直方向より高濃度の不純物をイオン注入
法により打ち込む工程と、 (b)基板を回転させながら、斜め方向より低濃度の不
純物をイオン注入法により打ち込む工程 を行うことを特徴とするMOSトランジスタのLDD構
造形成方法。1. A method of forming an LDD structure of a MOS transistor, comprising: (a) implanting an impurity having a higher concentration than a vertical direction of a substrate by an ion implantation method after forming a gate electrode; and (b) rotating the substrate. A method of forming an LDD structure of a MOS transistor, which comprises performing a step of implanting a low concentration impurity from an oblique direction by an ion implantation method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30827291A JPH05121433A (en) | 1991-10-29 | 1991-10-29 | Method for forming ldd construction for mos transistor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30827291A JPH05121433A (en) | 1991-10-29 | 1991-10-29 | Method for forming ldd construction for mos transistor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05121433A true JPH05121433A (en) | 1993-05-18 |
Family
ID=17979029
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30827291A Pending JPH05121433A (en) | 1991-10-29 | 1991-10-29 | Method for forming ldd construction for mos transistor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05121433A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6507069B1 (en) | 1994-07-14 | 2003-01-14 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method of manufacture thereof |
US6906383B1 (en) | 1994-07-14 | 2005-06-14 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method of manufacture thereof |
JP2006324630A (en) * | 2005-05-18 | 2006-11-30 | Hynix Semiconductor Inc | Ion implanting method for manufacture of semiconductor device, and graded junction forming method using this |
WO2009147772A1 (en) * | 2008-06-05 | 2009-12-10 | パナソニック株式会社 | Semiconductor device and method for manufacturing the same |
-
1991
- 1991-10-29 JP JP30827291A patent/JPH05121433A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6507069B1 (en) | 1994-07-14 | 2003-01-14 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method of manufacture thereof |
US6773971B1 (en) | 1994-07-14 | 2004-08-10 | Semiconductor Energy Laboratory Co., Ltd. | Method of manufacturing a semiconductor device having lightly-doped drain (LDD) regions |
US6906383B1 (en) | 1994-07-14 | 2005-06-14 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method of manufacture thereof |
US7183614B2 (en) | 1994-07-14 | 2007-02-27 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method of manufacture thereof |
US7635895B2 (en) | 1994-07-14 | 2009-12-22 | Semiconductor Energy Laboratory Co., Ltd. | Display device |
US8273613B2 (en) | 1994-07-14 | 2012-09-25 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method of manufacture thereof |
JP2006324630A (en) * | 2005-05-18 | 2006-11-30 | Hynix Semiconductor Inc | Ion implanting method for manufacture of semiconductor device, and graded junction forming method using this |
KR100687872B1 (en) * | 2005-05-18 | 2007-02-27 | 주식회사 하이닉스반도체 | Method for implanting ions to wafer for manufacturing of semiconductor device and method of fabricating graded junction using the same |
WO2009147772A1 (en) * | 2008-06-05 | 2009-12-10 | パナソニック株式会社 | Semiconductor device and method for manufacturing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR900007046B1 (en) | Method manufacturing fet | |
US5729056A (en) | Low cycle time CMOS process | |
US5432107A (en) | Semiconductor fabricating method forming channel stopper with diagonally implanted ions | |
US5936277A (en) | MOS transistor with impurity-implanted region | |
US5432102A (en) | Method of making thin film transistor with channel and drain adjacent sidewall of gate electrode | |
JP3293039B2 (en) | Method for manufacturing thin film transistor | |
JP2677987B2 (en) | Method for manufacturing semiconductor integrated circuit device | |
JPH05121433A (en) | Method for forming ldd construction for mos transistor | |
JPH06163572A (en) | Manufacture of mos field effect transistor | |
JPH04260336A (en) | Manufacture of thin film transistor and manufacture of liquid crystal display | |
JPS62293773A (en) | Manufacture of semiconductor device | |
JPH08148685A (en) | Film transistor, and its manufacture | |
JPH0997898A (en) | Manufacture of semiconductor device | |
JPS62293776A (en) | Manufacture of semiconductor device | |
JPS63215075A (en) | Manufacture of semiconductor device | |
JPS63185064A (en) | Manufacture of semiconductor device | |
JP3192935B2 (en) | Method for manufacturing semiconductor device | |
JPH0661438A (en) | Manufacture of semiconductor device | |
JPH0212960A (en) | Manufacture of semiconductor device | |
JPH0548090A (en) | Manufacture of semiconductor device | |
JPH06291074A (en) | Manufacture of semiconductor device | |
JPH05175443A (en) | Semiconductor device and manufacture thereof | |
JP3374534B2 (en) | Method for manufacturing thin film transistor | |
JPH04346476A (en) | Manufacture of mosfet | |
JPH0529559A (en) | Manufacture of semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20000725 |