JPH05121025A - Diaphragm of device to measure by irradiating particle to sample - Google Patents

Diaphragm of device to measure by irradiating particle to sample

Info

Publication number
JPH05121025A
JPH05121025A JP3311903A JP31190391A JPH05121025A JP H05121025 A JPH05121025 A JP H05121025A JP 3311903 A JP3311903 A JP 3311903A JP 31190391 A JP31190391 A JP 31190391A JP H05121025 A JPH05121025 A JP H05121025A
Authority
JP
Japan
Prior art keywords
diaphragm
sample
oxide superconductor
particles
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3311903A
Other languages
Japanese (ja)
Inventor
Hiroshi Inada
博史 稲田
Michitomo Iiyama
道朝 飯山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP3311903A priority Critical patent/JPH05121025A/en
Publication of JPH05121025A publication Critical patent/JPH05121025A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To improve optical characteristics by eliminating interference between electromagnetic lenses by such a reason that an oxide superconductor layer in a superconducting condition can shield an electromagnetic field generated by the electromagnetic lenses due to a Meisner effect as well as to contribute to stabilizing a vacuum condition of a device by enabling a diaphragm to act as a cold trap by such a reason that the diaphragm in the present invention is cooled at a low temperature and a sample condition can be also prevented from being changed by electrification during the measurement. CONSTITUTION:In a diaphragm provided in a device to carry out various measurements by irradiating particles to a sample, the diaphragm is constituted by combining members 301 and 302 in which oxide superconductor layers 11 and 12 are formed respectively on buffer layers 10 by means of upper surface MgO with each other. Coolant passages 311 and 312 are formed inside of the members 301 and 302, and these are cooled by means of liquid nitrogen or liquid helium.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、粒子を試料に照射して
計測を行う装置の絞りに関する。より詳細には、各種の
電子顕微鏡、電子線回折、オージェ電子分光等電子を試
料に照射する計測装置、イオンマイクロプローブ分析、
2次イオン質量分析等イオンを試料に照射する計測装置
および光子、X線等を試料に照射して各種の計測を行う
装置等の絞りに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a diaphragm for an apparatus for irradiating particles with a sample for measurement. More specifically, various electron microscopes, electron beam diffraction, measuring devices for irradiating the sample with electrons such as Auger electron spectroscopy, ion microprobe analysis,
The present invention relates to a measuring device for irradiating a sample with ions such as secondary ion mass spectrometry and a diaphragm for irradiating a sample with photons, X-rays and the like to perform various measurements.

【0002】[0002]

【従来の技術】電子顕微鏡、蛍光X線分析装置、X線回
折、イオンマイクロプローブ分析等の計測装置は、試料
に粒子線を照射し、試料から放出された、または試料を
透過した粒子を計測することにより、各種の情報を得
る。このような装置は、一般に粒子源と、発生した粒子
線を制御する電子光学的手段またはイオン光学的手段
と、試料から放出された粒子または試料を透過した粒子
を制御する電子光学的手段またはイオン光学的手段と、
試料から放出された粒子または試料を透過した粒子を計
測する計測手段とを具備する。
2. Description of the Related Art Electron microscopes, X-ray fluorescence analyzers, X-ray diffraction analyzers, ion microprobe analyzers, and other measuring devices measure particles emitted from a sample or transmitted through a sample by irradiating the sample with a particle beam. By doing so, various information is obtained. Such devices generally include a particle source, electro-optical or ion-optical means for controlling the generated particle beam, and electron-optical or ion-controlling particles emitted from or transmitted through the sample. Optical means,
And a measuring means for measuring particles emitted from the sample or particles transmitted through the sample.

【0003】図2に、典型的な上記の計測装置の概略図
を示す。図2の計測装置は、粒子源1と、レンズ21、22
および23と、絞り31、32および33と、計測器4とを備え
る。試料5はレンズ23の下側に配置される。これら全体
は図示されていないが、高真空チャンバ内に収納されて
いて、1×10-5Torr以下の圧力下で操作される。レンズ
21、22および23と、絞り31、32および33とは、電子光学
的手段またはイオン光学的手段であり、粒子源1から発
した粒子線はレンズ21、22および23で集束され、絞り31
および32で選別されて試料5に照射される。試料5から
放出された粒子または試料5を透過した粒子は、絞り33
で選別されて計測器4で計測される。
FIG. 2 shows a schematic diagram of the above-mentioned typical measuring apparatus. The measuring device shown in FIG. 2 has a particle source 1 and lenses 21 and 22.
And 23, diaphragms 31, 32 and 33, and measuring instrument 4. The sample 5 is arranged below the lens 23. Although not entirely shown, they are housed in a high vacuum chamber and operated under a pressure of 1 × 10 −5 Torr or less. lens
21, 22 and 23 and diaphragms 31, 32 and 33 are electron optical means or ion optical means, and the particle beam emitted from particle source 1 is focused by lenses 21, 22 and 23, and diaphragm 31
And 32 are selected and the sample 5 is irradiated. Particles emitted from the sample 5 or transmitted through the sample 5 are collected by the diaphragm 33.
And is measured by the measuring device 4.

【0004】上記の計測装置において、レンズ21、22お
よび23は、磁界レンズまたは電子レンズであることが一
般的で、絞りにはピンホール、スリット等が使用され
る。また、装置によっては粒子線を偏向させる偏向器が
使用されることもある。
In the above measuring device, the lenses 21, 22 and 23 are generally magnetic field lenses or electronic lenses, and pinholes, slits or the like are used for the diaphragm. Further, a deflector for deflecting the particle beam may be used depending on the device.

【0005】[0005]

【発明が解決しようとする課題】上記の計測装置では、
通常、粒子線を微細な径に集束して、非常に微小な計測
を行う。絞りは、粒子源の発する粒子線を選別して各種
レンズ収差を最小にする機能、および試料から放出され
た粒子または試料を透過した粒子から計測に最適な粒子
を選別する機能を有する。
In the above measuring device,
Usually, the particle beam is focused on a fine diameter to perform very minute measurement. The diaphragm has a function of selecting a particle beam emitted from a particle source to minimize various lens aberrations, and a function of selecting a particle optimal for measurement from particles emitted from a sample or particles transmitted through a sample.

【0006】一方、計測の精度が向上するに連れて、各
レンズの発生する電磁場の相互干渉、試料への干渉、試
料から放出された粒子または試料を透過した粒子への干
渉が問題になってきた。即ち、これらの干渉のため、上
記のレンズの光学特性が悪影響を受け、試料へ入射する
粒子線が歪んだり、試料から放出された粒子または試料
を透過した粒子の検出の際に、バックグラウンドのノイ
ズが大きくなる。また、上記の電磁場のために、測定中
に試料の表面が荷電したり、荷電粒子が試料表面に堆積
する等の不具合が生ずることもある。
On the other hand, as the measurement accuracy is improved, mutual interference of electromagnetic fields generated by the lenses, interference with the sample, interference with particles emitted from the sample or particles transmitted through the sample become problems. It was That is, due to these interferences, the optical characteristics of the above-mentioned lens are adversely affected, the particle beam incident on the sample is distorted, or the background of the particles emitted from the sample or the particles transmitted through the sample is detected. The noise increases. Further, due to the above-mentioned electromagnetic field, there may occur a problem that the surface of the sample is charged during measurement, charged particles are accumulated on the sample surface, or the like.

【0007】このような、電磁場の遮蔽を行うために、
従来は軟鋼等の磁性材料を使用していたので、機器が大
型化し、重量も大きくなっていた。
In order to shield the electromagnetic field as described above,
Conventionally, magnetic materials such as mild steel have been used, so the equipment has become large and heavy.

【0008】そこで本発明の目的は、上記従来技術の問
題点を解決し、粒子を試料に照射して計測を行う装置
を、小型化且つ高精度化する絞りを提供することにあ
る。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems of the prior art and to provide a diaphragm for reducing the size and increasing the accuracy of an apparatus for irradiating a sample with particles for measurement.

【0009】[0009]

【課題を解決するための手段】本発明に従うと、高真空
チャンバと、粒子源と、粒子線を収束および/または偏
向させる手段と、粒子線を選別する絞りと、粒子を計測
する手段とを具備し、前記高真空チャンバ内に収容され
た試料に前記粒子源から粒子を照射し、前記試料から放
出された、または前記試料を透過した粒子を計測して前
記試料の情報を得る装置の前記絞りにおいて、前記絞り
が、該絞りの前記粒子線が入射する側に酸化物超電導体
層を有することを特徴とする粒子を試料に照射して計測
を行う装置の絞りが提供される。
According to the present invention, a high vacuum chamber, a particle source, a means for converging and / or deflecting a particle beam, a diaphragm for selecting a particle beam, and a means for measuring particles are provided. A device for irradiating a sample contained in the high vacuum chamber with particles from the particle source and measuring particles emitted from the sample or transmitted through the sample to obtain information of the sample; A diaphragm of an apparatus for irradiating a sample with particles, wherein the diaphragm has an oxide superconducting layer on a side of the diaphragm on which the particle beam is incident, for measurement.

【0010】[0010]

【作 用】本発明は、例えば電子顕微鏡の制限視野絞り
のような、粒子を試料に照射して測定を行う装置の粒子
線のエネルギを制限したり、粒子線を選択する手段であ
るスリット、ピンホール等、絞りが、粒子線の入射する
側に酸化物超電導体層を有するところにその主要な特徴
がある。本発明の絞りでは、この酸化物超電導体層がマ
イスナー効果により磁気遮蔽として機能するので、電子
光学的レンズ、イオン光学的レンズの発する電磁気によ
る悪影響を防ぐことができる。
[Operation] The present invention relates to a slit, which is a means for limiting the energy of a particle beam or selecting a particle beam in an apparatus for performing measurement by irradiating a sample with a particle, such as a limited field stop of an electron microscope. The main feature of the diaphragm such as a pinhole is that the diaphragm has an oxide superconductor layer on the side where the particle beam is incident. In the diaphragm of the present invention, since the oxide superconductor layer functions as a magnetic shield by the Meissner effect, it is possible to prevent the adverse effect of the electromagnetism generated by the electron optical lens and the ion optical lens.

【0011】また、本発明の絞りは、装置の動作中には
酸化物超電導体層が液体窒素、液体ヘリウム等で冷却さ
れて、酸化物超電導体層が臨界温度よりも低くなってい
る。従って、本発明の絞りはコールドトラップとしても
機能し、チャンバ内の真空度を安定させる効果もある。
Further, in the diaphragm of the present invention, the oxide superconductor layer is cooled by liquid nitrogen, liquid helium or the like during the operation of the device, so that the oxide superconductor layer becomes lower than the critical temperature. Therefore, the diaphragm of the present invention also functions as a cold trap, and has the effect of stabilizing the degree of vacuum in the chamber.

【0012】本発明の絞りには、任意の酸化物超電導体
が使用可能である。特に、Y1Ba2Cu37-X系酸化物超電
導体は安定的に高品質の結晶性のよいものが得られるの
で好ましい。また、Bi2Sr2Ca2Cu3x 系酸化物超電導体
は、特にその超電導臨界温度Tc が高いので好ましい。
Any oxide superconductor can be used in the diaphragm of the present invention. In particular, Y 1 Ba 2 Cu 3 O 7-X- based oxide superconductors are preferable because stable and high-quality oxide superconductors can be obtained. Further, the Bi 2 Sr 2 Ca 2 Cu 3 O x oxide superconductor is particularly preferable because its superconducting critical temperature Tc is high.

【0013】以下、本発明を実施例により、さらに詳し
く説明するが、以下の開示は本発明の単なる実施例に過
ぎず本発明の技術的範囲をなんら制限するものではな
い。
Hereinafter, the present invention will be described in more detail with reference to examples, but the following disclosure is merely examples of the present invention and does not limit the technical scope of the present invention.

【0014】[0014]

【実施例】図1に、本発明の絞りの一例の断面図を示
す。図1の絞りは、互いに対称形の部材301 および302
と、部材301 および302 の上側表面のバッファ層10上に
それぞれ形成された酸化物超電導体層11および12と、部
材301 および302 それぞれの内部に形成された冷却液路
311 および312 とを具備する。部材301 および302 は、
互いに近接して配置されており、両者の間の間隙はスリ
ット30を形成している。この間隙の幅は調整可能であ
り、それによりスリット30を通過する粒子線を選別す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a sectional view of an example of the diaphragm of the present invention. The diaphragm of FIG. 1 has members 301 and 302 symmetrical to each other.
And oxide superconductor layers 11 and 12 formed on the buffer layer 10 on the upper surfaces of the members 301 and 302, respectively, and cooling liquid passages formed inside the members 301 and 302, respectively.
311 and 312. Members 301 and 302 are
They are arranged close to each other, and the gap between them forms a slit 30. The width of this gap is adjustable, thereby screening the particle beam passing through the slit 30.

【0015】部材301 および302 は、Fe、Cu、Al、Ni、
Cr等の金属またはこれらの合金から構成されており、上
側表面のバッファ層は、これらの金属または合金上に直
接酸化物超電導体層を形成することが困難であるために
設けてある。このバッファ層には、MgO等が使用可能で
ある。上記の構成の本発明の絞りでは、冷却液路311お
よび312 に液体窒素または液体ヘリウム等の冷却液を流
して酸化物超電導体層11および12を冷却する。例えば、
酸化物超電導体層11および12が、良質のY1Ba2Cu37-X
酸化物超電導体、Bi2Sr2Ca2Cu3y 酸化物超電導体、Tl
2Ba2Ca2Cu3z 酸化物超電導体で構成されている場合に
は、液体窒素による冷却を行うことができる。
The members 301 and 302 are made of Fe, Cu, Al, Ni,
It is composed of a metal such as Cr or an alloy thereof, and the buffer layer on the upper surface is provided because it is difficult to form the oxide superconductor layer directly on these metals or alloys. MgO or the like can be used for this buffer layer. In the diaphragm of the present invention having the above-described structure, a cooling liquid such as liquid nitrogen or liquid helium is caused to flow through the cooling liquid passages 311 and 312 to cool the oxide superconductor layers 11 and 12. For example,
The oxide superconductor layers 11 and 12 are made of good quality Y 1 Ba 2 Cu 3 O 7-X.
Oxide superconductor, Bi 2 Sr 2 Ca 2 Cu 3 O y Oxide superconductor, Tl
When it is composed of a 2 Ba 2 Ca 2 Cu 3 O z oxide superconductor, it can be cooled by liquid nitrogen.

【0016】上記本発明の絞りを作製する方法を以下に
説明する。まず、上記の金属材料で部材301 および302
を作製する。次に部材301 および302 の上側表面に、例
えば真空蒸着法でMgOのバッファ層10を形成する。バッ
ファ層10の厚さは10nm程度が好ましい。バッファ層10上
に、酸化物超電導体層11および12をそれぞれ形成する
が、この方法には各種のスパッタリング法、MBE法、
真空蒸着法、CVD法等任意の方法が使用可能である。
スパッタリング法で酸化物超電導体層11および12を形成
する場合の条件を以下に示す。 このように、酸化物超電導体層を形成した部材を組み立
て、本発明の絞りが完成される。
A method for producing the diaphragm of the present invention will be described below. First, the members 301 and 302 made of the above metal material
To make. Next, the MgO buffer layer 10 is formed on the upper surfaces of the members 301 and 302 by, for example, a vacuum deposition method. The thickness of the buffer layer 10 is preferably about 10 nm. The oxide superconductor layers 11 and 12 are respectively formed on the buffer layer 10. This method includes various sputtering methods, MBE methods,
Any method such as a vacuum vapor deposition method and a CVD method can be used.
The conditions for forming the oxide superconductor layers 11 and 12 by the sputtering method are shown below. Thus, the member having the oxide superconductor layer formed thereon is assembled to complete the diaphragm of the present invention.

【0017】本発明の絞りは、上記の実施例の構成に限
定されるものではなく、例えば、断面を薄くしなければ
ならない場合には、冷却液路311 および312 は単純な穴
でもよい。また、部材301 および302の外形も上記実施
例で示した形状以外に、装置の構成に合わせて任意の形
状にすることが可能である。さらに、酸化物超電導体層
は、部材の上側表面だけでなく、必要に応じて、側面、
下面にも設けることができる。
The throttle of the present invention is not limited to the configuration of the above embodiment, and for example, when the cross section needs to be thin, the cooling liquid passages 311 and 312 may be simple holes. Further, the outer shapes of the members 301 and 302 may be arbitrary shapes other than the shapes shown in the above-mentioned embodiments, depending on the configuration of the device. Furthermore, the oxide superconductor layer may include not only the upper surface of the member but also the side surface, if necessary,
It can also be provided on the lower surface.

【0018】[0018]

【発明の効果】以上説明したように、本発明に従うと、
粒子を試料に照射して計測を行う装置の新規な構成の絞
りが提供される。本発明の絞りは、絞り自身が磁気遮蔽
の効果を有するので、電子レンズ、磁界レンズ間の干
渉、電子レンズ、磁界レンズの発生する電磁場の試料へ
の干渉等を防ぐことが可能である。従って、本発明の絞
りを備える装置は、粒子線の歪みが減少し、計測時の雑
音が低下する等、光学特性が向上するとともに計測中に
試料が帯電するなどの変化が起こらない。また、絞りが
液体窒素温度以下に冷却されているので、コールドトラ
ップとしての機能も果たし、真空状態が安定する。さら
に、磁気遮蔽を小型化することが可能なので、装置の小
型化にも寄与する。
As described above, according to the present invention,
A novel diaphragm of an apparatus for irradiating a sample with particles to perform measurement is provided. In the diaphragm of the present invention, since the diaphragm itself has a magnetic shielding effect, it is possible to prevent interference between the electron lens and the magnetic field lens, interference of the electromagnetic field generated by the electron lens and the magnetic field lens with the sample, and the like. Therefore, in the device provided with the diaphragm of the present invention, the distortion of the particle beam is reduced, the noise at the time of measurement is reduced, and the optical characteristics are improved and the sample is not charged during the measurement. Further, since the throttle is cooled to the liquid nitrogen temperature or lower, it also functions as a cold trap, and the vacuum state is stabilized. Further, since the magnetic shield can be downsized, it also contributes to downsizing of the device.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の絞りの一例の断面図である。FIG. 1 is a sectional view of an example of a diaphragm of the present invention.

【図2】本発明の絞りが使用される装置の一例の構造図
である。
FIG. 2 is a structural diagram of an example of an apparatus in which the diaphragm of the present invention is used.

【符号の説明】[Explanation of symbols]

10 バッファ層 11、12 酸化物超電導体層 30 スリット 301 、302 部材 311 、312 冷却液路 10 Buffer layer 11 and 12 Oxide superconductor layer 30 Slits 301 and 302 Members 311 and 312 Cooling liquid passage

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 高真空チャンバと、粒子源と、粒子線を
収束および/または偏向させる手段と、粒子線を選別す
る絞りと、粒子を計測する手段とを具備し、前記高真空
チャンバ内に収容された試料に前記粒子源から粒子を照
射し、前記試料から放出された、または前記試料を透過
した粒子を計測して前記試料の情報を得る装置の前記絞
りにおいて、前記絞りが、該絞りの前記粒子線が入射す
る側に酸化物超電導体層を有することを特徴とする粒子
を試料に照射して計測を行う装置の絞り。
1. A high vacuum chamber, a particle source, a means for converging and / or deflecting a particle beam, a diaphragm for selecting a particle beam, and a means for measuring particles, which are provided in the high vacuum chamber. In the diaphragm of the device for irradiating the contained sample with particles from the particle source and measuring the particles emitted from the sample or transmitted through the sample to obtain information of the sample, the diaphragm is the diaphragm. A diaphragm of an apparatus for irradiating a sample with particles, which has an oxide superconducting layer on the side on which the particle beam is incident, for measurement.
JP3311903A 1991-10-30 1991-10-30 Diaphragm of device to measure by irradiating particle to sample Withdrawn JPH05121025A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3311903A JPH05121025A (en) 1991-10-30 1991-10-30 Diaphragm of device to measure by irradiating particle to sample

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3311903A JPH05121025A (en) 1991-10-30 1991-10-30 Diaphragm of device to measure by irradiating particle to sample

Publications (1)

Publication Number Publication Date
JPH05121025A true JPH05121025A (en) 1993-05-18

Family

ID=18022804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3311903A Withdrawn JPH05121025A (en) 1991-10-30 1991-10-30 Diaphragm of device to measure by irradiating particle to sample

Country Status (1)

Country Link
JP (1) JPH05121025A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11264900A (en) * 1998-01-09 1999-09-28 Internatl Business Mach Corp <Ibm> Charged particle beam device having pollution prevention means

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11264900A (en) * 1998-01-09 1999-09-28 Internatl Business Mach Corp <Ibm> Charged particle beam device having pollution prevention means

Similar Documents

Publication Publication Date Title
Telieps et al. An analytical reflection and emission UHV surface electron microscope
Scheinfein et al. Scanning electron microscopy with polarization analysis (SEMPA)
Veneklasen Design of a spectroscopic low-energy electron microscope
EP1305816B1 (en) Collection of secondary electrons through the objective lens of a scanning electron microscope
Tonner et al. An electrostatic microscope for synchrotron radiation x‐ray absorption microspectroscopy
US6653637B2 (en) X-ray detector and charged-particle apparatus
US20230207254A1 (en) Electron microscope with improved imaging resolution
Batson Parallel detection for high‐resolution electron energy loss studies in the scanning transmission electron microscope
JP2003249186A (en) Observation method and observation equipment by scanning transmission electron microscope
US11024483B2 (en) Transmission charged particle microscope with adjustable beam energy spread
Castaing et al. Analytical microscopy by secondary ion imaging techniques
Crewe High resolution scanning microscopy of biological specimens
Gu et al. Mapping of valence energy losses via energy-filtered annular dark-field scanning transmission electron microscopy
Wen Transmission electron microscopy
JPH05121025A (en) Diaphragm of device to measure by irradiating particle to sample
Brydson et al. Electron Energy Loss Spectrometry and Energy Dispersive X‐ray Analysis
Matsushita et al. Electron diffraction intensity analysis of amorphous Pd75Si25 alloy thin film with imaging-plate technique
Hashimoto Achievement of ultra-high resolution by 400 kV analytical atomic-resolution electron microscopy
Joy et al. Electron energy-loss spectroscopy
Taya et al. Development of γ-type energy filtering TEM
Duncumb Recent advances in electron probe microanalysis
TOMOKIYO et al. Energy filtering transmission electron microscopy using the new JEM‐2010FEF
Hagemann et al. Electron Microscopy and Analysis at Higher Voltages: The Philips EM430 300kV Microscope
JP2722889B2 (en) Scanning transmission electron microscope for observing samples mainly composed of light elements
Kaji et al. Development of a real‐time jump‐ratio imaging system equipped with a STEM

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990107