JPH05121084A - Fuel cell with solid electrolyte - Google Patents

Fuel cell with solid electrolyte

Info

Publication number
JPH05121084A
JPH05121084A JP3280247A JP28024791A JPH05121084A JP H05121084 A JPH05121084 A JP H05121084A JP 3280247 A JP3280247 A JP 3280247A JP 28024791 A JP28024791 A JP 28024791A JP H05121084 A JPH05121084 A JP H05121084A
Authority
JP
Japan
Prior art keywords
layer
fuel
electrode
nickel
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3280247A
Other languages
Japanese (ja)
Inventor
Toshio Matsushima
敏雄 松島
Yoshiaki Hasuda
良紀 蓮田
Tsunekazu Iwata
恒和 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP3280247A priority Critical patent/JPH05121084A/en
Publication of JPH05121084A publication Critical patent/JPH05121084A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • H01M4/905Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9066Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC of metal-ceramic composites or mixtures, e.g. cermets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8636Inert electrodes with catalytic activity, e.g. for fuel cells with a gradient in another property than porosity
    • H01M4/8642Gradient in composition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To prevent laminate layers of an internal modification type SOFC in the form of a flat plate from exfoliating at the interfaces when it is in high temp. service. CONSTITUTION:A sheet of an air electrode (oxidating agent electrode) 1 made from a specific material is used also as a cell supporting plate, and on one side of this air electrode 1 a zirconia sole layer 21 is provided as an electrolyte layer, and thereover a Ni-containing zirconia layer 22 and a fuel modification layer 5 are formed as a fuel electrode. In this Ni-containing zirconia layer 22, the content of nickel working as a fuel electrode is varied continuously from the boundary zone of the Zirconia sole layer 21 to eliminate existence of interface where the nickel distribution differs distinctly. Also in the fuel modification layer 5, the content of nickel committing to modification is varied continuously from the boundary region of the Ni-containing zirconia layer 22 to nullify existence of interface where nickel distribution differs expressly. Thus exfoliation of layers in high temp. service is prevented by eliminating existence of distinct interface.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は固体電解質燃料電池に関
するものであり、酸化剤極(空気極)を支持体とし、こ
の上に電解質と燃料極と燃料改質層が一体となった緻密
で酸化剤極との密着性に優れた薄膜を設けることができ
る固体電解質燃料電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid electrolyte fuel cell, which uses an oxidizer electrode (air electrode) as a support, on which an electrolyte, a fuel electrode, and a fuel reforming layer are integrated in a dense structure. The present invention relates to a solid electrolyte fuel cell in which a thin film having excellent adhesion to an oxidizer electrode can be provided.

【0002】[0002]

【従来の技術】固体電解質燃料電池(以下、SOFCと
略記する)は、酸素イオンの透過性を有する物質を電解
質とし、これを介して酸化剤極である空気極と燃料極を
配置して構成される。一般的に電解質として使用される
物質には、酸素イオンの透過性に優れたイットリア安定
化ジルコニアが使用されている。しかし、この物質は、
導電率(酸素イオンの透過性)が常温では低いので、S
OFCの運転温度を1000℃程度に高め、導電率の高
い条件で使用されている。しかし、運転温度を高くする
だけでは不十分であるので、さらに薄膜化(50〜20
0μm)を行い、発電時の電圧降下を抑制している。一
方、空気極,燃料極については電解質よりも導電率が高
い(1000℃において、電解質;6×10-2S/c
m、空気極;8×10-1S/cm、燃料極;1×103
S/cm)ので、電解質のような極端な薄膜化は必ずし
も必要では無いが、一般的には電解質と同じような厚み
の膜状に形成されている。なお、材質は一般的には現
在、空気極についてはLaSrMnO3ペロブスカイト
構造酸化物が、また、燃料極についてはニッケルまたは
酸化ニッケルとイットリア安定化ジルコニアが使用され
ている。これらの3つの膜の物性についてはSOFCの
発電メカニズムを考えれば明らかであるが、電解質はガ
スの透過を防ぎ酸素イオンのみを通すような緻密な膜で
あることが要求され、2つの電極についてはガスが内部
まで入りこみ易いように多孔質であることが要求されて
いる。SOFCはこのような特性を持った3種類の膜を
組み合わせることによって構成されている。
2. Description of the Related Art A solid oxide fuel cell (hereinafter abbreviated as SOFC) is constructed by using a substance having oxygen ion permeability as an electrolyte and arranging an air electrode which is an oxidizer electrode and a fuel electrode through the electrolyte. To be done. Generally, yttria-stabilized zirconia, which has excellent oxygen ion permeability, is used as a substance used as an electrolyte. But this substance
Since the electrical conductivity (oxygen ion permeability) is low at room temperature, S
It is used under the condition that the operating temperature of the OFC is raised to about 1000 ° C. and the conductivity is high. However, increasing the operating temperature is not sufficient, so further thinning (50-20
0 μm) to suppress the voltage drop during power generation. On the other hand, the air electrode and the fuel electrode have higher conductivity than the electrolyte (at 1000 ° C, the electrolyte is 6 × 10 -2 S / c).
m, air electrode; 8 × 10 -1 S / cm, fuel electrode; 1 × 10 3
S / cm), it is not always necessary to make the film extremely thin like an electrolyte, but it is generally formed in a film shape having a thickness similar to that of the electrolyte. In general, the material currently used is LaSrMnO 3 perovskite structure oxide for the air electrode and nickel or nickel oxide and yttria-stabilized zirconia for the fuel electrode. The physical properties of these three membranes are clear when considering the power generation mechanism of SOFC, but the electrolyte is required to be a dense membrane that prevents gas permeation and allows only oxygen ions to pass. It is required to be porous so that the gas can easily enter the inside. SOFC is constructed by combining three kinds of films having such characteristics.

【0003】このようなSOFCの単位発電セルの従来
の構成例としては、図3のようなものがある。この図は
平板型SOFCといわれるもので、1は酸化剤極、3は
電解質、4は燃料極である。この従来例においては、平
板状の酸化剤極1と燃料極4で電解質3を挟むように構
成され、全体として平板状に形成されている。その作製
方法としては、例えばドクターブレード法で各々の材料
によって作製した薄いグリーンシートを積層し、この
後、積層した膜を焼結させることによってセルを得る方
法がある。また、他の作製方法としては、ドクターブレ
ード法で作製した後に焼結させた電解質3の薄膜をベー
スとし、これに電極のスラリーを塗布し、焼結する方法
が採られる。
FIG. 3 shows an example of a conventional configuration of such a SOFC unit power generation cell. This figure is called a flat plate type SOFC, in which 1 is an oxidizer electrode, 3 is an electrolyte, and 4 is a fuel electrode. In this conventional example, the electrolyte 3 is sandwiched between a flat plate-shaped oxidizer electrode 1 and a fuel electrode 4, and is formed in a flat plate shape as a whole. As a manufacturing method, for example, there is a method in which thin green sheets manufactured by respective materials are laminated by a doctor blade method, and then the laminated film is sintered to obtain a cell. Further, as another manufacturing method, a method of applying a slurry of an electrode to a thin film of the electrolyte 3 which is manufactured by the doctor blade method and then sintered and used as a base, and sintering is adopted.

【0004】この平板型SOFCのセルにおいては3つ
の層が密着して構成されているが、いずれにしても組成
が全く異なった3種類の層を重ね合わせた状態である。
従って、この平板型SOFCの構成にあたっては、これ
ら3つの層の熱膨張率の差が抑えられるように組成や材
料を決定する必要があり、これまでにもこのような材料
的な面からの対策がとられてきている。このため、3つ
の層の熱膨張率の差はかなり小さく抑えられている。
In this flat plate type SOFC cell, three layers are closely adhered to each other, but in any case, three types of layers having completely different compositions are laminated.
Therefore, it is necessary to determine the composition and materials so that the difference in the coefficient of thermal expansion of these three layers can be suppressed in the configuration of this flat plate type SOFC. Has been taken. Therefore, the difference in the coefficient of thermal expansion of the three layers is suppressed to a considerably small value.

【0005】一方、SOFCは燃料として水素を使用す
るが、直接水素を送り込むことは一般的に行われず、メ
タンを主成分とする都市ガスを触媒反応によって水素に
改質して水素を得ている。このため、都市ガスを水素に
変換するための触媒を反応部の上流側に配置する必要が
ある。しかし、SOFCでは反応温度が1000℃とい
う高温であること、メタンの分解反応に効果のある金属
が燃料電極に使用されるものと同じであることから、S
OFCの極板群内にこのような改質層を設置した、いわ
ゆる「内部改質型SOFC」の概念がある。このような
「内部改質型SOFC」では、燃料電極内に改質に優先
的に作用する燃料改質層を設置したり、燃料電極そのも
のを電極として使用するとともに、燃料改質層としても
使用する方法がある。
On the other hand, SOFC uses hydrogen as a fuel, but it is not generally sent directly to hydrogen, and city gas containing methane as a main component is reformed into hydrogen by catalytic reaction to obtain hydrogen. .. Therefore, it is necessary to arrange a catalyst for converting city gas into hydrogen on the upstream side of the reaction section. However, in SOFC, the reaction temperature is as high as 1000 ° C., and the metal effective for the decomposition reaction of methane is the same as that used for the fuel electrode.
There is a concept of so-called "internal reforming SOFC" in which such a reforming layer is installed in the OFC electrode plate group. In such an “internal reforming SOFC”, a fuel reforming layer that preferentially acts on reforming is installed in the fuel electrode, and the fuel electrode itself is used as an electrode and also used as a fuel reforming layer. There is a way to do it.

【0006】例えば、前者の例としては、本出願人が先
に出願した特願平3−36005号が挙げられる。図4
(a),(b)はその断面構造を示す図であり、1は酸
化剤極、3は電解質、4は燃料極、5は燃料改質層、6
は燃料ガス流路、7は酸化剤ガス流路を示している。
(a)は燃料極4の片面の全部に燃料改質層5を形成し
たもの、(b)は燃料極4の片面の一部に島状の燃料改
質層5を形成したものである。これらの例では、燃料極
4と酸化剤極1とで電解質3を挟む構造とし、燃料極1
を燃料ガス流路6側に、酸化剤極1を酸化剤ガス流路7
側に配置してセルが構成されている。この燃料極4の燃
料ガス流路6側の面に、(a)に示すように単層状にま
たは(b)に示すように部分的に島状に燃料改質層5が
設けられ、この燃料改質層5が燃料改質を行い、燃料極
1では主に電池反応が起こるようにして、燃料電極の劣
化を抑制している。
[0006] For example, as the former example, Japanese Patent Application No. 3-36005 previously filed by the present applicant can be cited. Figure 4
(A), (b) is a figure showing the section structure, 1 is an oxidizer electrode, 3 is an electrolyte, 4 is a fuel electrode, 5 is a fuel reforming layer, and 6
Is a fuel gas flow path, and 7 is an oxidant gas flow path.
(A) shows the fuel reforming layer 5 formed on the entire one side of the fuel electrode 4, and (b) shows the island-shaped fuel reforming layer 5 formed on a part of the one side of the fuel electrode 4. In these examples, the structure in which the electrolyte 3 is sandwiched between the fuel electrode 4 and the oxidant electrode 1 is used.
To the fuel gas flow path 6 side, and the oxidant electrode 1 to the oxidant gas flow path 7
The cells are arranged on the side. A fuel reforming layer 5 is provided on the surface of the fuel electrode 4 on the side of the fuel gas flow path 6 in a single layer as shown in (a) or in a partially island shape as shown in (b). The reforming layer 5 reforms the fuel so that the fuel electrode 1 mainly causes a cell reaction to suppress the deterioration of the fuel electrode.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記従
来の技術による平板型SOFCでは、酸化剤極1,電解
質3,燃料極4の各層の熱膨張率の差がかなり小さく抑
えられているとはいえ、先に述べたように運転温度が1
000℃という高温であるので、各層には熱膨張による
寸法変化がどうしても生じる。このような熱膨張率の差
による寸法変化が発電中に発生するようなSOFCを使
用すると、各層の接合部の剥離が生じるという問題点が
ある。
However, in the plate type SOFC according to the above-mentioned conventional technique, it can be said that the difference in the coefficient of thermal expansion between the layers of the oxidizer electrode 1, the electrolyte 3 and the fuel electrode 4 is suppressed to a considerably small level. As mentioned above, the operating temperature is 1
Since the temperature is as high as 000 ° C., dimensional changes inevitably occur in each layer due to thermal expansion. If an SOFC is used in which a dimensional change due to such a difference in coefficient of thermal expansion occurs during power generation, there is a problem that peeling of the joint portion of each layer occurs.

【0008】一方、特願平3−36005号による内部
改質型SOFCにあっては、燃料改質層が単に燃料電極
に重ねた単層として配置されていたり、燃料電極上に部
分的に島状に配置されていたりするだけである。燃料改
質層においては、改質だけを行うのであれば、改質に関
与する金属の比率は多い方が有利である。しかし、金属
の比率を増加させると熱膨張率の差が大きくなり、特願
平3−36005号において提案された従来の構造のま
までは、燃料電極との接合部分の密着力が弱くなり、使
用開始後短時間で剥離等が生じると言う重大な欠点があ
った。
On the other hand, in the internal reforming type SOFC according to Japanese Patent Application No. 3-36005, the fuel reforming layer is simply arranged as a single layer superposed on the fuel electrode, or partially over the fuel electrode. It is only arranged in a shape. If only reforming is performed in the fuel reforming layer, it is advantageous that the ratio of metals involved in reforming is large. However, if the ratio of the metal is increased, the difference in the coefficient of thermal expansion becomes large, and if the conventional structure proposed in Japanese Patent Application No. 3-36005 remains as it is, the adhesive force at the joint portion with the fuel electrode becomes weak and the There was a serious drawback that peeling occurred in a short time after the start.

【0009】本発明の目的は、従来の平板型SOFCが
内在している、積層した各層の界面が高温使用時におい
て剥離を生じやすいという問題点の解決を図った内部改
質型SOFCを提供することにある。
An object of the present invention is to provide an internal reforming type SOFC which solves the problem that the conventional flat plate type SOFC is inherently present and the interface between the laminated layers is apt to peel off at high temperature. Especially.

【0010】[0010]

【課題を解決するための手段】上記の目的を達成するた
め、本発明の固体電解質燃料電池においては、燃料極と
酸化剤極が固体電解質を介して配置され、燃料極側に燃
料として天然ガス等の反応剤を、酸化剤極側に空気等の
酸化剤を、それぞれ供給することで発電する固体電解質
燃料電池において、酸化剤極材料によって作製された薄
板を基板とし、その片面に電解質層、該電解質層に重ね
て燃料極、さらに、該燃料極に重ねて燃料改質層を形成
するとともに、燃料電極として作用する金属が該電解質
層の表面に相当する部分から外側に向けて連続的に増加
し、該燃料極に相当する層において所定の比率となり、
また、燃料改質に作用する金属が前記燃料極の表面部分
から外側に向けて連続的に増加し、前記燃料改質層に相
当する部分において所定の比率となることを特徴として
いる。
To achieve the above object, in a solid electrolyte fuel cell of the present invention, a fuel electrode and an oxidizer electrode are arranged via a solid electrolyte, and natural gas is used as a fuel on the fuel electrode side. Reactants such as, oxidizer such as air to the oxidizer electrode side, in a solid electrolyte fuel cell to generate power by respectively supplying, a thin plate made of the oxidizer electrode material as a substrate, the electrolyte layer on one side, A fuel electrode is stacked on the electrolyte layer, and a fuel reforming layer is further stacked on the fuel electrode, and a metal acting as a fuel electrode is continuously extended outward from a portion corresponding to the surface of the electrolyte layer. Increased to a predetermined ratio in the layer corresponding to the fuel electrode,
Further, it is characterized in that the metal that acts on the fuel reforming increases continuously from the surface portion of the fuel electrode toward the outside, and has a predetermined ratio in the portion corresponding to the fuel reforming layer.

【0011】[0011]

【作用】本発明の固体電解質燃料電池では、酸化剤極材
料で作製された薄板を、電極として使用するとともにセ
ルの支持板としても使用し、およびこの薄板の片面に電
解質層を配置し、該電解質層の上部に燃料極と燃料改質
層を形成するが、この燃料極において燃料電極として作
用する金属の比率を、電解質層との境界領域から連続的
に変化させることで金属の分布が明確に異なった界面が
存在しない薄膜として形成し、また、燃料改質層におい
ても改質に関与する金属の比率を、燃料電極との境界領
域から連続的に変化させることで金属の分布が明確に異
なった界面が存在しない薄膜として形成する。このよう
に組成の明確に異なった界面の存在を無くすことによ
り、各層の剥離を防止している。
In the solid electrolyte fuel cell of the present invention, a thin plate made of an oxidizer electrode material is used as an electrode and also as a supporting plate of a cell, and an electrolyte layer is arranged on one side of the thin plate, A fuel electrode and a fuel reforming layer are formed on top of the electrolyte layer, and the distribution of the metal is clarified by continuously changing the ratio of the metal acting as the fuel electrode in this fuel electrode from the boundary area with the electrolyte layer. In the fuel reforming layer, the ratio of the metal that participates in reforming is continuously changed from the boundary area with the fuel electrode to clarify the metal distribution. It is formed as a thin film having no different interfaces. In this way, by eliminating the existence of interfaces having distinctly different compositions, peeling of each layer is prevented.

【0012】[0012]

【実施例】以下、本発明の実施例を、図面を参照して説
明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0013】図1は本発明の一実施例の構成を示す単位
発電セルの断面図である。図において、1は単位発電セ
ルの支持板ともなる空気極(酸化剤極)、2はジルコニ
アを主成分とする薄膜の層、5は燃料改質層、21はジ
ルコニア100%のジルコニア層、22はニッケルが含
まれるニッケル含有ジルコニア層である。このセルは予
め焼結させた空気極1の薄板をベースとして、プラズマ
溶射法によって薄膜を形成して作製したものである。
FIG. 1 is a sectional view of a unitary power generation cell showing the configuration of an embodiment of the present invention. In the figure, 1 is an air electrode (oxidizer electrode) that also serves as a support plate of a unit power generation cell, 2 is a thin film layer containing zirconia as a main component, 5 is a fuel reforming layer, 21 is a zirconia layer of 100% zirconia, and 22 Is a nickel-containing zirconia layer containing nickel. This cell is produced by forming a thin film by a plasma spraying method on the basis of a thin plate of the air electrode 1 which has been sintered in advance.

【0014】本実施例の単セルの構成方法は次の通りで
ある。まず、空気極1は、Xを0≦X≦0.8とするL
1-XSrXMnO3粉末(粒径;0.5〜5μm)に結
合剤としてポリビニルアルコールを添加したものを1〜
3トン/cm2でプレス成形後、1300〜1400℃
の温度で焼結させることにより作製できる。また、上記
プレス法では大きな空気極板が作製できない場合には、
ポリビニルブチラールを結合剤としてスラリーを調製
し、これをドクターブレード法、またはキャスト法でグ
リーン体を作製した後に焼結させてもよい。
The method of constructing the unit cell of this embodiment is as follows. First, in the air electrode 1, L is set such that X satisfies 0 ≦ X ≦ 0.8.
a 1-X Sr X MnO 3 powder (particle size; 0.5 to 5 μm) to which polyvinyl alcohol was added as a binder was 1 to
After press molding at 3 ton / cm 2 , 1300 to 1400 ℃
It can be produced by sintering at the temperature of. If a large air electrode plate cannot be produced by the above pressing method,
A slurry may be prepared by using polyvinyl butyral as a binder, and a green body may be produced by a doctor blade method or a casting method and then sintered.

【0015】次に、薄膜の層2もプラズマ溶射法によっ
て作製することが可能である。この場合には、イットリ
ア安定化ジルコニア(YSZ)およびニッケル粉末また
は酸化ニッケル粉末をプラズマ溶射装置の粉体供給部か
らプラズマジェット中に供給して行う。この薄膜の層2
の内、空気極1基板上に直接形成するYSZ100%の
層21は電解質として作用する層であり、緻密で薄い膜
であることが要求される。この層21の形成にあたって
は、YSZ粉末のみを溶射装置に供給して行い、また溶
射した粉体と試料の密着性を良好とするため、溶射装置
の出力を高め、YSZを充分に溶解させた条件で行い塗
着させる。この緻密なYSZの層21を50〜200μ
mの厚みで形成した後は、ニッケルを含む燃料電極とし
て作用する層22の形成を行うが、燃料電極には緻密性
は要求されず、むしろ水素ガスの拡散を妨げないように
するために多孔性が要求される。そこで、この層22の
形成にあたってはYSZ粉末とともにニッケル粉末また
は酸化ニッケル粉末を徐々に添加させつつ溶射装置の出
力も低下させていき、所定の厚みを持った膜を形成す
る。
Next, the thin film layer 2 can also be produced by the plasma spraying method. In this case, yttria-stabilized zirconia (YSZ) and nickel powder or nickel oxide powder are supplied into the plasma jet from the powder supply unit of the plasma spraying apparatus. Layer 2 of this thin film
Among these, the YSZ 100% layer 21 formed directly on the air electrode 1 substrate is a layer that acts as an electrolyte and is required to be a dense and thin film. The layer 21 was formed by supplying only the YSZ powder to the thermal spraying device, and in order to improve the adhesion between the thermal sprayed powder and the sample, the output of the thermal spraying device was increased to sufficiently dissolve the YSZ. Apply under conditions and apply. This dense YSZ layer 21 is 50 to 200 μm thick.
After forming the layer 22 having a thickness of m, the layer 22 which acts as a fuel electrode containing nickel is formed. However, the fuel electrode is not required to be dense, and rather, it is porous to prevent diffusion of hydrogen gas. Sex is required. Therefore, when forming the layer 22, the output of the thermal spraying apparatus is lowered while gradually adding the nickel powder or the nickel oxide powder together with the YSZ powder to form a film having a predetermined thickness.

【0016】なお、この層21におけるニッケルの厚み
方向での分布は、以下の通りとする。ニッケルとジルコ
ニアを混合したサーメットにおけるニッケルの比率と導
電率の関係は、ニッケルが20wt%である比率が導電
率1000S/cm2オーダーとなる下限であり、これ
よりもニッケルの含有量が増すと導電率は向上するが、
逆に膨張率が大きくなるため、このあたりの組成が現在
一般的に使用されている。ちなみに、この組成では、熱
膨張率もYSZの9.9×10-6/℃に対してこれに近
い10.1×10-6/℃となっている。本実施例におい
ても、この組成を標準的に考えて膜を形成するが、この
場合、YSZ100%の層21からニッケルが20wt
%の層の間でニッケルの分布に傾斜を持たせる。この時
の、熱膨張率はYSZ100%層21の9.9×10-6
/℃から、ニッケル20wt%層の10.1×10-6
℃までの間で連続的に変化し、また2つの絶対値も小さ
いので、従来のようにYSZとニッケル20wt%の層
が直接結着されたものより界面での熱膨張率差は緩和さ
れる。
The distribution of nickel in the layer 21 in the thickness direction is as follows. In the cermet in which nickel and zirconia are mixed, the relationship between the nickel ratio and the electrical conductivity is the lower limit at which the nickel content of 20 wt% is the electrical conductivity of 1000 S / cm 2 order. The rate improves,
On the contrary, since the expansion coefficient becomes large, a composition around this is generally used at present. By the way, in this composition, the coefficient of thermal expansion is 10.1 × 10 −6 / ° C., which is close to that of YSZ of 9.9 × 10 −6 / ° C. In this embodiment as well, a film is formed by considering this composition as a standard, but in this case, 20 wt% of nickel is formed from the YSZ 100% layer 21.
% Of the nickel distribution between the layers. At this time, the coefficient of thermal expansion is 9.9 × 10 −6 of the YSZ 100% layer 21.
/ ° C., 10.1 × 10 −6 / of 20 wt% nickel layer
Since it changes continuously up to ℃, and the two absolute values are small, the difference in the coefficient of thermal expansion at the interface is relaxed as compared with the conventional one in which a layer of YSZ and nickel of 20 wt% is directly bonded. ..

【0017】次に、本実施例では層22におけるニッケ
ル20wt%層を作製後、ニッケルの含有率がこの層よ
りも大きい燃料改質層5の形成を行う。すなわち、ニッ
ケルの含有率が20wt%の層22の上に、ニッケル4
0wt%の層を燃料改質層5として形成している。40
wt%の層の熱膨張率は10.6×10-6/℃であるの
で、このような材質を直接ニッケル20wt%層と結着
させると1000℃の連続運転時の熱膨張差は大きく、
燃料改質層5の形成が困難となる。そこで、本実施例で
は、上記の層21の形成法と同様にして、ニッケル40
wt%の層の下に20wt%の層を配置し、40wt%
の層においては、ニッケル濃度が厚み方向で次第に40
%に近ずくように構成することによって、このような界
面での熱膨張率の差を軽減している。
Next, in this embodiment, after forming a nickel 20 wt% layer in the layer 22, a fuel reforming layer 5 having a nickel content higher than this layer is formed. That is, on the layer 22 having a nickel content of 20 wt%, nickel 4
A layer of 0 wt% is formed as the fuel reforming layer 5. 40
The coefficient of thermal expansion of the wt% layer is 10.6 × 10 −6 / ° C., so if such a material is directly bonded to the nickel 20 wt% layer, the thermal expansion difference during continuous operation at 1000 ° C. is large,
It becomes difficult to form the fuel reforming layer 5. Therefore, in the present embodiment, nickel 40 is formed in the same manner as the method for forming the layer 21 described above.
Place a layer of 20 wt% under the layer of wt%, 40 wt%
In the layer of, the nickel concentration gradually increased to 40 in the thickness direction.
%, The difference in the coefficient of thermal expansion at such an interface is reduced.

【0018】以上のように構成した実施例の作用を述べ
る。本実施例では、図2のような薄膜構成となる。即
ち、図2(a)は、図1のA−A′断面のニッケル含有
量の分布を示す図であって、YSZの層21の上のニッ
ケル20wt%の層22の構造であるが、両者の間でニ
ッケルの分布が膜の厚みに沿って単調増加させている。
また、図2(b)は、図1のB−B′断面のニッケル含
有量の分布を示す図であって、ニッケル20wt%層2
2の上にさらにニッケル40wt%層の燃料改質層5を
形成させた場合であるが、40wt%層の形成にあたっ
ても、先の例と同様に厚みに沿って単調増加させてい
る。
The operation of the embodiment configured as described above will be described. In this embodiment, the thin film structure is as shown in FIG. That is, FIG. 2A is a diagram showing the distribution of the nickel content in the AA ′ cross section of FIG. 1, and shows the structure of the nickel 22 wt% layer 22 on the YSZ layer 21. The distribution of nickel between increases monotonically along the thickness of the film.
2B is a diagram showing the distribution of the nickel content in the BB ′ cross section of FIG. 1, in which the nickel 20 wt% layer 2 is formed.
In the case where the fuel reforming layer 5 of 40 wt% nickel was further formed on the No. 2 layer, the formation of the 40 wt% nickel layer was also monotonically increased along the thickness as in the previous example.

【0019】このように、本実施例のSOFCでは、空
気極を支持体としてこの表面に容射法によって電解質層
(ジルコニア単独層21)と燃料極層(ニッケル含有ジ
ルコニア層22)と燃料改質層5を連続して形成するこ
とで、内部改質層を持つ内部改質型SOFCの単セルが
作製され、しかも、電解質層と燃料極層の形成にあたっ
ては、最初に電解質層を形成した後燃料電極の形成に移
るが、この時各層の界面に相当する位置において、電極
として作用する金属であるニッケルの量を連続的に増加
させ、燃料電極層内において所定の濃度となるように制
御している。さらに、燃料極の上の燃料改質層も、燃料
極の形成と同様に、層の界面に相当する位置において改
質触媒として作用する金属の量を連続的に増加させ、燃
料改質層内で所定の濃度となるように制御し、これらの
3層の明確な界面の存在を無くしている。従って、従来
のような各層間における組成が明確に異なる界面は存在
せず、熱膨張率の差に基づく界面での剥離等によるセル
の破壊を防止することが出来る。
As described above, in the SOFC of this example, the electrolyte layer (zirconia single layer 21), the fuel electrode layer (nickel-containing zirconia layer 22), and the fuel reforming were performed on the surface of the SOFC by using the air electrode as a support. By continuously forming the layer 5, an internal reforming type SOFC single cell having an internal reforming layer is produced. Moreover, in forming the electrolyte layer and the fuel electrode layer, after forming the electrolyte layer first, The process proceeds to the formation of the fuel electrode, but at this time, at the position corresponding to the interface of each layer, the amount of nickel, which is a metal that acts as an electrode, is continuously increased and controlled so that the fuel electrode layer has a predetermined concentration. ing. Further, in the fuel reforming layer above the fuel electrode, similarly to the formation of the fuel electrode, the amount of the metal acting as the reforming catalyst is continuously increased at the position corresponding to the interface of the layer, so that the fuel reforming layer is formed in the fuel reforming layer. Is controlled so that the concentration becomes a predetermined value, and the existence of a clear interface between these three layers is eliminated. Therefore, there is no conventional interface where the composition between layers is clearly different, and it is possible to prevent cell destruction due to peeling or the like at the interface due to the difference in thermal expansion coefficient.

【0020】なお、EVD法によって本発明の単位発電
セルを構成することが可能である。この場合にも、最
初、空気極の薄板を準備しておき、この板上にプラズマ
溶射法で作製したものと同様なYSZ層およびニッケル
を含有するジルコニア層を形成する。EVD法による場
合には一般に原料として塩化物を用いて行われるが、各
原料の供給速度をコントロールすることで上記と同様の
膜の形成が可能である。支持体として使用する空気極に
対する電解質の密着性や緻密性については、溶射法,E
VD法によれば、全く問題無いものを得ることができ
る。酸化剤極材料としては、Xを0≦X≦0.8の値と
するLa1-XSrXMnO3ペロブスカイト構造酸化物の
他、これを母体としてMnの一部を周期率表第4周期,
第5周期の遷移金属で置換した酸化物が使用できる。ま
た、電解質材料としては、安定化ジルコニアが、燃料極
・燃料改質層材料としては、周期率表8族の金属または
その酸化物と安定化ジルコニアまたはジルコニアが使用
できる。このように本発明は、その主旨に沿って種々に
応用され、種々の実施態様を取り得るものである。
The unit power generation cell of the present invention can be constructed by the EVD method. Also in this case, first, a thin plate of the air electrode is prepared, and a YSZ layer and a zirconia layer containing nickel similar to those produced by the plasma spraying method are formed on this plate. In the case of the EVD method, a chloride is generally used as a raw material, but a film similar to the above can be formed by controlling the supply rate of each raw material. Regarding the adhesion and denseness of the electrolyte to the air electrode used as the support, the thermal spraying method, E
According to the VD method, it is possible to obtain a product without any problem. As the oxidizer electrode material, in addition to the La 1-X Sr X MnO 3 perovskite structure oxide in which X is a value of 0 ≦ X ≦ 0.8, a part of Mn is used as a matrix and a part of Mn is shown in the fourth period table. ,
An oxide substituted with a transition metal of the 5th period can be used. As the electrolyte material, stabilized zirconia can be used, and as the fuel electrode / fuel reforming layer material, metal of Group 8 of the periodic table or its oxide and stabilized zirconia or zirconia can be used. As described above, the present invention can be applied in various ways in accordance with the gist thereof and can take various embodiments.

【0021】[0021]

【発明の効果】以上の説明から明らかなように、本発明
の固体電解質燃料電池によれば、内部改質型の燃料電池
を構成する酸化剤極,電解質,燃料極,燃料改質層を連
続して形成し、各層の明確な界面の存在をなくしている
ので、高温で運転されることによる熱膨張率の差に基づ
く界面での剥離等によるセルの破壊を防止することがで
きる。
As is apparent from the above description, according to the solid electrolyte fuel cell of the present invention, the oxidizer electrode, the electrolyte, the fuel electrode and the fuel reforming layer forming the internal reforming type fuel cell are continuously formed. Since each layer is formed by eliminating the existence of a clear interface, it is possible to prevent the destruction of the cell due to the peeling at the interface due to the difference in the coefficient of thermal expansion due to the operation at high temperature.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す単位発電セルの断面図FIG. 1 is a sectional view of a unitary power generation cell showing an embodiment of the present invention.

【図2】(a),(b)は上記実施例の各部断面におけ
るニッケル含有量の分布を示す図
2 (a) and 2 (b) are views showing distributions of nickel content in cross-sections of respective portions of the above-mentioned embodiment.

【図3】従来のSOFC単位発電セルの基本構造を示す
断面図
FIG. 3 is a sectional view showing the basic structure of a conventional SOFC unit power generation cell.

【図4】(a),(b)は従来の内部改質型SOFCの
構造例を示す断面図
4A and 4B are cross-sectional views showing a structural example of a conventional internal reforming SOFC.

【符号の説明】 1…空気極(酸化剤極)、2…ジルコニアを主成分とす
る層、5…燃料改質層、21…ジルコニア単独層、22
…ニッケル含有ジルコニア層。
[Explanation of Codes] 1 ... Air electrode (oxidizer electrode), 2 ... Layer containing zirconia as a main component, 5 ... Fuel reforming layer, 21 ... Zirconia single layer, 22
... Nickel-containing zirconia layer.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 燃料極と酸化剤極が固体電解質を介して
配置され、燃料極側に燃料として天然ガス等の反応剤
を、酸化剤極側に空気等の酸化剤を供給することで発電
する固体電解質燃料電池において、酸化剤極材料によっ
て作製された薄板を基板とし、その片面に電解質層、該
電解質層に重ねて燃料極、さらに、該燃料極に重ねて燃
料改質層を形成するとともに、燃料電極として作用する
金属が該電解質層の表面に相当する部分から外側に向け
て連続的に増加し、該燃料極に相当する層において所定
の比率となり、また、燃料改質に作用する金属が前記燃
料極の表面部分から外側に向けて連続的に増加し、前記
燃料改質層に相当する部分において所定の比率となるこ
とを特徴とする固体電解質燃料電池。
1. A fuel electrode and an oxidizer electrode are arranged via a solid electrolyte, and a reactant such as natural gas as a fuel is supplied to the fuel electrode side and an oxidizer such as air is supplied to the oxidizer electrode side to generate electricity. In the solid electrolyte fuel cell, a thin plate made of an oxidizer electrode material is used as a substrate, and an electrolyte layer is formed on one surface of the substrate, a fuel electrode is formed on the electrolyte layer, and a fuel reforming layer is formed on the fuel electrode. At the same time, the metal acting as a fuel electrode continuously increases from the portion corresponding to the surface of the electrolyte layer toward the outside, and has a predetermined ratio in the layer corresponding to the fuel electrode, and acts on the fuel reforming. The solid electrolyte fuel cell, wherein the metal continuously increases from the surface portion of the fuel electrode toward the outside and has a predetermined ratio in the portion corresponding to the fuel reforming layer.
【請求項2】 請求項1の固体電解質燃料電池におい
て、酸化剤極材料が、Xを0≦X≦0.8の値とするL
1-XSrXMnO3ペロブスカイト構造酸化物およびこ
れを母体としてMnの一部を周期率表第4周期,第5周
期の遷移金属で置換した酸化物、電解質材料が安定化ジ
ルコニア、燃料極・燃料改質層材料が周期率表8族の金
属またはその酸化物と安定化ジルコニアまたはジルコニ
アであることを特徴とする固体電解質燃料電池。
2. The solid electrolyte fuel cell according to claim 1, wherein the oxidizer electrode material is L having an X value of 0 ≦ X ≦ 0.8.
a 1-X Sr X MnO 3 perovskite structure oxide and an oxide obtained by substituting a part of Mn with a transition metal of 4th period and 5th period of the periodic table using this as a matrix, stabilized zirconia electrolyte material, fuel electrode A solid electrolyte fuel cell in which the fuel reforming layer material is a metal of Group 8 of the periodic table or an oxide thereof and stabilized zirconia or zirconia.
JP3280247A 1991-10-28 1991-10-28 Fuel cell with solid electrolyte Pending JPH05121084A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3280247A JPH05121084A (en) 1991-10-28 1991-10-28 Fuel cell with solid electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3280247A JPH05121084A (en) 1991-10-28 1991-10-28 Fuel cell with solid electrolyte

Publications (1)

Publication Number Publication Date
JPH05121084A true JPH05121084A (en) 1993-05-18

Family

ID=17622351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3280247A Pending JPH05121084A (en) 1991-10-28 1991-10-28 Fuel cell with solid electrolyte

Country Status (1)

Country Link
JP (1) JPH05121084A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996038871A1 (en) * 1995-05-31 1996-12-05 Forschungszentrum Jülich GmbH Anode substrate for a high-temperature fuel cell
NL1016458C2 (en) * 2000-10-23 2002-05-01 Stichting En Onderzoek Ct Nede Anode assembly.
EP1284519A2 (en) 2001-08-14 2003-02-19 Nissan Motor Co., Ltd. Solid electrolyte fuel cell and related manufacturing method
JP2004087169A (en) * 2002-08-23 2004-03-18 Nissan Motor Co Ltd Generator
EP1261059A3 (en) * 2001-05-22 2005-11-09 Nissan Motor Co., Ltd. Cell plate structure for fuel cell, manufacturing method thereof and solid electrolyte type fuel cell

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996038871A1 (en) * 1995-05-31 1996-12-05 Forschungszentrum Jülich GmbH Anode substrate for a high-temperature fuel cell
US5998056A (en) * 1995-05-31 1999-12-07 Forschungszentrum Julich Gmbh Anode substrate for a high temperature fuel cell
NL1016458C2 (en) * 2000-10-23 2002-05-01 Stichting En Onderzoek Ct Nede Anode assembly.
WO2002035634A1 (en) * 2000-10-23 2002-05-02 Stichting Energieonderzoek Centrum Nederland Anode assembly for an electrochemical cell
KR100825288B1 (en) * 2000-10-23 2008-04-28 하.체. 스타르크 게엠베하 Method for producing an anode electrolyte assembly for an electrochemical cell
EP1261059A3 (en) * 2001-05-22 2005-11-09 Nissan Motor Co., Ltd. Cell plate structure for fuel cell, manufacturing method thereof and solid electrolyte type fuel cell
US7045243B2 (en) 2001-05-22 2006-05-16 Nissan Motor Co., Ltd. Cell plate structure for fuel cell, manufacturing method thereof and solid electrolyte type fuel cell
EP1284519A2 (en) 2001-08-14 2003-02-19 Nissan Motor Co., Ltd. Solid electrolyte fuel cell and related manufacturing method
US6896989B2 (en) 2001-08-14 2005-05-24 Nissan Motor Co., Ltd. Solid electrolyte fuel cell and related manufacturing method
JP2004087169A (en) * 2002-08-23 2004-03-18 Nissan Motor Co Ltd Generator

Similar Documents

Publication Publication Date Title
US8333919B2 (en) Electrolyte supported cell designed for longer life and higher power
DE60203169T2 (en) SOLID OXIDE FUEL CELL IN HYBRID THIN-LAYER THIN FILM TECHNOLOGY AND METHOD FOR THE PRODUCTION THEREOF
US9595729B2 (en) Ionic electrolyte membrane structure method for its production and solid oxide fuel cell making use of ionic electrolyte membrane structure
US9065104B2 (en) Process for manufacturing elementary electrochemical cells for energy- or hydrogen-producing electrochemical systems, in particular of SOFC and HTE type
US9991540B2 (en) Electrolyte supported cell designed for longer life and higher power
AU778854B2 (en) Method of fabricating an assembly comprising an anode-supported electrolyte, and ceramic cell comprising such an assembly
CN101507038A (en) Self-supporting ceramic membranes and electrochemical cells and electrochemical cell stacks including the same
JPH0748378B2 (en) Air electrode for solid electrolyte fuel cell and solid electrolyte fuel cell having the same
JP5608813B2 (en) Method for producing solid oxide fuel cell unit cell
JPH09223508A (en) High temperature fuel cell having thin film electrolyte
JP2004319492A (en) Fuel cell and passive support
KR101215418B1 (en) Method of unit cell for solid oxide fuel cell
JP2003178769A (en) Thin film laminated body, its manufacturing method, and solid oxide type fuel cell using the same
JP2003288914A (en) Solid oxide fuel cell
JPH08287926A (en) Manufacture of solid electrolyte fuel cell
JPH05121084A (en) Fuel cell with solid electrolyte
JP2006505897A (en) Electrode supported fuel cell
US20120082920A1 (en) Co-fired metal interconnect supported sofc
EP1716615B1 (en) Fuel cell
JP2006222006A (en) Cell for solid oxide type fuel battery and its manufacturing method
JPH0794196A (en) Solid electrolyte fuel cell stack
JP2004355814A (en) Solid oxide fuel battery cell and its manufacturing method
JPH06349504A (en) Solid electrolyte type fuel cell
JPH09180732A (en) Solid electrolyte fuel cell board and method for manufacturing cell using the board
JP3058012B2 (en) Single cell of internal reforming high temperature solid oxide fuel cell