JPH0511788B2 - - Google Patents

Info

Publication number
JPH0511788B2
JPH0511788B2 JP60233348A JP23334885A JPH0511788B2 JP H0511788 B2 JPH0511788 B2 JP H0511788B2 JP 60233348 A JP60233348 A JP 60233348A JP 23334885 A JP23334885 A JP 23334885A JP H0511788 B2 JPH0511788 B2 JP H0511788B2
Authority
JP
Japan
Prior art keywords
antigen
antibody
concentration
difference
absorbance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60233348A
Other languages
Japanese (ja)
Other versions
JPS6293664A (en
Inventor
Yoshito Eda
Katsuo Mitani
Shinichi Kimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP23334885A priority Critical patent/JPS6293664A/en
Publication of JPS6293664A publication Critical patent/JPS6293664A/en
Publication of JPH0511788B2 publication Critical patent/JPH0511788B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、抗原又は抗体濃度の測定方法に関す
る。 (従来の技術及び発明が解決しようとする問題
点) 従来、不溶性担体粒子に物理吸着あるいは共有
結合の形成により抗体又は抗原を固定化し、該担
体粒子に固定化された抗体又は抗原に抗原又は抗
体を反応させ、その反応の進行に伴う反応混合物
の吸光度の増加すなわち透過率の減少からその抗
原抗体反応の速度を測定し、あるいは反応の終結
時点の反応混合物の抗体の吸光度又は透過率と、
反応開始前の抗原又は抗体の吸光度又は透過率と
の差を測定し、さらにその速度あるいは反応開始
前と反応終結時点との吸光度又は透過率の差から
被検体中の抗原又は抗体の濃度を定量する方法が
知られている。 そして、この方法によれば、抗原又は抗体の濃
度を高い精度で、迅速に定量しうる利点を有す
る。しかし、以下のような欠点が存在する。例え
ば、不溶性担体粒子に抗体を固定化した場合、抗
原分子数が抗体分子数に比較して少ない領域で
は、抗原抗体反応物が抗原分子数のの増加に比例
して増加し、抗原分子数が抗体分子数より過剰の
領域では、余剰の抗原が本来ならば凝集に寄与し
うる抗体分子を中和し、抗原分子数の増加に対し
て、逆に抗原抗体反応物が減少する。前者は一般
に抗原(抗体)過少領域と呼ばれ、後者は一般に
抗原(抗体)過剰領域と呼ばれる。この現象によ
り、一般に一つの抗原抗体反応物濃度に対して、
複数の抗原又は抗体濃度が対応する。ここで抗体
と抗原を入れ替えても同一現象がみられる。 臨床検査に於ては、上記抗原過剰領域に属する
被検液は一般にその出現頻度は小さいが抗原過剰
領域に属する被検液を誤まつて抗原過少領域のも
のと評価した場合は、臨床上重大な過失となる。
さらには、このような誤まりが発生する測定方法
は臨床上の有意性が乏しいものとなる。 従来、このような誤まりの発生を防ぐために、
同一の被検液に対して希釈率を変えた2以上の希
釈率について測定を行う方法、又は測定終了後に
さらに抗原又は抗体を添加し、抗原抗体反応物濃
度を測定し、抗原又は抗体の添加により抗原抗体
反応物濃度が変化しない場合に被検液が抗原過剰
領域又は抗体過剰領域に属すると判断する方法等
が提案されている。いずれの方法に於いても同一
被検液に対して複数回の測定が必要である。 しかるに、短時間に多数の被検液を測定しうる
自動測定機が近年出現するに及び、単一測定操作
内に抗原過剰領域又は抗体過剰領域に属するか否
か判別しうる測定方法の開発が望まれてきた。 (問題点を解決するための手段) 本発明者らは、自動測定機による短時間に多数
の被検液を測定しうるに好適な測定方法を確立す
る目的で鋭意研究してきた。 その結果、本発明者らは、例えば第1図に示す
如く、抗体を固定化したポリスチレンラテツクス
懸濁液に抗原過少領域に属する抗原濃度を持つ血
清及び抗原過剰領域に属する抗原濃度を持つ血清
の2種の被検液を各々添加し、2秒攪拌の後、5
秒後と60秒後との一定時間に対する吸光度の差を
測定したところ両被検液の示す吸光度の差が一致
した。すなわちこの現象は一つの抗原抗体反応物
濃度に対し複数の抗原濃度が対応していることを
示す。従つて、上記同様の測定方法を利用した未
知濃度の被検液中の抗原又は抗体濃度が1回の測
定で抗原(抗体)過剰領域か抗原(抗体)過少領
域かを決定し得ず、実用上問題があることを示
す。本発明者らは、上記被検液添加後、経時時間
に対する吸光度の変化を詳細に検討したところ、
被検液添加後、5秒と10秒後、10秒と15秒後の2
ケの特定時間に対する吸光度の差の比を求める
と、両被検液の該差の比の値が大きく異なること
を見出した。さらに種々の抗原濃度を示す血清に
つき各々複数回測定し、該吸光度の差の比の再現
性を検討したところ、前記吸光度の差の比を利用
することにより、極めて容易に被検液中の抗原又
は抗体濃度の定量が出来ることを確認し、本発明
を完成するに至つた。 すなわち、本発明は、不溶性担体粒子に抗体又
は抗原を固定化し、該担体粒子に固定化された抗
体又は抗原に既知濃度の抗原又は抗体を反応さ
せ、反応開始後の経時的変化した時点で光を照射
し、上記反応に於ける2以上の特定時間に対する
光の吸光度又は透過率の差の比を求め、該比と抗
原又は抗体濃度との間の対応曲線を求め、次いで
未知濃度の試料について2以上の特定時間に対す
る光の吸光度又は透過率の差の比を求め、上記対
応曲線により該比に相当する濃度を決定すること
を特徴とする抗原又は抗体濃度の測定方法であ
る。 本発明で用いる不溶性担体粒子は、使用条件下
に実質的に不溶性であれば有機高分子体,無機化
合物の区別なく使用出来る。またその形状も特に
限定されるものではないが、一般に好適に使用さ
れるものを例示すると、平均粒子径が1.0μm程度
以下、好ましくは0.05〜0.4μmの不溶性担体粒子
である。該不溶性担体粒子に抗体又は抗原を固定
化し、次いで被検液中の抗原又は抗体を反応さ
せ、例えば400〜1000mm、好ましくは500〜950mm
の範囲の波長の光線を用いて、反応開始後の2以
上の特定時間に対する上記反応物の吸光度又は透
過率の差を測定し、この差の比を求めることによ
り被検液中の抗原又は抗体の濃度を測定すること
ができる。 上記方法に於ける被検液中の抗原又は抗体は、
そのいずれかが含まれる場合が一般的であるが、
該抗原と抗体との混合物であつても十分に対応出
来る。 上記測定に用いる光線は、反応の進行に対する
吸光度又は透過率が比較的大きく感度に優れ、か
つ、被検液中に通常共存する乳ビ,ヘモグロビ
ン,ビリルビン等の干渉が比較的少ない上記波長
域が好適である。 不溶性担体粒子の粒子径については、粒子径が
大きい場合、凝集にともなう粒子径の変化量は大
きいが凝集反応速度は遅くなる傾向があり、粒子
径が小さいとブラウン運動性が活発で凝集反応速
度は速いが、一次粒子径が小さいために凝集反応
にともなう粒子径の変化量は小さくなる傾向があ
る。 上記理由により、上記粒子径と測定波長とを適
宜組み合せて実施すると好適である。 不溶性担体粒子としては、前記の如く、測定を
行う時に用いられる液体媒体に実質的に不溶性
で、例えば上記平均粒子径を有するポリスチレ
ン,スチレン−ブタジエン共重合体,スチレン−
メタクリル酸共重合体,ポリグリシジルメタクリ
レート,アクロレイン−エチレングリコールジメ
タクリレート共重合体のような乳化重合により得
られる有機高分子ラテツクス等の有機高分子物質
の微粒子あるいはシリカ,シリカ−アルミナ,ア
ルミナのような無機酸化物又は無機酸化物等にシ
ランカツプリング処理等の操作で官能基を導入し
た無機粒子等が用いられる。 本発明に於いて、抗体又は抗原は特に限定的で
なく公知のものが使用できる。一般に好適に使用
されるものの代表的なものを例示すれば、例え
ば、変性ガンマグロブリン,抗核因子,ヒトアル
ブミン,抗ヒトアルブミン抗体,イムノグロブリ
ンG(IgG),抗ヒトIgG抗体,イムノグロブリン
A(IgA),抗ヒトIgA抗体,イムノグロブリンM
(IgM),抗ヒトIgM抗体,抗ヒトIgE抗体,スト
レプトリジンO,ストレプトキナーゼ,ヒアルロ
ニダーゼ,C−反応性蛋白(CRP),抗ヒトCRP
抗体,アルフアーフエトプロテイン(AFP),抗
ヒトAFP抗体,癌胎児性抗原(CEA),抗ヒト
CEA抗体,ヒト絨毛性ゴナドトロビン(HCG),
抗HCG抗体,抗エストロゲン抗体,抗インシユ
リン抗体,B型肝炎表面抗原(HBs),抗HBs抗
体,梅毒トレポネマ抗原,風疹抗原,インフルエ
ンザ抗原,補体C1q,抗C1q抗体,抗C3抗体,
抗C4抗体,抗トランスフエリン抗体,等である。 本発明に於いては、このような不溶性担体粒子
に測定対象の被検液中の抗原又は抗体と反応しう
る抗体又は抗原を固定化する。この場合の固定化
方法は物理的吸着,化学的共有結合の形成のいず
れでも良いが、物理的吸着能の高い蛋白例えば抗
体や高分子量蛋白の固定には物理的吸着が好適で
あり、物理的吸着能の低いホルモン類,ハプテン
類の固定化には化学的共有結合の形成が好適に用
いられる。固定化方法についてはすでに多くの方
法が提案されており、固定化する抗体又は抗原の
特性に合わせて適宜固定化方法を選択すると良
い。例えば分散媒体中で抗体又は抗原を必要に応
じて緩衝液又は架橋剤の存在下に不溶性担体粒子
を混合すればよい。 上記抗体又は抗原を固定化した不溶性担体粒子
の分散媒は特に限定されないが、不溶性担体粒子
の保存中の安定性と、凝集反応時の反応の再現性
の観点からみて、グリシン−水酸化ナトリウム緩
衝液,トリス−塩酸緩衝液,リン酸緩衝液等の緩
衝液が好適に使用される。 上記抗体又は抗原を固定化した不溶性担体粒子
濃度が反応時に0.005重量%以上、好ましくは
0.02〜0.20重量%となるように上記分散媒中に懸
濁し、抗体又は抗原を固定化した不溶性担体粒子
懸濁液を得る。 該懸濁液を用いた被検液中の抗原又は抗体濃度
の測定方法は、例えば以下の如く実施しうる。 まず、一定の平均粒子径を有する不溶性担体粒
子にある一定の抗体又は抗原を固定化し該懸濁液
を調製する。次いで被検液中に含まれる抗原又は
抗体と同一又はほぼ同一の抗原又は抗体を、被検
液の媒体と同一又はほぼ同一の媒体を用いて希釈
し、あるいは濃縮し、種々の既知濃度の標準被検
液を調製する。次いで一定条件下に於いて該懸濁
液と該標準被検液とを混合し、反応開始後の2以
上の特定時間に対する吸光度又は透過率を測定
し、その間の変化量すなわち差の比を算出する。
次に該差の比の値を例えば縦軸に、標準被検液中
の抗原又は抗体濃度を例えば横軸としたグラフに
プロツトすると、例えば第3図に示す被検液中の
抗原又は抗体濃度と該差の比の値との対応曲線が
得られる。次いで標準被検液中の抗原又は抗体と
同一又はほぼ同一の抗原又は抗体を含む濃度未知
の被検液につき、上記対応曲線を得た条件と同一
条件下で、かつ同様の方法で吸光度又は透過率の
差を測定して、その比の値を得、上記対応曲線と
対比することにより被検液中に含まれる抗原又は
抗体量を検知しうる。 本発明による方法によれば、同一濃度の被検液
に対する不溶性担体粒子に固定化した抗体又は抗
原濃度が、従来技術に比して1/10以下に低減する
ことが可能となる。逆に従来技術に於いて被検液
をあらかじめ希釈操作等を行い、被検液中の抗原
又は抗体濃度を低下させる必要のある測定項目に
於いては、本発明による方法によれば希釈倍数を
1/10以下に低減でき、さらに場合によれば希釈操
作を行わず被検液中の抗原又は抗体濃度の測定が
可能となる。前者の場合は測定に用いる抗体又は
抗原量及び不溶性担体粒子の使用量が低減でき、
後者の場合は希釈操作による測定誤差の低減又は
排除できる。 本発明に於ける前記特定時間の設定については
以下の点を考慮して実施するのが好ましい。すな
わち、不溶性担体粒子に固定化した抗体又は抗原
の懸濁液に被検液を加え反応を開始した後、好ま
しくは該懸濁液と被検液とを一定条件下で攪拌
し、混合した後、さらに、2〜3秒経過し、実質
的に反応系が安定化した後の2以上の特定時間に
対して、反応物の吸光度又は透過率の変化量を測
定するのが好適である。 ここに於いて特定時間のうち少なくとも一方
は、実質的に反応系が安定化した時点すなわち攪
拌後2〜3秒経過した時点からとする場合に、該
被検液に於ける吸光度又は透過率の差の比の値が
該被検液中の抗原又は抗体濃度に対して鋭敏に対
応する傾向がある。従つて特定時間のうち少なく
とも一方は測光可能な限り反応の初期に設定する
ことが好ましい。なお、特定時間の間隔及び他の
特定時間の設定については、吸光度又は透過率の
変化量を勘案して、測定する抗原又は抗体ごとに
好適な条件を選択すれば良い。一般に好適に採用
される代表的な態様を説明すると下記のとおりで
ある。例えば、上記反応が開始後の基準経過時
(a秒後)から更に一定時間経過後(b秒後)の
それぞれの吸光度又は透過率を測定し、その差
(△E1)を算出し、更に上記とは別の基準経過時
(c秒後)を設定し、これより一定時間経過後
(d秒後)のそれぞれの吸光度又は透過率を測定
し、該基準時(c秒後)との差(△E2)を算出
する。この両者の比すなわち△E1/△E2を算出
し、各既知濃度に於ける該比の対応曲線を作成す
る。上記基準経過時(c秒後)の設定は先きに吸
光度又は透過率を測定したb秒後とすることも出
来、この場合は最低3点の吸光度又は透過率の測
定で前記2つの特定時間に対する吸光度又は透過
率の差の比を求めることが出来る。 このようにして求めた上記比の値は、抗体又は
抗原濃度に応じた特定のものとなり、例えば第3
図に示すような検量線とすることが出来る。 次いで、未知濃度の被検液中の抗体又は抗原濃
度について、前記同様の2以上の特定時間に対す
る吸光度又は透過率の差の比を求めることによ
り、上記検量線から被検液中の抗体又は抗原の濃
度を決定できる。 (発明の効果) 本発明による抗原又は抗体濃度の測定方法は、
従来技術に於いて抗原過剰又は抗体過剰か否かの
判別は必要であつた被検液中の抗原又は抗体濃度
範囲に対し、抗原過剰又は抗体過剰か否かの繁雑
な判定操作を用いず被検液中の抗原又は抗体濃度
を一義的に決定でき、再検査の必要もない。 また、同一被検液に対する不溶性担体粒子に固
定化した抗体又は抗原濃度を従来技術に比較して
低下でき及び/または同一該固定化した抗原又は
抗体濃度に対し被検液の希釈操作にともなう測定
誤差の低減または排除が可能となる。 さらに、本発明による測定方法に於いては吸光
度又は透過率の測定は最低3回で実施できる。 従つて、本発明による抗原又は抗体濃度の測定
方法は、短時間に多数の被検液を処理する自動測
定の場合に特に有用であり、かつ、自動測定機に
対する制約も少なく、広く一般の自動測定機への
実施ができる。 (実施例) 以下、実施例により、さらに本発明を詳細に説
明する。 実施例 1 (1) C−反応性蛋白質測定試薬の調製 平均直径0.123μmのポリスチレンラテツクス粒
子をトリス−塩酸緩衝液(=7.5)で希釈し、
ラテツクス濃度が1重量%の懸濁液を調製する。
次いでC−反応性蛋白質(以下、CRPと略す)
をヤギに免疫して得た抗CRP血清より塩析処理
により分画した抗CRPヤギIgG分画をトリス−塩
酸緩衝液(=7.5)で希釈し、蛋白濃度2mg/
mlの溶液を調製する。上記ラテツクス懸濁液1容
に抗CRPヤギIgG分画の溶液1容を加え37℃で2
時間反応させる。さらにウシ血清アルブミンを最
終濃度で0.05重量%添加した後遠心分離し、上清
を除去した後沈でんをトリス−塩酸緩衝液(=
7.5)に再分散し、ラテツクス濃度を0.08重量%
に調製し、CRP測定試薬を得た。 (2) 測定方法 日立製作所製U−3200型自記分光分析計の測光
部に、温度調節器及びマクネツト式攪拌装置を取
り付けた装置により吸光度を測定した。 光路長10mmのガラス製光学セルに円筒状の攪拌
子を入れ、次いで(1)で得たCRP測定用試薬2450μ
を分注し、測光部に挿入し、37℃に保温した。 次いで該攪拌装置によりCRP測定用試薬を攪
拌しつつ、被検液50μを添加した。 添加と同時に吸光度の測定を開始した。 吸光度の測定は、580mmの波長の光線を用いて
行つた。なお、攪拌は被検液添加後3秒で停止し
た。 (3) 既知試料の測定 CRP濃度22.4mg/dlの血清をトリス−塩酸緩衝
液(=7.5)で希釈し、CRP濃度が0.41,1.24,
3.73,5.60,7.46,11.2,16.8mg/dlの被検液を得
た。一方、上記血清を濃縮し、CRP濃度が44.8,
89.6mg/dlの被検液を得た。 (2)の測定条件下で、上記9種の被検液及び
CRP濃度22.4mg/dlの血清、さらにトリス−塩酸
緩衝液(=7.5)につき吸光度を各5回測定し
た。 得られた吸光度のうち、被検液添加後6秒後と
12秒後,18秒後,60秒後の吸光度より、2特定時
間の差の比として、被検液添加12秒後と6秒後の
吸光度差を、被検液添加18秒後と12秒後の吸光度
差で除した値を得た。一方、被検液添加60秒後の
吸光度より6秒後の吸光度を減じた値より一定時
間に対する吸光度の差を得た。この結果を第1表
に示した。
(Industrial Application Field) The present invention relates to a method for measuring antigen or antibody concentration. (Prior art and problems to be solved by the invention) Conventionally, antibodies or antigens are immobilized on insoluble carrier particles by physical adsorption or the formation of covalent bonds, and the antigen or antibody is immobilized on the antibodies or antigens immobilized on the carrier particles. The rate of the antigen-antibody reaction is measured from the increase in absorbance, that is, the decrease in transmittance, of the reaction mixture as the reaction progresses, or the absorbance or transmittance of the antibody in the reaction mixture at the end of the reaction,
Measure the difference in absorbance or transmittance of the antigen or antibody before the start of the reaction, and then quantify the concentration of the antigen or antibody in the sample from the speed or the difference in absorbance or transmittance before the start of the reaction and at the end of the reaction. There are known ways to do this. This method has the advantage of being able to quickly quantify the concentration of antigen or antibody with high accuracy. However, there are the following drawbacks. For example, when an antibody is immobilized on an insoluble carrier particle, in a region where the number of antigen molecules is small compared to the number of antibody molecules, the antigen-antibody reactant increases in proportion to the increase in the number of antigen molecules, and the number of antigen molecules increases. In a region where the number of antigen molecules exceeds the number of antibody molecules, the excess antigen neutralizes the antibody molecules that would normally contribute to aggregation, and the number of antigen-antibody reactants decreases as the number of antigen molecules increases. The former is generally called an antigen (antibody) deficient region, and the latter is generally called an antigen (antibody) abundant region. Due to this phenomenon, generally for one antigen-antibody reactant concentration,
Multiple antigen or antibody concentrations are supported. The same phenomenon is observed even if the antibody and antigen are replaced. In clinical tests, test fluids belonging to the above antigen-rich region generally appear less frequently, but if a test fluid belonging to the antigen-rich region is mistakenly evaluated as being from the antigen-poor region, it may be clinically serious. It would be a serious mistake.
Furthermore, measurement methods that cause such errors have little clinical significance. Traditionally, to prevent such errors from occurring,
A method of measuring two or more different dilution rates for the same test solution, or adding an additional antigen or antibody after the measurement is completed, measuring the concentration of the antigen-antibody reactant, and then adding the antigen or antibody. A method has been proposed for determining that a test liquid belongs to an antigen-excessive region or an antibody-excessive region when the antigen-antibody reactant concentration does not change. In either method, it is necessary to measure the same test liquid multiple times. However, with the recent appearance of automatic measuring devices that can measure a large number of test samples in a short period of time, it has become necessary to develop a measurement method that can determine whether the sample belongs to the antigen-excessive region or the antibody-excessive region within a single measurement operation. It has been desired. (Means for Solving the Problems) The present inventors have conducted extensive research with the aim of establishing a measurement method suitable for measuring a large number of test liquids in a short period of time using an automatic measuring device. As a result, the present inventors, for example, as shown in FIG. Add each of the two test solutions and stir for 2 seconds.
When the difference in absorbance was measured for a certain period of time after 60 seconds and after 60 seconds, the difference in absorbance exhibited by both test solutions was the same. In other words, this phenomenon indicates that multiple antigen concentrations correspond to one antigen-antibody reactant concentration. Therefore, it is not possible to determine whether the antigen or antibody concentration in a test solution with an unknown concentration is in an antigen (antibody) excess region or an antigen (antibody) deficiency region in a single measurement using a measurement method similar to that described above, making it impractical for practical use. Indicates that there is a problem. The present inventors investigated in detail the change in absorbance over time after adding the test solution, and found that
2 after 5 and 10 seconds and 10 and 15 seconds after adding the test solution
When the ratio of the difference in absorbance with respect to a specific time was determined, it was found that the values of the ratio of the difference between the two test liquids were significantly different. Furthermore, we conducted multiple measurements for each serum showing various antigen concentrations, and examined the reproducibility of the ratio of the difference in absorbance.We found that by using the ratio of the difference in absorbance, it is extremely easy to detect the antigen in the sample solution. Alternatively, the present invention was completed by confirming that the antibody concentration can be quantified. That is, in the present invention, an antibody or antigen is immobilized on an insoluble carrier particle, a known concentration of the antigen or antibody is reacted with the antibody or antigen immobilized on the carrier particle, and light is applied at a time that changes over time after the start of the reaction. , calculate the ratio of the difference in light absorbance or transmittance for two or more specific times in the above reaction, calculate the corresponding curve between the ratio and the antigen or antibody concentration, and then calculate the ratio of the difference in light absorbance or transmittance for two or more specific times in the above reaction, calculate the corresponding curve between the ratio and the antigen or antibody concentration, and then This is a method for measuring antigen or antibody concentration, which is characterized in that the ratio of the difference in light absorbance or transmittance for two or more specific times is determined, and the concentration corresponding to the ratio is determined based on the above-mentioned corresponding curve. The insoluble carrier particles used in the present invention may be organic polymers or inorganic compounds, as long as they are substantially insoluble under the conditions of use. Further, the shape thereof is not particularly limited, but examples of those generally suitably used are insoluble carrier particles having an average particle diameter of about 1.0 μm or less, preferably 0.05 to 0.4 μm. An antibody or antigen is immobilized on the insoluble carrier particles, and then the antigen or antibody in the test liquid is reacted, for example, from 400 to 1000 mm, preferably from 500 to 950 mm.
Using a light beam with a wavelength in the range of The concentration of can be measured. The antigen or antibody in the test solution in the above method is
Generally, one of these is included, but
Even a mixture of the antigen and antibody can be adequately handled. The light beam used for the above measurement has a relatively large absorbance or transmittance with respect to the progress of the reaction, has excellent sensitivity, and has a wavelength in the above wavelength range with relatively little interference from chyle, hemoglobin, bilirubin, etc. that usually coexist in the test liquid. suitable. Regarding the particle size of insoluble carrier particles, when the particle size is large, the amount of change in particle size due to aggregation is large, but the aggregation reaction rate tends to be slow, whereas when the particle size is small, Brownian motion is active and the aggregation reaction rate is slow. However, since the primary particle size is small, the amount of change in particle size due to the aggregation reaction tends to be small. For the above reasons, it is preferable to carry out the measurement by appropriately combining the above particle diameter and measurement wavelength. As described above, the insoluble carrier particles include polystyrene, styrene-butadiene copolymer, styrene-butadiene copolymer, and styrene-butadiene copolymer which are substantially insoluble in the liquid medium used for the measurement and have the above-mentioned average particle diameter.
Fine particles of organic polymer substances such as organic polymer latex obtained by emulsion polymerization such as methacrylic acid copolymer, polyglycidyl methacrylate, acrolein-ethylene glycol dimethacrylate copolymer, or silica, silica-alumina, alumina, etc. An inorganic oxide or an inorganic particle in which a functional group is introduced into an inorganic oxide through a silane coupling treatment or the like is used. In the present invention, antibodies or antigens are not particularly limited, and known antibodies or antigens can be used. Typical examples of those that are generally preferably used include denatured gamma globulin, antinuclear factor, human albumin, anti-human albumin antibody, immunoglobulin G (IgG), anti-human IgG antibody, and immunoglobulin A ( IgA), anti-human IgA antibody, immunoglobulin M
(IgM), anti-human IgM antibody, anti-human IgE antibody, streptolysin O, streptokinase, hyaluronidase, C-reactive protein (CRP), anti-human CRP
antibody, alpha fetoprotein (AFP), anti-human AFP antibody, carcinoembryonic antigen (CEA), anti-human
CEA antibody, human chorionic gonadotrobin (HCG),
Anti-HCG antibody, anti-estrogen antibody, anti-insulin antibody, hepatitis B surface antigen (HBs), anti-HBs antibody, Treponema pallidum antigen, rubella antigen, influenza antigen, complement C 1 q, anti-C 1 q antibody, anti-C 3 antibody,
Anti- C4 antibodies, anti-transferrin antibodies, etc. In the present invention, an antibody or antigen capable of reacting with an antigen or antibody in a test liquid to be measured is immobilized on such insoluble carrier particles. In this case, the immobilization method may be either physical adsorption or chemical covalent bond formation, but physical adsorption is suitable for immobilizing proteins with high physical adsorption capacity, such as antibodies and high molecular weight proteins. Formation of chemical covalent bonds is preferably used to immobilize hormones and haptens with low adsorption capacity. Many immobilization methods have already been proposed, and it is preferable to select an appropriate immobilization method according to the characteristics of the antibody or antigen to be immobilized. For example, the antibody or antigen may be mixed with insoluble carrier particles in a dispersion medium in the presence of a buffer or a crosslinking agent as required. The dispersion medium for the insoluble carrier particles on which the antibody or antigen is immobilized is not particularly limited, but from the viewpoint of the stability of the insoluble carrier particles during storage and the reproducibility of the reaction during the agglutination reaction, glycine-sodium hydroxide buffer Buffers such as tris-hydrochloric acid buffer, tris-hydrochloric acid buffer, and phosphate buffer are preferably used. The concentration of the insoluble carrier particles on which the antibody or antigen is immobilized is 0.005% by weight or more during the reaction, preferably
The insoluble carrier particles are suspended in the above dispersion medium at a concentration of 0.02 to 0.20% by weight to obtain a suspension of insoluble carrier particles on which antibodies or antigens are immobilized. A method for measuring the antigen or antibody concentration in a test liquid using the suspension can be carried out, for example, as follows. First, a certain antibody or antigen is immobilized on insoluble carrier particles having a certain average particle diameter to prepare the suspension. Next, an antigen or antibody that is the same or almost the same as the antigen or antibody contained in the test solution is diluted or concentrated using a medium that is the same or almost the same as that of the test solution, and then prepared as standards of various known concentrations. Prepare the test solution. Next, the suspension and the standard test solution are mixed under certain conditions, the absorbance or transmittance is measured at two or more specific times after the start of the reaction, and the amount of change, that is, the ratio of the difference, is calculated. do.
Next, when the value of the ratio of the difference is plotted, for example, on the vertical axis and the antigen or antibody concentration in the standard test solution is plotted on the horizontal axis, for example, the antigen or antibody concentration in the test solution as shown in FIG. A corresponding curve between the value of the ratio of the difference and the value of the ratio of the difference is obtained. Next, for a test solution of unknown concentration containing the same or almost the same antigen or antibody as the antigen or antibody in the standard test solution, the absorbance or transmittance was measured under the same conditions and in the same manner as those used to obtain the above corresponding curve. The amount of antigen or antibody contained in the test liquid can be detected by measuring the difference in the ratio, obtaining a value of the ratio, and comparing it with the corresponding curve. According to the method of the present invention, the concentration of antibodies or antigens immobilized on insoluble carrier particles for a test solution of the same concentration can be reduced to 1/10 or less compared to the conventional technique. On the other hand, for measurement items that require prior art dilution of the test solution to reduce the antigen or antibody concentration in the test solution, the method of the present invention allows the dilution factor to be reduced. The concentration can be reduced to 1/10 or less, and furthermore, in some cases, it becomes possible to measure the antigen or antibody concentration in the test liquid without performing a dilution operation. In the former case, the amount of antibody or antigen used for measurement and the amount of insoluble carrier particles used can be reduced;
In the latter case, measurement errors due to dilution operations can be reduced or eliminated. In the present invention, it is preferable to set the specific time in consideration of the following points. That is, after starting a reaction by adding a test liquid to a suspension of antibodies or antigens immobilized on insoluble carrier particles, preferably after stirring and mixing the suspension and test liquid under certain conditions. Furthermore, it is preferable to measure the amount of change in the absorbance or transmittance of the reactant at two or more specific times after 2 to 3 seconds have passed and the reaction system has become substantially stabilized. In this case, at least one of the specific times is defined as the time when the reaction system is substantially stabilized, that is, 2 to 3 seconds after stirring, and the absorbance or transmittance of the test liquid is determined. The value of the difference ratio tends to correspond sensitively to the antigen or antibody concentration in the test liquid. Therefore, it is preferable to set at least one of the specific times as early as possible in the reaction when photometry is possible. Regarding the setting of the specific time interval and other specific times, suitable conditions may be selected for each antigen or antibody to be measured, taking into consideration the amount of change in absorbance or transmittance. Typical embodiments that are generally suitably employed are explained below. For example, the absorbance or transmittance is measured after a certain period of time has elapsed (b seconds) from the reference time after the reaction has started (a seconds later), and the difference (△E 1 ) is calculated. Set a reference time different from the above (c seconds later), measure the absorbance or transmittance after a certain period of time (d seconds later), and compare the difference with the reference time (c seconds later). (△E 2 ) is calculated. The ratio between the two, ie, ΔE 1 /ΔE 2 is calculated, and a corresponding curve of the ratio at each known concentration is created. The above standard elapsed time (c seconds later) can also be set to b seconds after the previous absorbance or transmittance measurement; in this case, absorbance or transmittance measurements at at least 3 points can be set for the above two specified times. The ratio of the difference in absorbance or transmittance can be determined. The value of the ratio determined in this way is specific depending on the antibody or antigen concentration, for example,
A calibration curve as shown in the figure can be obtained. Next, with respect to the antibody or antigen concentration in the test solution of unknown concentration, the ratio of the difference in absorbance or transmittance for two or more specific times as described above is determined, and the antibody or antigen in the test solution is determined from the above calibration curve. The concentration of can be determined. (Effect of the invention) The method for measuring antigen or antibody concentration according to the present invention is as follows:
In the conventional technology, it was necessary to determine whether there is excess antigen or antibody, but it is possible to determine whether there is excess antigen or antibody for the range of antigen or antibody concentration in the test liquid without using complicated judgment operations. The antigen or antibody concentration in the test solution can be uniquely determined, and there is no need for retesting. In addition, the concentration of antibodies or antigens immobilized on insoluble carrier particles for the same test solution can be lowered compared to conventional techniques, and/or the concentration of the immobilized antigen or antibody for the same test solution can be measured by diluting the test solution. Errors can be reduced or eliminated. Furthermore, in the measuring method according to the present invention, absorbance or transmittance measurements can be performed at least three times. Therefore, the method for measuring antigen or antibody concentration according to the present invention is particularly useful in automatic measurements that process a large number of test liquids in a short period of time, has few restrictions on automatic measuring equipment, and can be used widely in general automatic measurements. Can be applied to measuring equipment. (Example) Hereinafter, the present invention will be explained in further detail with reference to Examples. Example 1 (1) Preparation of reagent for measuring C-reactive protein Polystyrene latex particles with an average diameter of 0.123 μm were diluted with Tris-HCl buffer (=7.5).
A suspension with a latex concentration of 1% by weight is prepared.
Next, C-reactive protein (hereinafter abbreviated as CRP)
The anti-CRP goat IgG fraction was fractionated by salting out from the anti-CRP serum obtained by immunizing goats with the following: diluted with Tris-HCl buffer (=7.5) to give a protein concentration of 2 mg/
Prepare a solution of ml. Add 1 volume of anti-CRP goat IgG fraction solution to 1 volume of the above latex suspension and heat at 37℃ for 2 hours.
Allow time to react. Further, bovine serum albumin was added to a final concentration of 0.05% by weight, followed by centrifugation, the supernatant was removed, and the precipitate was dissolved in Tris-HCl buffer (=
7.5) and redisperse the latex concentration to 0.08% by weight.
was prepared to obtain a CRP measurement reagent. (2) Measurement method Absorbance was measured using a device equipped with a temperature controller and a magnet type stirring device attached to the photometry section of a self-recording spectrometer U-3200 manufactured by Hitachi, Ltd. A cylindrical stirrer was placed in a glass optical cell with an optical path length of 10 mm, and then 2450 μ of the CRP measurement reagent obtained in (1) was added.
was dispensed, inserted into the photometer, and kept at 37°C. Next, while stirring the CRP measurement reagent using the stirring device, 50μ of the test liquid was added. Measurement of absorbance was started at the same time as the addition. Absorbance measurements were performed using a light beam with a wavelength of 580 mm. Note that stirring was stopped 3 seconds after the addition of the test liquid. (3) Measurement of known samples Serum with a CRP concentration of 22.4 mg/dl was diluted with Tris-HCl buffer (=7.5), and the CRP concentration was 0.41, 1.24,
Test solutions of 3.73, 5.60, 7.46, 11.2, and 16.8 mg/dl were obtained. On the other hand, the above serum was concentrated and the CRP concentration was 44.8,
A test solution of 89.6 mg/dl was obtained. Under the measurement conditions of (2), the above nine test solutions and
Absorbance was measured five times for serum with a CRP concentration of 22.4 mg/dl and for Tris-HCl buffer (=7.5). Among the absorbances obtained, 6 seconds after adding the test solution and
From the absorbance after 12 seconds, 18 seconds, and 60 seconds, calculate the difference in absorbance between 12 seconds and 6 seconds after adding the test solution as the ratio of the difference between the two specific times, and calculate the difference in absorbance between 18 seconds and 12 seconds after adding the test solution. A value was obtained by dividing by the difference in absorbance. On the other hand, the difference in absorbance over a certain period of time was obtained by subtracting the absorbance 6 seconds after addition of the test liquid from the absorbance 60 seconds after addition of the test liquid. The results are shown in Table 1.

【表】【table】

【表】 た変動係数を求めた。
(注2) CRPを含まないトリス−塩酸緩衝液である。
次に、第1表に示した一定時間に対する吸光度
の差の平均値を縦軸とし、添加被検液中のCRP
濃度を横軸として第2図に示す対応曲線を得た。
一方、2特定時間に対する吸光度の差の比の平均
値を縦軸とし、添加被検液中のCRP濃度を横軸
として第3図に示す本発明による対応曲線を得
た。 ここに於いて、誤差の比の値xとし、該CRP
濃度をyとすると、CRP濃度3.73mg/dlから89.6
mg/dlの範囲に於ける該差の比の対応曲線は y=exP(4.059×Ogx+2.697) (式1) でよく近似できた。一方、該差の対応曲線におい
てCRP濃度5.60mg/dl以下の濃度範囲について
は、該差の値をx,該CRP濃度をgとすると y=exP(0.9553×Ogx+2.585) (式2) でよく近似できた。(式1),(式2)に於ける0
gは自然対数である。 一般にCRP強陽性患者血清中のCRP濃度は40
mg/dl以下であり、既知濃度被検液のうちCRP
最高濃度である89.6mg/dlは臨床上測定必要な範
囲の上限と考えられ、本発明による該差の比の対
応曲線を用いれば、CRP濃度3.73mg/dlから89.6
mg/dlの濃度範囲にわたる従来法では一義的に抗
原濃度の決定が不能であり抗原過剰領域に属する
か否かの判別が必要であつた濃度範囲に於いて一
義的に抗原濃度の決定ができる。なお、CRP濃
度33.7mg/dl未満の濃度範囲について従来法によ
る誤差の対応曲線を適用すれば、CRP低濃度域
の測定も実施できる。 すなわち、CRP濃度未知の被検液を測定する
に当たつては、(2)の測定方法に従つて測定し、
CRP濃度未知の被検液による該差の値及び誤差
の比の値を得る。次にCRP濃度3.73mg/dlに於け
る該差の値0.2651と上記被検液の該差の値を比較
し、上記被検液の誤差の値が0.2651以上であれ
ば、該差の比の値を(式1)に代入してCRP濃
度を得る。逆に上記被検液の該差の値が0.2651未
満であれば、該差の値を(式2)に代入して
CRP濃度を得る。 (4) 未知試料の測定 CRP濃度未知の血清を(2)の測定方法で測定し
たところ、該差の値0.5307と該差の比の値1.196
を得た。CRP濃度3.73mg/dlに於ける該差の値
0.2651より上記該差の値が大であるので、誤差の
比の値を(式1)に適応してCRP濃度30.7mg/dl
を得た。 次いで、上記血清をトリス−塩酸緩衝液(PH=
7.5)で5倍及び10倍に希釈し、(2)の測定方法で
測定したところ、5倍希釈液については該差の値
0.4381と該差の比の値0.801を得、(式1)により
CRP濃度は6.03mg/dlと求まつた。10倍希釈液に
ついては該差の値0.2137と該差の比の値0.711を
得、(式2)によりCRP濃度は3.04mg/dlと求ま
つた。 さらに、5倍希釈液をヘキスト社製一元免疫拡
散法によるCRP定量試薬であるLCパルチゲン
CRPによりCRP濃度を測定したところ6.0mg/dl
を示し、本発明による方法により血清中の濃度が
広範囲に分布するCRPの測定に於いて、従来法
では一義的にCRP濃度の決定が不能であり、抗
原過剰領域に属するか否かの判別が必要であつた
CRPの濃度範囲に於いて一義的にCRP濃度の決
定が可能となつた。さらに、CRP低濃度域に従
来法を実施することにより、CRP濃度0.41mg/dl
すなわちCRP濃度の正常域付近からCRP濃度89.6
mg/dlすなわちCRP濃度の異常高値にかけて、
単一の測定操作でCRP濃度の測定が可能となつ
た。
[Table] The coefficient of variation was calculated.
(Note 2) Tris-HCl buffer that does not contain CRP.
Next, the vertical axis is the average value of the difference in absorbance over a certain period of time shown in Table 1, and the CRP in the added test solution is
A corresponding curve shown in FIG. 2 was obtained with concentration as the horizontal axis.
On the other hand, a corresponding curve according to the present invention shown in FIG. 3 was obtained, with the vertical axis representing the average value of the ratio of the difference in absorbance for two specific times and the horizontal axis representing the CRP concentration in the added test liquid. Here, let the value of the error ratio be x, and the CRP
If the concentration is y, the CRP concentration is 3.73 mg/dl to 89.6
The corresponding curve of the ratio of the difference in the mg/dl range was well approximated by y=exP(4.059× O gx+2.697) (Equation 1). On the other hand, for the CRP concentration range below 5.60 mg/dl in the corresponding curve of the difference, if the value of the difference is x and the CRP concentration is g, then y=exP(0.9553× O gx+2.585) (Formula 2) It was possible to approximate it well. 0 in (Formula 1) and (Formula 2)
g is the natural logarithm. Generally, the CRP concentration in the serum of strongly CRP-positive patients is 40
mg/dl or less, and CRP in the test solution with known concentration
The highest concentration of 89.6 mg/dl is considered to be the upper limit of the range required for clinical measurement, and if the corresponding curve of the ratio of the difference according to the present invention is used, the CRP concentration can be reduced from 3.73 mg/dl to 89.6 mg/dl.
It is possible to unambiguously determine the antigen concentration within the concentration range of mg/dl, where it was impossible to unambiguously determine the antigen concentration and it was necessary to determine whether or not it belonged to the antigen-excess region. . Note that by applying the error correspondence curve of the conventional method to the CRP concentration range of less than 33.7 mg/dl, it is also possible to measure the CRP low concentration range. That is, when measuring a test liquid with unknown CRP concentration, measure according to the measurement method (2),
Obtain the difference value and the error ratio value for the test liquid with unknown CRP concentration. Next, compare the difference value of 0.2651 at a CRP concentration of 3.73 mg/dl with the difference value of the above test solution, and if the error value of the above test solution is 0.2651 or more, the ratio of the difference is Substitute the value into (Equation 1) to obtain the CRP concentration. On the other hand, if the value of the difference of the above test liquid is less than 0.2651, substitute the value of the difference into (Equation 2).
Obtain CRP concentration. (4) Measurement of unknown sample When serum with unknown CRP concentration was measured using the measurement method in (2), the difference was 0.5307 and the ratio of the difference was 1.196.
I got it. The value of the difference at a CRP concentration of 3.73mg/dl
Since the value of the above difference is larger than 0.2651, the value of the error ratio is applied to (Equation 1) and the CRP concentration is 30.7 mg/dl.
I got it. Next, the above serum was diluted with Tris-HCl buffer (PH=
When diluted 5 times and 10 times in 7.5) and measured using the measurement method in (2), the difference value for the 5 times diluted solution was
Obtain the ratio value of 0.4381 and the difference, 0.801, and use (Equation 1) to obtain
The CRP concentration was determined to be 6.03 mg/dl. For the 10-fold diluted solution, the difference value 0.2137 and the difference ratio value 0.711 were obtained, and the CRP concentration was determined to be 3.04 mg/dl using (Equation 2). Furthermore, the 5-fold diluted solution was added to LC Partigen, a CRP quantitative reagent manufactured by Hoechst using a one-way immunodiffusion method.
CRP concentration measured by CRP was 6.0mg/dl
In measuring CRP, whose concentration in serum is distributed over a wide range, using the method of the present invention, it is impossible to determine the CRP concentration unambiguously using the conventional method, and it is difficult to determine whether it belongs to the antigen-rich region. it was necessary
It has become possible to uniquely determine CRP concentration within the CRP concentration range. Furthermore, by implementing the conventional method in the CRP low concentration range, the CRP concentration was 0.41mg/dl.
In other words, the CRP concentration ranges from around the normal range to 89.6.
mg/dl, or abnormally high CRP concentration,
It is now possible to measure CRP concentration with a single measurement operation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は抗体を固定化した不溶性粒子担体の懸
濁液に、対応する抗原を添加し、添加後の時間に
対する吸光度の変化量を示すグラフである。図
中、実線は抗原過少領域に属する被検液の場合
で、点線は抗原過剰領域に属する被検液の場合の
結果を示す。第2図は、横軸を被検液中の抗原濃
度とし縦軸を一定時間に対する吸光度の差として
プロツトした対応曲線を示す。第3図は、横軸を
被検液中の抗原濃度とし縦軸を2特定時間に対す
る吸光度の差の比としてプロツトした本発明によ
る対応曲線を示す。
FIG. 1 is a graph showing the amount of change in absorbance versus time after addition of a corresponding antigen to a suspension of insoluble particle carriers on which antibodies are immobilized. In the figure, the solid line shows the results for the test solution belonging to the antigen-poor region, and the dotted line shows the results for the test solution belonging to the antigen-excess region. FIG. 2 shows a corresponding curve in which the horizontal axis is the antigen concentration in the test solution and the vertical axis is plotted as the difference in absorbance over a certain period of time. FIG. 3 shows a corresponding curve according to the present invention in which the horizontal axis is the antigen concentration in the test liquid and the vertical axis is the ratio of the difference in absorbance for two specific times.

Claims (1)

【特許請求の範囲】[Claims] 1 不溶性担体粒子に抗体又は抗原を固定化し、
該担体粒子に固定化された抗体又は抗原に既知濃
度の抗原又は抗体を反応させ、反応開始後の経時
的変化した時点で光を照射し、上記反応に於ける
2以上の特定時間に対する光の吸光度又は透過率
の差の比を求め、該比と抗原又は抗体濃度との間
の対応曲線を求め、次いで未知濃度の試料につい
て2以上の特定時間に対する光の吸光度又は透過
率の差の比を求め、上記対応曲線により該比に相
当する濃度を決定することを特徴とする抗原又は
抗体濃度の測定方法。
1 Immobilizing antibodies or antigens on insoluble carrier particles,
The antibody or antigen immobilized on the carrier particles is reacted with a known concentration of the antigen or antibody, and light is irradiated at time points that change over time after the start of the reaction, and the light is applied at two or more specific times in the above reaction. Determine the ratio of the difference in absorbance or transmittance, determine the corresponding curve between the ratio and the antigen or antibody concentration, and then calculate the ratio of the difference in absorbance or transmittance of light for two or more specific times for a sample of unknown concentration. A method for measuring an antigen or antibody concentration, characterized in that the concentration corresponding to the ratio is determined using the above-mentioned corresponding curve.
JP23334885A 1985-10-21 1985-10-21 Method for measuring concentration of antigen or antibody Granted JPS6293664A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23334885A JPS6293664A (en) 1985-10-21 1985-10-21 Method for measuring concentration of antigen or antibody

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23334885A JPS6293664A (en) 1985-10-21 1985-10-21 Method for measuring concentration of antigen or antibody

Publications (2)

Publication Number Publication Date
JPS6293664A JPS6293664A (en) 1987-04-30
JPH0511788B2 true JPH0511788B2 (en) 1993-02-16

Family

ID=16953738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23334885A Granted JPS6293664A (en) 1985-10-21 1985-10-21 Method for measuring concentration of antigen or antibody

Country Status (1)

Country Link
JP (1) JPS6293664A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU5407994A (en) * 1992-10-30 1994-05-24 Cetac Technologies Incorporated Method for particulate reagent sample treatment
JP5312834B2 (en) * 2008-03-31 2013-10-09 シスメックス株式会社 Blood coagulation analyzer, blood coagulation analysis method, and computer program
WO2009122993A1 (en) 2008-03-31 2009-10-08 シスメックス株式会社 Blood coagulation analyzer, method of analyzing blood coagulation and computer program

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59171863A (en) * 1983-03-18 1984-09-28 Mitsubishi Chem Ind Ltd Measurement of antigen/antibody reaction

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59171863A (en) * 1983-03-18 1984-09-28 Mitsubishi Chem Ind Ltd Measurement of antigen/antibody reaction

Also Published As

Publication number Publication date
JPS6293664A (en) 1987-04-30

Similar Documents

Publication Publication Date Title
JPS6243138B2 (en)
EP0724156A1 (en) Kit for immunologically assaying biological substance and assay process
CA2023803C (en) Method for measuring an immunologically active material and apparatus suitable for practicing said method
AU2002313319B2 (en) Carrier particle latex for assay reagent and assay reagent
EP0263731A1 (en) Method for measuring antigen-antibody reactions
JP4086266B2 (en) Immunoassay method
JPH0511788B2 (en)
JP3005400B2 (en) How to measure antigen or antibody concentration
JPS6293663A (en) Method for measuring concentration of antigen or antibody
JP2004325414A (en) Method and kit for measuring immunity
EP0439611B1 (en) Method for assaying immunologically active substance and reagent therefor
CN111239403B (en) Beta 2 microglobulin latex enhanced immunoturbidimetry kit and application
JP2001074742A (en) Latex immunity nephelometry measurement method and kit
JPH0614049B2 (en) Method for measuring antigen or antibody concentration
JPH06230010A (en) Immunity agglutination reagent and immunity analysis method
JPH03233358A (en) Method for measuring antigen or antibody with high sensitivity
JP3328053B2 (en) Determination of antibody or antigen concentration by immunoagglutination
JPH0682128B2 (en) Latex reagent
JP2575148B2 (en) Drug
JP2001050963A (en) Immunological agglutination reagent
JP2704760B2 (en) Agglutinating antibody
JP2004117068A (en) Immunoassay reagent and immunoassay method
JPH07111434B2 (en) Method for producing insoluble carrier particles on which antibody or antigen is immobilized
JPH0862214A (en) Method for measuring substance in vivo
JPH0814581B2 (en) Antigen or antibody quantification method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees