JP3005400B2 - How to measure antigen or antibody concentration - Google Patents

How to measure antigen or antibody concentration

Info

Publication number
JP3005400B2
JP3005400B2 JP5230367A JP23036793A JP3005400B2 JP 3005400 B2 JP3005400 B2 JP 3005400B2 JP 5230367 A JP5230367 A JP 5230367A JP 23036793 A JP23036793 A JP 23036793A JP 3005400 B2 JP3005400 B2 JP 3005400B2
Authority
JP
Japan
Prior art keywords
measurement
concentration
antibody
reagent
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5230367A
Other languages
Japanese (ja)
Other versions
JPH0783929A (en
Inventor
義人 枝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP5230367A priority Critical patent/JP3005400B2/en
Publication of JPH0783929A publication Critical patent/JPH0783929A/en
Application granted granted Critical
Publication of JP3005400B2 publication Critical patent/JP3005400B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Automatic Analysis And Handling Materials Therefor (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、被検液中の抗原または
抗体濃度の測定方法に関する。詳しくは、試薬の測定限
界を超えた被検液を中の抗原または抗体の濃度を高精度
で且つ正確に測定することが可能な抗原または抗体濃度
の測定方法である。
The present invention relates to a method for measuring the concentration of an antigen or antibody in a test solution. More specifically, the present invention relates to a method for measuring the concentration of an antigen or an antibody capable of accurately and accurately measuring the concentration of an antigen or an antibody in a test solution exceeding a measurement limit of a reagent.

【0002】[0002]

【従来の技術】従来、不溶性担体粒子に物理吸着あるい
は共有結合の形成により抗体または抗原を固定化した不
溶性担体粒子(以下、固定化担体粒子と略す)と血清や
尿などの被検液中の対応する抗原との間における抗原抗
体反応に基づく凝集反応あるいは凝集阻止反応を観察す
ることにより、被検液中の対応する抗原を測定する免疫
学的測定方法が知られている。
2. Description of the Related Art Conventionally, insoluble carrier particles (hereinafter abbreviated as immobilized carrier particles) in which an antibody or an antigen is immobilized by physical adsorption or formation of a covalent bond on the insoluble carrier particles are used in a test solution such as serum or urine. BACKGROUND ART An immunological measurement method for measuring a corresponding antigen in a test solution by observing an agglutination reaction or an agglutination inhibition reaction based on an antigen-antibody reaction with a corresponding antigen is known.

【0003】また、上記の固定化担体粒子の分散液より
なる試薬と複数の被検液とを反応させて得られる反応液
中の不溶性担体の凝集状態の定量方法としては、反応液
に光を照射し、その散乱光または透過光の強度より各被
検液中の抗原または抗体の濃度を求める方法が一般的で
ある。
[0003] As a method for quantifying the state of aggregation of the insoluble carrier in a reaction solution obtained by reacting a reagent comprising a dispersion of the above-mentioned immobilized carrier particles with a plurality of test solutions, light is applied to the reaction solution. Irradiation and a method of determining the concentration of the antigen or antibody in each test solution from the intensity of the scattered light or transmitted light are common.

【0004】かかる方法は、測定の自動化が可能なこと
から、被検液中の抗原または抗体の濃度を自動的に定量
可能な自動分析機を利用して広く普及している。
[0004] Such a method is widely used by using an automatic analyzer capable of automatically quantifying the concentration of an antigen or an antibody in a test solution because measurement can be automated.

【0005】従来より行われていた一般的な測定方法を
臨床的診断に用いる場合について説明すると、抗原また
は抗体の濃度が個体間ないしは採取時期などで顕著に異
なると予想される場合においては、まず所定の測定条件
下で抗原または抗体の濃度を測定し、抗原または抗体の
濃度が該試薬の測定範囲を外れた被検液については、測
定条件の内、試薬に関する条件は実質的に変えず、測定
に供する被検液の濃度を増減して再度同様な測定する方
法が一般的に採用されていた。
A description will be given of a case where a conventional general measuring method is used for clinical diagnosis. In the case where the concentration of antigen or antibody is expected to differ significantly between individuals or at the time of collection, first, Measure the concentration of the antigen or antibody under predetermined measurement conditions, and for the test solution in which the concentration of the antigen or antibody is out of the measurement range of the reagent, of the measurement conditions, the conditions relating to the reagent do not substantially change, In general, a method of increasing and decreasing the concentration of a test solution to be subjected to measurement and performing the same measurement again has been employed.

【0006】例えば、検体中の抗原または抗体濃度が高
く、所定の測定条件下で初回測定時に測定上限を超すも
のが存在する場合、(A)被検液を所定倍数に希釈して
被検液の濃度を調整して再度測定し、得られた測定値に
所定希釈倍数を乗じる測定方法、(B)被検液量を初回
測定条件より減じて測定する方法がある。
For example, when the concentration of antigen or antibody in a sample is high and there is a sample which exceeds the upper limit of measurement at the first measurement under predetermined measurement conditions, (A) the test solution is diluted to a predetermined multiple and the test solution is diluted. And measuring again by adjusting the concentration of the sample, and multiplying the obtained measured value by a predetermined dilution factor, and (B) a method of measuring the amount of the test liquid by subtracting it from the initial measurement condition.

【0007】また、検体中の抗原または抗体濃度が低
く、所定の測定条件下で初回測定時に測定下限に満たな
いものが存在する場合、(C)被検液を所定倍数に濃縮
して再度測定する方法、(D)被検液の量を初回測定条
件より増して測定する方法がある。
When the concentration of the antigen or antibody in the sample is low and there is a sample which is less than the lower limit of measurement at the time of the first measurement under the predetermined measurement conditions, (C) the test solution is concentrated to a predetermined multiple and the measurement is performed again. And (D) a method in which the amount of the test solution is measured by increasing the amount compared to the initial measurement conditions.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、上記し
た従来の方法には以下のような欠点が存在する。
However, the above-mentioned conventional method has the following disadvantages.

【0009】即ち、(A)の方法は、測定項目によって
強弱はあるが、希釈液の性状により、測定値が干渉を受
ける場合があり、希釈液の選定が困難な場合がある。ま
た、希釈操作を精度良く正確に行う方法にも注意を必要
とし、用手で希釈する場合は誤差要因を含む欠点があ
る。また自動分析機に希釈機能が付加されている場合は
用手希釈より良好な精度および正確性が期待できるが、
通常この方法では単位時間当りの測定数すなわち処理能
力が半減したり、希釈液の使用が制限を受けて使用でき
ない場合があるなどの欠点がある。また、自動分析機に
よる希釈では、分取に所定の液量以上の量の被検液がな
いと、機械的な希釈が不能となり、必要以上に貴重な被
検液を使用するという問題もある。
In other words, the method (A) has some strengths depending on the measurement items, but the measured values may be interfered by the properties of the diluent, and it may be difficult to select the diluent. In addition, it is necessary to pay attention to the method of performing the dilution operation accurately and accurately, and there is a drawback including an error factor when the dilution is performed manually. In addition, when the dilution function is added to the automatic analyzer, better precision and accuracy than manual dilution can be expected,
Usually, this method has a drawback that the number of measurements per unit time, that is, the processing capacity is halved, and the use of the diluent is restricted and may not be used. In addition, in the dilution by the automatic analyzer, if there is no test liquid having a volume equal to or more than a predetermined liquid amount in the fractionation, mechanical dilution becomes impossible, and there is a problem that a test liquid that is more valuable than necessary is used. .

【0010】また、(B)の方法では、自動分析機で再
現良く分注できる被検液量の下限が存在し、初回測定条
件が自動分析機の下限に近ければこの方法は採用できな
い。また、自動分析機の試料分注量の上限と下限の範囲
内で初回測定と被検液量を減じた再測定の各試料分注量
が設定できても、自動分析機の分注精度は一般に検体量
と反比例するため、再測定の値は相対的に精度が不良と
なる。
In the method (B), there is a lower limit of the amount of the test liquid that can be dispensed with good reproducibility by the automatic analyzer, and this method cannot be adopted if the initial measurement conditions are close to the lower limit of the automatic analyzer. In addition, even if the sample dispensing volume for the initial measurement and the re-measurement with the test sample volume reduced can be set within the upper and lower limits of the sample dispensing volume of the automatic analyzer, the dispensing accuracy of the automatic analyzer is In general, the remeasured value is relatively inaccurate because it is inversely proportional to the sample amount.

【0011】更に、(C)の方法においては、被検液の
濃縮縮操作中に少なからず変性を受ける欠点があり、か
つ濃縮操作自体が煩雑で迅速性にも劣るため自動分析装
置を用いる大量迅速測定には不適である。
Furthermore, the method (C) has the disadvantage that the test solution is subject to considerable denaturation during the concentration / reduction operation, and the concentration operation itself is complicated and inferior in speed. Not suitable for rapid measurement.

【0012】更にまた、(D)の方法によれば、自動分
析機では少量の被検液でも再現良く分注できる様に工夫
されている反面、再現良く分注できる被検液の量の上限
が存在する。そのため、初回測定条件が被検液の分注量
の上限に近ければこの方法は採用できない。また、自動
分析機の試料分注量の上限と下限の範囲内で初回測定と
試料量を増した再測定の各試料分注量が設定できても、
反応液中の検体濃度が被検液の増加に比例して増すた
め、該被検液中の測定対象のみならず反応に干渉する物
質の反応液中の濃度も比例して増加する。従って、この
方法では本来期待される反応以外の非特異的な反応が発
生し、抗原または抗体の濃度を正確に測定することがで
きないという欠点もある。
Further, according to the method (D), the automatic analyzer is designed so that even a small amount of the test liquid can be dispensed with good reproducibility, but the upper limit of the amount of test liquid that can be dispensed with good reproducibility. Exists. Therefore, this method cannot be adopted if the initial measurement conditions are close to the upper limit of the dispensed amount of the test liquid. In addition, even if each sample dispensing volume for initial measurement and remeasurement with increased sample volume can be set within the upper and lower limits of the sample dispensing volume of the automatic analyzer,
Since the concentration of the analyte in the reaction solution increases in proportion to the increase in the test solution, not only the measurement target in the test solution but also the concentration of the substance that interferes with the reaction in the reaction solution increases in proportion. Therefore, this method has a disadvantage that a nonspecific reaction other than the originally expected reaction occurs, and the concentration of the antigen or antibody cannot be accurately measured.

【0013】[0013]

【課題を解決するための手段】本発明者らは、自動分析
機を使用した場合においても、抗原または抗体の濃度が
試薬の測定範囲を外れた被検液を含む可能性のある多数
の被検液を短時間に且つ精度良く測定し得るに好適な測
定方法を確立する目的で鋭意研究してきた。
Means for Solving the Problems The present inventors have found that even when an automatic analyzer is used, a large number of samples that may contain a test solution whose antigen or antibody concentration is out of the measurement range of the reagent can be obtained. Researches have been made earnestly for the purpose of establishing a suitable measuring method for accurately measuring a test solution in a short time.

【0014】その結果、上記抗原または抗体の濃度が試
薬の測定範囲を外れた被検液について、反応液中の被検
液の割合を実質的に変えることなく、該反応に関与しな
い液体の該試薬中の不溶性担体粒子に対する割合を増減
して、試薬と混合後の反応液中における不溶性担体粒子
の濃度を変え、再度抗原または抗体の濃度を測定するこ
とにより、かかる問題を解決することができることを見
い出し、本発明を完成するに至った。
As a result, for the test liquid whose antigen or antibody concentration is out of the measurement range of the reagent, the ratio of the liquid not involved in the reaction can be reduced without substantially changing the ratio of the test liquid in the reaction liquid. This problem can be solved by increasing or decreasing the ratio of the insoluble carrier particles in the reagent to the concentration of the insoluble carrier particles in the reaction solution after mixing with the reagent, and measuring the antigen or antibody concentration again. And completed the present invention.

【0015】 即ち、本発明は、抗体または抗原を固定
させた不溶性担体粒子の分散液よりなる試薬と、多数の
被検液とを反応させ、反応液中における不溶性担体粒子
の凝集状態により該被検液の抗原または抗体の濃度を測
定する方法において、予め不溶性担体粒子の特定濃度を
低減させた試薬により被検液の全てを測定して、その測
定値が所定の基準値未満である大部分の被検液を確認し
た後、次に所定の基準値以上である残余の被検液につい
て特定濃度の試薬により再測定することを特徴とする抗
原または抗体濃度の測定方法である。
That is, the present invention provides a method comprising reacting a reagent comprising a dispersion of insoluble carrier particles on which an antibody or an antigen is immobilized with a large number of test liquids, and reacting the reagent with the aggregation state of the insoluble carrier particles in the reaction solution. In the method of measuring the concentration of antigen or antibody in a test solution, most of the test solution is measured with a reagent in which the specific concentration of the insoluble carrier particles has been reduced in advance, and most of the measured values are less than a predetermined reference value. And then re-measuring the remaining test liquid having a predetermined reference value or more with a reagent having a specific concentration, and then measuring the antigen or antibody concentration.

【0016】本発明で用いる不溶性担体粒子は、保存時
及び測定時に接触する液に対して実質的に不溶性であれ
ば、有機高分子体、無機高分子体の区別なく公知のもの
が特に制限なく使用できる。例えば、ポリスチレン、ス
チレンーブタジエン共重合体、スチレンーメタクリル酸
共重合体、ポリグリシジルメタクリレート、アクロレイ
ンーエチレングリコールジメタクリレート共重体の様な
乳化重合法により得られる有機高分子ラテックス粒子な
どの有機高分子物質の微粒子、あるいはシリカ、シリカ
ーアルミナ、アルミナの様な無機酸化物または該無機酸
化物などにシランカップリング処理などの操作で官能基
を導入した無機粒子等の材質よりなる粒子が挙げられ
る。
The insoluble carrier particles used in the present invention may be any known organic polymer or inorganic polymer without particular limitation, as long as they are substantially insoluble in the liquid that comes into contact during storage and measurement. Can be used. For example, organic polymers such as organic polymer latex particles obtained by an emulsion polymerization method such as polystyrene, styrene butadiene copolymer, styrene-methacrylic acid copolymer, polyglycidyl methacrylate, and acrolein-ethylene glycol dimethacrylate copolymer. Examples include fine particles of a substance, or particles made of a material such as an inorganic oxide such as silica, silica-alumina, and alumina, or an inorganic particle having a functional group introduced into the inorganic oxide by an operation such as silane coupling treatment.

【0017】また、不溶性単体粒子の形状も限定される
ものではない。一般に好適に使用されるものを例示する
と、平均粒子径が1.0μm程度以下、好ましくは0.
05〜0.4μmの不溶性担体粒子である。
The shape of the insoluble single particles is not limited. When generally used ones are exemplified, the average particle diameter is about 1.0 μm or less, preferably 0.1 μm or less.
Insoluble carrier particles having a particle size of 0.5 to 0.4 μm.

【0018】本発明において、不溶性担体粒子に固定化
する抗体または抗原は特に限定的でなく、公知のものが
使用できる。一般的に好適に使用される代表的なものを
例示すれば、変性ガンマグロブリン、抗核因子、ヒトア
ルブミン、抗ヒトアルブミン抗体、イムノグロブリンG
(IgG)、抗ヒトIgG抗体、イムノグロブリンA
(IgA)、抗ヒトIgA抗体イムノグロブリンM(I
gM)、抗ヒトIgM抗体、抗ヒトIgE抗体、ストレ
プトリジンO、ストレプトキナーゼ、ヒアルロニダー
ゼ、C−反応性蛋白質(CRP)、抗ヒトCRP抗体、
抗ヒトアルファ−フェトプロテイン(AFP)抗体、抗
ヒト癌胎児性抗原(CEA)抗体、抗ヒト絨毛性ゴナド
トロピン(hCG)抗体、抗エストロゲン抗体、抗イン
シュリン抗体、B型肝炎表面抗原(HBs)、抗HBs
抗体、梅毒トレポネマ(TP)抗原、風疹抗原、インフ
ルエンザ抗原、補体C1q、抗C1q抗体、抗C3抗
体、抗C4抗体、抗トランスフェリン抗体などがある。
In the present invention, the antibody or antigen immobilized on the insoluble carrier particles is not particularly limited, and any known antibody or antigen can be used. Representative examples generally used preferably include modified gamma globulin, antinuclear factor, human albumin, anti-human albumin antibody, immunoglobulin G
(IgG), anti-human IgG antibody, immunoglobulin A
(IgA), anti-human IgA antibody immunoglobulin M (I
gM), anti-human IgM antibody, anti-human IgE antibody, streptolysin O, streptokinase, hyaluronidase, C-reactive protein (CRP), anti-human CRP antibody,
Anti-human alpha-fetoprotein (AFP) antibody, anti-human carcinoembryonic antigen (CEA) antibody, anti-human chorionic gonadotropin (hCG) antibody, anti-estrogen antibody, anti-insulin antibody, hepatitis B surface antigen (HBs), anti-HBs
Antibodies, Treponema pallidum (TP) antigen, rubella antigen, influenza antigen, complement C1q, anti-C1q antibody, anti-C3 antibody, anti-C4 antibody, anti-transferrin antibody and the like.

【0019】本発明においては、不溶性担体粒子に測定
対象である被検液中の抗原または抗体と反応しうる抗体
または抗原を選択して固定化する。かかる固定化の方法
は、物理的吸着、化学的共有結合の形成のいずれでも良
いが、物理的吸着能の高い蛋白質例えば抗体や高分子量
蛋白の固定には物理的吸着が好適であり、物理的吸着能
の低いホルモン類、ハプテン類の固定には化学的共有結
合の形成が好適に用いられる。これらの固定化方法につ
いてはすでに多くの方法が提案されており、固定化する
抗体の特性に合わせて公知の方法から適当な固定化方法
を選択して実施すれば良い。例えば、分散媒中で抗体ま
たは抗原を必要に応じて緩衝液または架橋剤の存在下に
不溶性担体粒子と混合すれば良い。
In the present invention, an antibody or antigen capable of reacting with an antigen or antibody in a test solution to be measured is selected and immobilized on the insoluble carrier particles. Such an immobilization method may be either physical adsorption or formation of a chemical covalent bond, but physical adsorption is suitable for immobilizing a protein having a high physical adsorption capacity, such as an antibody or a high molecular weight protein. Formation of a chemical covalent bond is preferably used for immobilization of hormones and haptens having low adsorption ability. Many methods have been proposed for these immobilization methods, and an appropriate immobilization method may be selected from known methods according to the characteristics of the antibody to be immobilized. For example, the antibody or the antigen may be mixed with the insoluble carrier particles in a dispersion medium in the presence of a buffer or a crosslinking agent as required.

【0020】不溶性担体粒子に抗体を固定化する際の分
散媒および固定化担体粒子の分散媒は特に限定的ではな
く公知のものが使用されるが、固定化担体粒子の保存中
の安定性と、凝集反応時の反応の再現性の観点からみて
適宜選べば良く、また上記の架橋剤を使用する場合には
分散媒中の成分が架橋剤と反応しない分散媒を用いる必
要がある。好適に使用される分散媒としては、リン酸緩
衝液、グリシン−水酸化ナトリウム緩衝液、トリス−塩
酸緩衝液、塩化アンモニウム−アンモニア緩衝液、など
の緩衝液が挙げられる。
The dispersion medium for immobilizing the antibody on the insoluble carrier particles and the dispersion medium for the immobilized carrier particles are not particularly limited, and known ones may be used. It may be appropriately selected from the viewpoint of the reproducibility of the reaction at the time of the agglutination reaction. When the above-mentioned crosslinking agent is used, it is necessary to use a dispersion medium in which the components in the dispersion medium do not react with the crosslinking agent. Suitable dispersion media include buffers such as phosphate buffer, glycine-sodium hydroxide buffer, Tris-HCl buffer, ammonium chloride-ammonia buffer.

【0021】本発明において、試薬は、抗体または抗原
を固定化した不溶性担体粒子を被検液との反応に実質的
に関与しない液体に懸濁させることにより得ることがで
きる。 上記被検液との反応に実質的に関与しない液体
は、かかる機能を有するものであれば特に制限されな
い。一般には上記分散媒の中から選択されるが、その他
に、水、生理食塩水等も有効に使用することができる。
In the present invention, the reagent can be obtained by suspending insoluble carrier particles having immobilized antibodies or antigens in a liquid that does not substantially participate in the reaction with the test solution. The liquid that does not substantially participate in the reaction with the test liquid is not particularly limited as long as it has such a function. Generally, it is selected from the above-mentioned dispersion media, but water, physiological saline and the like can also be used effectively.

【0022】また、試薬における、不溶性担体粒子の濃
度は特に限定されるものではないが、一般には反応時に
0.005重量%以上、好ましくは0.01〜0.5重
量%の範囲より決定することが好ましい。
Although the concentration of the insoluble carrier particles in the reagent is not particularly limited, it is generally determined at the time of the reaction in a range of 0.005% by weight or more, preferably 0.01 to 0.5% by weight. Is preferred.

【0023】更に、試薬は、固定化担体粒子の懸濁液の
みから成る形態の一液型試薬のみならず、該固定化担体
粒子を含む懸濁液と他の試薬成分を含む液或いは該懸濁
液の希釈液よりなる2成分から成る二液型試薬、また、
他の試薬成分を含む三液型試薬として使用することがで
きる。
Further, the reagent is not only a one-pack type reagent consisting of only a suspension of the immobilized carrier particles, but also a liquid containing the suspension containing the immobilized carrier particles and another reagent component or the suspension. A two-part reagent consisting of two components consisting of a diluent of a suspension,
It can be used as a three-part reagent containing other reagent components.

【0024】本発明において、上記試薬と被検液は一定
の割合で混合され、反応液中の不溶性担体粒子の凝集状
態により被検液中の抗原または抗体の濃度が測定され
る。
In the present invention, the reagent and the test solution are mixed at a fixed ratio, and the concentration of the antigen or antibody in the test solution is measured based on the state of aggregation of the insoluble carrier particles in the reaction solution.

【0025】一般に、かかる濃度の測定方法は、反応の
進行に対する散乱光または透過光の強度の差が比較的大
きく、感度に優れ、且つ被検液中に通常共存する乳ビ、
ヘモグロビン、ビリルビン等の干渉が比較的少なく、さ
らに自動分析機に搭載した光学系の直線性が比較的良好
となる波長域、例えば400〜1000nm、好ましく
は500〜950nmの範囲の波長の光線を反応液に照
射し、反応開始後の2点以上の特定時間における上記反
応液の散乱光または透過光の強度の差を測定し、予め作
製した検量線より各被検液中の抗原または抗体の濃度を
求めることにより行われる。
In general, such a method for measuring the concentration has a relatively large difference in the intensity of scattered light or transmitted light with respect to the progress of the reaction, is excellent in sensitivity, and which is usually coexistent in a test solution.
It reacts with light having a wavelength range in which the interference of hemoglobin and bilirubin is relatively small and the linearity of the optical system mounted on the automatic analyzer is relatively good, for example, 400 to 1000 nm, preferably 500 to 950 nm. Irradiate the solution, measure the difference in the intensity of scattered light or transmitted light of the reaction solution at two or more specific times after the start of the reaction, and determine the concentration of antigen or antibody in each test solution from a calibration curve prepared in advance. It is performed by asking.

【0026】不溶性担体粒子の粒子径については、粒子
径が大きい場合、凝集にともなう粒子径の変化量は大き
いが凝集反応速度は遅くなる傾向があり、粒子径が小さ
いとブラウン運動性が活発で凝集反応速度は速いが、一
次粒子径が小さいために凝集反応にともなう粒子径の変
化量は小さくなる傾向がある。
Regarding the particle size of the insoluble carrier particles, when the particle size is large, the amount of change in the particle size due to aggregation is large, but the agglutination reaction rate tends to be slow. Although the agglutination reaction speed is high, the amount of change in the particle diameter due to the agglutination reaction tends to be small because the primary particle diameter is small.

【0027】そのため、これらの点を勘案して、測定感
度が高くなるよう、上記粒子径と測定波長とを適宜組み
合わせて実施すると好適である。
Therefore, in consideration of these points, it is preferable that the above-described particle diameter and the measurement wavelength are appropriately combined so as to increase the measurement sensitivity.

【0028】本発明において、重要な要件は、抗原また
は抗体の濃度が試薬の測定範囲を外れた被検液につい
て、その抗原または抗体の濃度の再測定を、初回測定時
の反応液中の固定化担体粒子濃度に対する該再測定時の
当該粒子濃度との比(以下、粒子濃度比と略す。)を、
試薬と被検液との反応に実質的に関与しない液体の該不
溶性担体粒子に対する割合を増減することにより変える
ことが重要である。
In the present invention, an important requirement is that the re-measurement of the antigen or antibody concentration of the test solution whose antigen or antibody concentration is out of the measurement range of the reagent is performed in the reaction solution at the time of the first measurement. Ratio between the carrier concentration and the particle concentration at the time of the re-measurement (hereinafter, abbreviated as particle concentration ratio).
It is important to change the ratio by increasing or decreasing the ratio of the liquid that does not substantially participate in the reaction between the reagent and the test liquid to the insoluble carrier particles.

【0029】上記粒子濃度比の変更方法は、反応液中に
おける被検液の割合を実質的に変更しないものであれば
特に制限されるものではない。
The method of changing the particle concentration ratio is not particularly limited as long as the ratio of the test solution in the reaction solution is not substantially changed.

【0030】例えば、粒子濃度比を下げる方法として
は、試薬と被検液との反応に実質的に関与しない液体に
よって不溶性担体粒子を含む試薬を希釈する方法、ま
た、二液性試薬の場合は、上記希釈する方法の他、該不
溶性担体を含む試薬成分を減少させ、かかる減少分に見
合う量の該液体を他の試薬成分の希釈或いは反応に実質
的に関与しない液体を別途反応系に供給する方法が挙げ
られる。
For example, as a method of lowering the particle concentration ratio, a method of diluting a reagent containing insoluble carrier particles with a liquid that does not substantially participate in the reaction between the reagent and the test solution, In addition to the above-described dilution method, the reagent component containing the insoluble carrier is reduced, and the liquid corresponding to the reduced amount is supplied to the reaction system separately with a liquid that does not substantially participate in the dilution or reaction of other reagent components. Method.

【0031】また、粒子濃度比を上げる方法としては、
試薬調製時に不溶性担体粒子と混合する分散媒の量を減
少させて試薬濃度を上げる方法が挙げられる。
As a method for increasing the particle concentration ratio,
There is a method of increasing the reagent concentration by reducing the amount of the dispersion medium mixed with the insoluble carrier particles during the preparation of the reagent.

【0032】また、上記粒子濃度比の変更は、一般的
に、希釈する場合は上記の粒子濃度比が2/3以下とな
るように、濃縮する場合は上記の粒子濃度比が1.5以
上となる様に設定すれば良好な効果が得られる。
In general, the particle concentration ratio is changed so that the particle concentration ratio is 2/3 or less when diluting, and the particle concentration ratio is 1.5 or more when concentrating. A good effect can be obtained by setting such that.

【0033】本発明の方法による被検液中の抗原または
抗体濃度の測定方法は、例えば以下の如く実施し得る。
The method of measuring the concentration of an antigen or antibody in a test solution according to the method of the present invention can be carried out, for example, as follows.

【0034】まず、初回測定条件を設定するために、使
用する自動分析機に試薬をセットする。一般的な自動分
析機には、試料分注、試薬分注、試料及び試薬からなる
反応液の撹拌、反応液の保温、反応液の透過光あるいは
散乱光強度の測定と濃度の演算、測定結果の出力などを
自動的に行う機能があり、反応を行う光学セル、多波長
測定できる分光光学計を搭載している。また、試薬の保
冷、光学セルの洗浄、被検液の希釈、などの諸機能を付
加した自動分析機もある。
First, a reagent is set in an automatic analyzer to be used in order to set initial measurement conditions. Common automatic analyzers include sample dispensing, reagent dispensing, stirring of a reaction solution consisting of a sample and a reagent, keeping the reaction solution warm, measuring transmitted light or scattered light intensity of the reaction solution, calculating the concentration, and measuring results. It has a function to automatically output the data, etc., and is equipped with an optical cell that performs a reaction and a spectrophotometer that can measure multiple wavelengths. In addition, there is an automatic analyzer to which various functions such as preservation of reagents, cleaning of an optical cell, and dilution of a test solution are added.

【0035】尚、2液型試薬を使用する場合、自動分析
機においては試薬の添加順に、第1の試薬成分である緩
衝液を反応液1(以下、R1と略す。)と呼び、第2の
試薬成分である、固定化担体粒子を含む懸濁液を反応液
2(以下、R2と略す。)と呼ぶ。
When a two-component reagent is used, in an automatic analyzer, a buffer solution as a first reagent component is referred to as a reaction solution 1 (hereinafter abbreviated as R1) in the order of addition of the reagents, and a second solution is referred to as R1. The suspension containing the immobilized carrier particles, which is a reagent component of, is referred to as a reaction liquid 2 (hereinafter, abbreviated as R2).

【0036】次いで、測定対象となる抗体または抗原を
含む被検液をセットする。
Next, a test solution containing an antibody or an antigen to be measured is set.

【0037】また、測定に先立ち、測定波長を決める
が、固定化担体粒子の粒子径により好適な測定波長域が
存在するため、この波長域の中で自動分析機の分光計の
直線性、感度と反応時の固定化担体粒子の濃度とを勘案
して決定すれば良い。
Prior to the measurement, the measurement wavelength is determined. Since a suitable measurement wavelength range exists depending on the particle size of the immobilized carrier particles, the linearity and sensitivity of the spectrometer of the automatic analyzer are within this wavelength range. And the concentration of the immobilized carrier particles at the time of the reaction.

【0038】初回測定条件を設定するにあたり、被検
液、R1、R2の暫定的な使用量を設定して測定し、上
記複数の被検液に対する反応開始後の2以上の時点にお
ける反応液の散乱光または透過光の強度(以下、光学密
度と呼ぶ。)を測定し、反応開始後の経過時間に対して
上記光学密度をプロットしていわゆるタイムコースを得
る。各被検液のタイムコースが単調増加する2時点間
で、かつその2時点間の光学密度の差が各被検液ごとの
差異が大きい特定の2時点を選ぶ。次いで、2時点間の
光学密度の差を被検液濃度に対してプロットして検量線
を得る。検量線は直線、曲線に関わらず任意の関数から
選んだ検量線式で近似して近似式の係数を決定する。自
動分析機によっては検量線の作成も自動的に実施するも
のがある。
In setting the initial measurement conditions, provisional amounts of the test solution, R1 and R2 are set and measured, and the reaction solution at two or more times after the start of the reaction with the plurality of test solutions is measured. The intensity of scattered light or transmitted light (hereinafter referred to as optical density) is measured, and the optical density is plotted against the elapsed time after the start of the reaction to obtain a so-called time course. Two specific time points are selected between the two time points when the time course of each test liquid monotonically increases, and the difference in optical density between the two time points is large for each test liquid. Next, the difference in optical density between the two time points is plotted against the concentration of the test solution to obtain a calibration curve. The calibration curve is approximated by a calibration curve equation selected from an arbitrary function regardless of a straight line or a curve to determine the coefficient of the approximate equation. Some automatic analyzers also automatically create a calibration curve.

【0039】次いで、この検量線を使用して種々の被検
液を測定し、暫定的な測定条件下において上記検量線を
用いて種々の被検液を測定する。例えば一定間隔で希釈
した被検液を測定して希釈直線性を評価し、同一被検液
を複数回繰り返し測定して再現性を評価し、特異性およ
び再現性が良好な測定範囲を見極める。この範囲が臨床
的に意義の大きい境界値や濃度分布の最頻値を含まない
場合や、通常存在する濃度分布幅の上限または下限に対
して偏る場合には、暫定的に決めた測定条件を見直して
再度測定条件の検討を繰り返す。
Next, various test liquids are measured using this calibration curve, and various test liquids are measured using the above calibration curve under provisional measurement conditions. For example, a test solution diluted at regular intervals is measured to evaluate dilution linearity, and the same test solution is repeatedly measured a plurality of times to evaluate reproducibility, thereby determining a measurement range in which specificity and reproducibility are good. If this range does not include clinically significant boundary values or mode values of the concentration distribution, or if the range is biased against the upper or lower limit of the normally existing concentration distribution width, provisionally determined measurement conditions should be used. Review and repeat the examination of measurement conditions.

【0040】尚、既に他の自動分析機で初回測定条件が
決定できている場合などは、その条件を当該自動分析機
の条件に換算して設定すれば良い。
When the initial measurement conditions have already been determined by another automatic analyzer, the conditions may be converted into the conditions of the automatic analyzer and set.

【0041】初回測定条件を決定すれば、一般的な濃度
の被検液は測定が可能である。かかる初回測定を複数の
被検液に対して実施し、その測定範囲を外れる被検液が
存在する場合、本発明においては、前記方法の一態様に
よれば、初回測定時のR2中の固定化担体粒子濃度とは
異なる再測定のためのR2の当該粒子濃度が設定され
る。
If the initial measurement conditions are determined, a test solution having a general concentration can be measured. When such initial measurement is performed on a plurality of test liquids and there is a test liquid that is out of the measurement range, according to one aspect of the method, in the present invention, the fixation in R2 at the time of the first measurement is performed. The particle concentration of R2 for re-measurement different from the concentration of the activated carrier particles is set.

【0042】即ち、被検液中の測定対象物の濃度が初回
測定条件の測定上限を超える場合には、例えば、当該粒
子濃度比を2として、再測定時の当該粒子濃度を初回の
2倍に設定する。逆に被検液中の測定対象物の濃度が初
回測定条件の測定下限を超える場合には例えば当該粒子
濃度比を1/2として、再測定時の当該粒子濃度を初回
の1/2に設定する。
That is, when the concentration of the measurement object in the test solution exceeds the upper limit of the measurement in the initial measurement conditions, for example, the particle concentration ratio is set to 2 and the particle concentration at the time of re-measurement is twice the initial concentration. Set to. Conversely, when the concentration of the measurement target in the test solution exceeds the lower limit of the first measurement condition, for example, the particle concentration ratio is set to 1/2, and the particle concentration at the time of remeasurement is set to 1/2 of the first measurement. I do.

【0043】上記方法において、試薬の不溶性担体粒子
濃度以外の測定条件は基本的に変えないが、測定波長な
どは再測定条件における光学密度を勘案して適宜設定す
れば良い。
In the above method, the measurement conditions other than the concentration of the insoluble carrier particles in the reagent are basically not changed, but the measurement wavelength and the like may be appropriately set in consideration of the optical density under the re-measurement conditions.

【0044】再測定用の試薬の不溶性担体粒子の濃度調
整は前記方法によって適宜実施すればよい。この場合、
自動分析機で試薬をセットする場所に余裕がある場合に
は調製し直した再測定用試薬も初回測定用の試薬と併せ
てセットすれば良いし、自動分析機で試薬をセットする
場所に余裕が無い場合には既にセットした初回測定用試
薬と再測定用試薬とを差し替えるだけの簡単な操作で本
発明が実施できる。
The concentration of the insoluble carrier particles in the reagent for re-measurement may be adjusted appropriately by the above-described method. in this case,
If there is room for the reagents to be set in the automatic analyzer, the re-prepared reagents for re-measurement can be set together with the reagents for the first measurement, and there is sufficient space for the reagents to be set in the automatic analyzer. If there is no, the present invention can be carried out by a simple operation of simply replacing the already set initial measurement reagent and re-measurement reagent.

【0045】また、前記方法において、検量線は、各々
の測定条件下で別途作成するのが一般的である。
In the above method, a calibration curve is generally prepared separately under each measurement condition.

【0046】初回測定条件の測定範囲を超える被検液
は、上記で設定した再測定条件下で測定するが、かかる
場合でも測定範囲を外れる場合は、再度当該粒子濃度を
設定しなおせば良い。
The test liquid exceeding the measurement range of the initial measurement conditions is measured under the re-measurement conditions set as described above. Even in such a case, if the measurement is out of the measurement range, the particle concentration may be set again.

【0047】初回測定で測定範囲内に入るのか、外れた
かの判定および再測定の実施も自動分析機の機種によっ
ては自動的に実施でき、最終測定結果を出力することが
可能である。また、この作業を手動で実施する場合も初
回測定値とその測定範囲とを比較して再測定の要否を判
断し、必要な場合には再測定開始の指示をするのみで最
終結果を得ることができる。
Depending on the type of the automatic analyzer, it is possible to automatically determine whether the measurement is within or outside the measurement range in the first measurement and perform the re-measurement, and output the final measurement result. Also, when this work is performed manually, the first measurement value is compared with its measurement range to determine whether re-measurement is necessary, and if necessary, only the instruction to start re-measurement is obtained to obtain the final result. be able to.

【0048】本発明の測定方法において、不溶性担体粒
子の濃度を増したために、反応液の散乱光ないし透過光
強度が分光系の可使範囲を超す場合には測定波長を初回
測定条件より長波長側に変えれば良い。逆に、不溶性担
体粒子の濃度を減じたため、反応液の散乱光ないし透過
光強度が低下して光学系の再現性に問題が生じる場合に
は測定波長を初回測定条件より短波長側に変えれば良
い。
In the measuring method of the present invention, when the intensity of the scattered light or transmitted light of the reaction solution exceeds the usable range of the spectroscopic system due to an increase in the concentration of the insoluble carrier particles, the measurement wavelength is set longer than the initial measurement condition. Just change to the side. Conversely, because the concentration of the insoluble carrier particles is reduced, if the intensity of the scattered light or transmitted light of the reaction solution decreases and the reproducibility of the optical system becomes problematic, the measurement wavelength can be changed to a shorter wavelength than the initial measurement conditions. good.

【0049】[0049]

【発明の効果】以上の説明より理解されるように、本発
明によれば、複数の被検液中の抗原または抗体の濃度
を、抗体または抗原を固定化させた不溶性担体粒子の分
散液よりなる試薬と複数の被検液とを一定の割合で反応
させ、該反応液中の不溶性担体粒子の凝集状態により各
被検液中の抗原または抗体の濃度を測定するに際し、該
試薬の測定範囲を外れた被検液について、上記の反応に
実質的に関与しない液体の該不溶性担体粒子に対する割
合を増減し、反応液中における不溶性担体粒子の濃度を
変えて抗原または抗体の濃度を測定することにより、抗
原または抗体の濃度が試薬の測定範囲を外れた被検液を
含む可能性のある多数の被検液の該抗原または抗体の濃
度を短時間に且つ精度良く測定することが可能である。
As will be understood from the above description, according to the present invention, the concentration of the antigen or antibody in a plurality of test liquids can be reduced by using the dispersion of the insoluble carrier particles on which the antibody or antigen is immobilized. And a plurality of test liquids are reacted at a fixed ratio, and when measuring the concentration of the antigen or antibody in each test liquid based on the aggregation state of the insoluble carrier particles in the reaction liquid, the measurement range of the reagents Measuring the antigen or antibody concentration by increasing or decreasing the ratio of the liquid that does not substantially participate in the above reaction to the insoluble carrier particles, and changing the concentration of the insoluble carrier particles in the reaction solution. Thereby, it is possible to measure the concentration of the antigen or antibody in a large number of test liquids which may include the test liquid in which the concentration of the antigen or antibody is out of the measurement range of the reagent in a short time and with high accuracy. .

【0050】従って、試薬の濃度を一定にして、被検液
を操作して測定範囲を外れた被検液を測定していた従来
の測定方法の有する以下の欠点を効果的に防止できる。
Therefore, it is possible to effectively prevent the following disadvantages of the conventional measuring method in which the concentration of the reagent is kept constant and the test liquid is operated to measure the test liquid outside the measurement range.

【0051】被検液の希釈ないし被検液量の低減が必要
な場合、被検液が無駄に消費される、被検液が少ないと
再測定不能、希釈液の選定が困難、希釈操作に起因する
誤差、少量試料の採取誤差などの問題がある。被検液の
濃縮ないし被検液量の増量が必要な場合、濃縮操作中の
変性、濃縮操作自体が煩雑で迅速性に劣る、反応液中の
被検液濃度に比例して干渉物質濃度も増加し本来期待さ
れる以外の非特異的な反応が発生して異常値を来す。
When it is necessary to dilute the test solution or to reduce the amount of the test solution, the test solution is wasted. If the test solution is small, remeasurement is impossible. It is difficult to select a diluent. There are problems such as errors caused by the measurement and errors in collecting a small amount of sample. When the concentration of the test solution or the amount of the test solution needs to be increased, denaturation during the concentration operation, the concentration operation itself is complicated and inferior in speed, the concentration of the interfering substance also increases in proportion to the concentration of the test solution in the reaction solution. Non-specific reactions other than those originally expected occur and increase abnormal values.

【0052】本発明の方法によれば、あらかじめ反応液
中の固定化担体粒子濃度を変えて試薬を調製し、検量線
を作成しておくのみの簡単な態様でかかる測定を行うこ
とが可能であり、特に、自動分析機を用いた大量迅速処
理に好適な測定が可能となる。
According to the method of the present invention, such a measurement can be carried out in a simple manner in which a reagent is prepared by changing the concentration of the immobilized carrier particles in the reaction solution in advance and a calibration curve is prepared. In particular, measurement suitable for mass rapid processing using an automatic analyzer becomes possible.

【0053】即ち、自動分析機を使用した測定方法にあ
っては、予め独立して検量線が作製された濃度の異なる
試薬を詰めた試薬瓶を差替えるのみの簡単な操作によ
り、最初の測定で試薬の測定範囲を外れた被検液の測定
精度及び正確性を損なうことなく抗原または抗体の濃度
を測定することができる。
In other words, in the measurement method using an automatic analyzer, the initial measurement can be carried out simply by replacing a reagent bottle filled with reagents of different concentrations, for which a calibration curve has been independently prepared in advance. Thus, the concentration of the antigen or antibody can be measured without impairing the measurement accuracy and accuracy of the test solution outside the measurement range of the reagent.

【0054】[0054]

【実施例】以下、実施例によりさらに本発明を詳細に説
明するが本発明はこれらの実施例に限定されるものでは
ない。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.

【0055】実施例1 (1)C−反応性蛋白質測定試薬の調製 平均粒子径0.123μmのポリスチレンラテックス粒
子をトリス−塩酸緩衝液(pH=7.5、以下トリス緩
衝液と略す。)で希釈し、ラテックス濃度が1重量%の
懸濁液を調製する。次いでC−反応性蛋白質(以下「C
RP」と略す)をヤギに免疫して得た抗CRP抗血清よ
り塩析処理により分画した抗CRPヤギIgG分画をト
リス緩衝液で希釈し、蛋白濃度2mg/mlの溶液を調
製する。上記ラテックス懸濁液1容に抗CRPヤギIg
G分画の1容を加え37℃で2時間反応させる。さらに
ウシ血清アルブミンを最終濃度で0.05重量%添加し
た後遠心分離し、上清を除去した後沈澱をトリス緩衝液
に再分散し、ラテックス濃度を0.25%に調製しラテ
ックス試液(R2)を得た。
Example 1 (1) Preparation of C-Reactive Protein Measurement Reagent Polystyrene latex particles having an average particle size of 0.123 μm were treated with a Tris-HCl buffer (pH = 7.5, hereinafter abbreviated as Tris buffer). Dilute to prepare a suspension with a latex concentration of 1% by weight. Next, C-reactive protein (hereinafter referred to as “C
RP) is diluted with Tris buffer from an anti-CRP goat IgG fraction obtained by immunizing a goat with anti-CRP antiserum by salting out to prepare a solution having a protein concentration of 2 mg / ml. Anti-CRP goat Ig is added to one volume of the above latex suspension.
One volume of the G fraction is added and reacted at 37 ° C. for 2 hours. Further, bovine serum albumin was added at a final concentration of 0.05% by weight, followed by centrifugation. After removing the supernatant, the precipitate was redispersed in Tris buffer to adjust the latex concentration to 0.25%. ) Got.

【0056】一方、トリス緩衝液に食塩0.05mol
/l、ウシ血清アルブミンを0.5重量%、塩化コリン
5重量%となる様に添加した緩衝液(R1)を調製し、
R1とR2とよりなるCRP測定試薬を得た。
On the other hand, 0.05 mol of sodium chloride was added to the Tris buffer.
/ L, a buffer solution (R1) containing bovine serum albumin at 0.5% by weight and choline chloride at 5% by weight was prepared.
A CRP measurement reagent consisting of R1 and R2 was obtained.

【0057】(2)初回測定条件の設定 CRPは個体並びに病態によっては50mg/dlを超
す異常高濃度を示す一方、健常人では0.1mg/dl
以下にも分布する蛋白質抗原である。自動分析機として
東芝(株)社製のTBA−80FR型自動分析機を用
い、上記で得たCRP測定試薬のR1を装置内で、37
℃に保温されたの光学セル中に300μl分注し、ここ
へ被検液としてヒト血清をそのまま試料として3μl添
加して攪拌し、約5分間37℃に保った。その後、CR
P測定試薬のR2を50μl添加して攪拌し、凝集反応
を開始させた。
(2) Setting of initial measurement conditions CRP shows an abnormally high concentration exceeding 50 mg / dl depending on the individual and disease state, while 0.1 mg / dl is shown in a healthy person.
It is a protein antigen that is also distributed below. A TBA-80FR type automatic analyzer manufactured by Toshiba Corp. was used as an automatic analyzer, and the R1 of the CRP measurement reagent obtained above was analyzed in the apparatus by 37%.
300 μl was dispensed into an optical cell kept at a temperature of 30 ° C., 3 μl of a human serum was directly added as a test solution to the optical cell as a test solution, and the mixture was stirred and kept at 37 ° C. for about 5 minutes. After that, CR
50 μl of P measurement reagent R2 was added and stirred to start an agglutination reaction.

【0058】以上の操作は自動的に実施され反応開始後
約30秒後と120秒後の間の約90秒間の波長572
nmに於ける吸光度の変化を測定した。
The above operation is automatically performed, and the wavelength 572 for about 90 seconds between about 30 seconds and 120 seconds after the start of the reaction.
The change in absorbance in nm was measured.

【0059】(3)検量線の作成とCRP濃度既知試料
の測定 CRP濃度3.40mg/dlの血清とトリス緩衝液を
各々被検液として上記の初回測定条件で各々5回ずつ測
定した。その結果、CRP濃度3.40mg/dlの血
清とトリス緩衝液の上記吸光度の変化量は平均で各々
0.194と0.001となった。この値より検量線は
y=(x−0.001)/0.0568となった。
(3) Preparation of Calibration Curve and Measurement of Samples with Known CRP Concentrations Serum having a CRP concentration of 3.40 mg / dl and Tris buffer were each used as test liquids, and the measurement was performed five times under the above initial measurement conditions. As a result, the amounts of change in the absorbances of the serum having a CRP concentration of 3.40 mg / dl and the Tris buffer were 0.194 and 0.001, respectively, on average. From this value, the calibration curve was y = (x−0.001) /0.0568.

【0060】次いでCRP濃度29.8mg/dlの血
清をトリス緩衝液で希釈し、CRP濃度が0.14、
0.41、1.24、3.73、5.60、7.46、
11.2、14.9、22.4、29.8mg/dlの
被検液を得て、同様に上記の初回測定条件でそれぞれ測
定した。
Next, the serum having a CRP concentration of 29.8 mg / dl was diluted with Tris buffer to give a CRP concentration of 0.14.
0.41, 1.24, 3.73, 5.60, 7.46,
Test liquids of 11.2, 14.9, 22.4, and 29.8 mg / dl were obtained and similarly measured under the first measurement conditions described above.

【0061】各5回の測定結果より平均値、標準偏差、
および標準偏差を平均値で除してパーセント表示した変
動係数を求めた。
The average value, standard deviation,
And the standard deviation was divided by the mean to determine the coefficient of variation expressed as a percentage.

【0062】また、平均値を上記検量線に代入して得た
平均値を各被検液の既知濃度で除して平均回収率を求め
た。得られた結果を表1にまとめた。
The average value obtained by substituting the average value into the above calibration curve was divided by the known concentration of each test solution to obtain an average recovery rate. Table 1 summarizes the obtained results.

【0063】表1より、正確性に優れる平均回収率0.
95〜1.05の濃度範囲は0.41〜16.8mg/
dlの間であり、0.14及び22.4、29.8mg
/dlは測定範囲外となった。
From Table 1, it can be seen that the average recovery rate, which is excellent in accuracy, is 0.1%.
The concentration range of 95 to 1.05 is 0.41 to 16.8 mg /
dl, 0.14 and 22.4, 29.8 mg
/ Dl was out of the measurement range.

【0064】また、精度に優れる変動係数5%以内の範
囲は、0.41mg/dl以上となり、0.14mg/
dlは測定範囲外となった。
The range of the coefficient of variation with excellent accuracy within 5% is 0.41 mg / dl or more, and 0.14 mg / dl or more.
dl was out of the measurement range.

【0065】(4)再測定条件 上記(1)で得たCRP試薬のラテックス試液(R2)
をトリス緩衝液で2.5倍に希釈してラテックス濃度が
0.10%のR2を調製した。反応時のラテックス濃度
を変えた以外は(3)と同様に操作して測定を実施し、
検量線Y=(X−0.002)/0.0253を得た。
(4) Re-measurement conditions Latex test solution (R2) of CRP reagent obtained in (1) above
Was diluted 2.5-fold with Tris buffer to prepare R2 having a latex concentration of 0.10%. The measurement was performed in the same manner as in (3) except that the latex concentration during the reaction was changed.
A calibration curve Y = (X-0.002) /0.0253 was obtained.

【0066】試薬を上記R2を使用したものに変えた結
果、CRP濃度が0.14mg/dlの試料に対する回
収率は0.98、再現性は4%を示し、測定下限は0.
14mg/dlまでとなった。
As a result of changing the reagent to the one using R2, the recovery rate was 0.98 and the reproducibility was 4% for the sample having the CRP concentration of 0.14 mg / dl.
Up to 14 mg / dl.

【0067】[0067]

【表1】 [Table 1]

【0068】実施例2、比較例1 固定化担体粒子を用いた光学的な測定方法においてはリ
ウマチ因子(以下、RFと略す。)が固定化した抗体と
反応性を有しており、誤って高値を示す場合がある事が
知られている。
Example 2 and Comparative Example 1 In an optical measurement method using immobilized carrier particles, rheumatoid factor (hereinafter abbreviated as RF) has reactivity with the immobilized antibody and is erroneously detected. It is known that high values may be shown.

【0069】RF濃度が1000国際単位/ml以上の
RF異常高値の血清を含む5種類の被検液につき、先
ず、本発明の方法とは測定原理が異なるが各種CRPの
測定方法のうち比較的干渉物質の影響を受けにくい単純
免疫拡散法を測定原理とする、ヘキスト社製『商品名:
LCパルチゲンCRP』でCRP濃度を測定したとこ
ろ、各々0.27、4.3、1.15、7.9、10.
8mg/dlを示した。
Regarding five test solutions containing serum with an abnormally high RF value of an RF concentration of 1000 international units / ml or more, first, although the measurement principle is different from the method of the present invention, among the various CRP measurement methods, it is relatively low. Hoechst's "trade name:" uses the simple immunodiffusion method, which is hardly affected by interfering substances, as the measurement principle.
LC PARTIGEN CRP ", the CRP concentration was measured to be 0.27, 4.3, 1.15, 7.9, 10.3 respectively.
8 mg / dl was shown.

【0070】上記被検液を実施例1で行った方法に準じ
て測定した結果を表2に示す。
Table 2 shows the results of the measurement of the test liquid according to the method performed in Example 1.

【0071】一方、上記において、測定範囲を外れた検
体液について、被検液量を2.5倍とした以外は上記の
初回測定時と同じ試薬を使用してと同様な操作で測定し
て比較例1として表2に併せて示した。
On the other hand, in the above, with respect to the sample liquid out of the measurement range, measurement was carried out by the same operation as that using the same reagent as in the above-mentioned first measurement except that the amount of the test liquid was increased by 2.5 times. Also shown in Table 2 as Comparative Example 1.

【0072】実施例1では、測定範囲を外れた被検液の
RF強陽性被検液についてもLCパルチゲンに対する回
収率が1.00に近く良好な正確性を示したが、比較例
1の測定値は誤差が大きく、被検液中の干渉物質の影響
を受けたものと考えられた。
In Example 1, the recovery rate of LC-partitigen was close to 1.00 for the strongly strongly positive test liquid of the test liquid out of the measurement range, indicating good accuracy. The value had a large error, and was considered to be affected by the interfering substance in the test solution.

【0073】[0073]

【表2】 [Table 2]

【0074】実施例3 被検液中のCRP濃度が初回測定条件の測定上限であ
る、CRP濃度14.9mg/dlを超えた検体液の再
測定条件として上記実施例1の(1)で得たCRP測定
試薬のラテックス試液(R2)中のラテックス濃度を2
倍に調製し、ラテックス濃度が0.50%のR2を得
た。
Example 3 As a condition for re-measurement of a sample solution in which the CRP concentration in the test solution exceeded the CRP concentration of 14.9 mg / dl, which is the upper limit of the measurement in the first measurement condition, obtained in (1) of Example 1 above. The latex concentration of the CRP measurement reagent in the latex reagent solution (R2) was 2
It was adjusted twice to obtain R2 having a latex concentration of 0.50%.

【0075】上記のR1を使用した試薬を使用して、反
応時のラテックス濃度及び測定波長を700nmに変え
た以外は実施例1の(3)と同様に操作して、検量線Y
=(X−0.004)/0.0306を得た。
Using the above-mentioned reagent using R1, the same procedure as in (3) of Example 1 was carried out except that the latex concentration and the measurement wavelength during the reaction were changed to 700 nm.
= (X-0.004) /0.0306.

【0076】その結果、CRP濃度が22.4及び2
9.8mg/dlの被検液に対する回収率は0.99及
び0.97、再現性は1.0及び0.9%を示し、測定
範囲の上限は29.8mg/dlまでとなった。
As a result, the CRP concentrations were 22.4 and 2
The recovery rate for the test liquid of 9.8 mg / dl was 0.99 and 0.97, the reproducibility was 1.0 and 0.9%, and the upper limit of the measurement range was up to 29.8 mg / dl.

【0077】上記方法の更に具体的な実施の態様とし
て、病院外来患者でCRPの測定依頼があった200被
検液を使用した実験を実施した。
As a more specific embodiment of the above method, an experiment was performed using 200 test liquids for which outpatients of a hospital were requested to measure CRP.

【0078】先ず、実施例1の初回測定条件で測定した
ところ、9被検液が測定上限14.9mg/dlを超し
た。実施例1では測定上限を超えた被検液の入ったサン
プルカップを集め、濃度を変えた試薬ビンを自動分析機
にセットし替えて再測定するのみの操作で簡単に再測定
することができた。
First, when the measurement was carried out under the initial measurement conditions of Example 1, 9 test solutions exceeded the upper limit of measurement of 14.9 mg / dl. In the first embodiment, a sample cup containing a test solution exceeding the upper limit of measurement is collected, and a reagent bottle with a changed concentration is set in an automatic analyzer, and the measurement can be easily performed again by simply performing the measurement again. Was.

【0079】一方、従来法の被検液を希釈する方法を実
施しようとしたところ、希釈装置にかけるために多量の
被検液量を必要とし、残試料が90μl及び110μl
程度と少ない被検液があり、この2被検液は元被検液の
残液が少なく、他の追加測定が不能となった。
On the other hand, when the conventional method for diluting a test liquid was attempted, a large amount of the test liquid was required to be applied to a diluting apparatus, and the remaining sample contained 90 μl and 110 μl.
There were test liquids as small as possible, and these two test liquids had little residual liquid of the original test liquid, so that other additional measurements could not be performed.

【0080】実施例4、比較例2 (1)梅毒TP抗体測定試薬の調製 梅毒抗原であるトレポネーマ・パリダム(以下、TPと
略す。)の1×109個/ml分散液と1%n−オクチ
ル−β−D−グルコシド水溶液中とを等量混合し、室温
下1時間インキュベートした後に、3000rpmで3
0分間遠心分離して抗原を含む上清を得た。この上清を
0.02Mリン酸緩衝液(pH=7.2)で20倍に希
釈して感作用抗原とした。
Example 4, Comparative Example 2 (1) Preparation of reagent for measuring syphilis TP antibody 1 × 10 9 / ml dispersion of syphilis antigen, Treponema pallidum (hereinafter abbreviated as TP), and 1% n- An equal amount of octyl-β-D-glucoside aqueous solution was mixed and incubated at room temperature for 1 hour.
After centrifugation for 0 minutes, a supernatant containing the antigen was obtained. This supernatant was diluted 20-fold with a 0.02 M phosphate buffer (pH = 7.2) to obtain a sensitizing antigen.

【0081】平均粒子径0.154μmのポリスチレン
ラテックス粒子を0.02Mリン酸緩衝液(pH=7.
2、以下リン酸緩衝液と略す。)で希釈し、ラテックス
濃度が1重量%の懸濁液を調製する。次いで上記ラテッ
クス懸濁液1容に感作用抗原液1容を加え37℃で2時
間反応させる。さらにウシ血清アルブミンを最終濃度で
0.05重量%添加した後遠心分離し、上清を除去した
後沈澱をリン酸緩衝液に再分散し、再度遠心分離して上
清を除去した後沈澱をリン酸緩衝液に再分散してラテッ
クス濃度を0.20%に調製し、試薬のラテックス試液
(R2)を得た。
A polystyrene latex particle having an average particle diameter of 0.154 μm was added to a 0.02 M phosphate buffer (pH = 7.
2, hereinafter abbreviated as phosphate buffer. ) To prepare a suspension having a latex concentration of 1% by weight. Next, 1 volume of the sensitizing antigen solution is added to 1 volume of the above latex suspension and reacted at 37 ° C. for 2 hours. Further, bovine serum albumin was added at a final concentration of 0.05% by weight, followed by centrifugation. After removing the supernatant, the precipitate was redispersed in a phosphate buffer, and centrifuged again to remove the supernatant. The dispersion was redispersed in a phosphate buffer to adjust the latex concentration to 0.20% to obtain a reagent latex reagent solution (R2).

【0082】これとは別にリン酸緩衝液に食塩0.05
mol/l、ウシ血清アルブミンを0.5重量%、塩化
コリン5重量%となる様に添加した試薬の緩衝液(R
1)を調製し、R1とR2とよりなる梅毒TP抗体測定
試薬を得た。
Separately, a phosphate buffer solution containing 0.05% salt was added.
mol / l, bovine serum albumin was added at 0.5% by weight and choline chloride at 5% by weight.
1) was prepared, and a syphilis TP antibody measurement reagent consisting of R1 and R2 was obtained.

【0083】(2)個別被検液の初回測定 自動分析機として、(株)アナリィティカルインスツル
メンツ社製の全自動免疫化学分析装置501Xを用い
(1)で得た梅毒TP抗体測定試薬のR1、R2をセッ
トした。
(2) Initial Measurement of Individual Test Solution As an automatic analyzer, a fully automatic immunochemical analyzer 501X manufactured by Analytical Instruments Co., Ltd. was used. , R2 were set.

【0084】初回測定条件は被検液が15μl、R1が
300μl、R2が50μlとした。検量線を作成する
為、WHO標準品で値づけして得た梅毒TP抗体標準液
(500ユニット/ml)を所定の位置にセットし、自
動的に2倍希釈系列を作成して波長660nmにおける
散乱光強度を測定した。被検液をR1で希釈後37℃で
約4分保温した後、R2を添加して攪拌し、攪拌後45
秒、195秒、420秒に測光したデータより2種の特
定時間(150秒間と375秒間)における光学密度の
増加を求めた。低濃度域を測定する第一検量線として攪
拌後45秒と420秒の間の光学密度の増加を用い、第
二検量線として攪拌後45秒と195秒の間の光学密度
の増加を用いて各々3次多項式で近似して2本の検量線
を得た。
The initial measurement conditions were as follows: the test solution was 15 μl, R1 was 300 μl, and R2 was 50 μl. In order to create a calibration curve, a syphilis TP antibody standard solution (500 units / ml) obtained by valuing with a WHO standard was set at a predetermined position, and a two-fold dilution series was automatically created, and a wavelength of 660 nm was obtained. The scattered light intensity was measured. The test solution was diluted with R1, kept at 37 ° C. for about 4 minutes, and then added with R2 and stirred.
The increase in the optical density at two specific times (150 seconds and 375 seconds) was determined from the data measured at seconds, 195 seconds, and 420 seconds. Using the increase in optical density between 45 and 420 seconds after stirring as the first calibration curve to measure the low concentration range, and using the increase in optical density between 45 and 195 seconds after stirring as the second calibration curve Each was approximated by a third-order polynomial to obtain two calibration curves.

【0085】第一検量線 Y=1.097×10-93−5.694
×10-62+4.283×10-2X−2.813 第二検量線 Y=2.683×10-93−4.313×10-62+0.
1595X−21.96 なお、測定下限は再現性試験の結果より10ユニット/
mlとした。ここで2本の検量線を組み合わせて使用す
るが、0から100ユニット/mlまでは第一検量線、
100を超えて500ユニット/mlまでは第二検量線
で検量する様にしきい値を設定した。
First calibration curve Y = 1.097 × 10 −9 X 3 −5.694
× 10- 6 X 2 + 4.283 × 10 -2 X-2.813 second calibration curve Y = 2.683 × 10 -9 X 3 -4.313 × 10- 6 X 2 +0.
1595X-21.96 The lower limit of measurement was 10 units / unit based on the results of the reproducibility test.
ml. Here, two calibration curves are used in combination, but from 0 to 100 units / ml, the first calibration curve is used.
The threshold value was set so that the calibration was performed using the second calibration curve from 100 to 500 units / ml.

【0086】臨床的に梅毒陰性と診断された患者被検液
につき、本発明の方法とは原理的に異なる検査方法であ
り、一般的にTPHA試薬として普及している富士レビ
オ製『商品名:セロディアTP』で測定して判定保留
(抗体価×40まで陽性、×80が±)と判定された5
被検液につき、(1)で得た梅毒TP抗体測定試薬で測
定した。以上の測定結果を表3に示す。
[0086] The test solution of a patient clinically diagnosed as syphilis negative is a test method which is different in principle from the method of the present invention, and is generally used as a TPHA reagent manufactured by Fujirebio "Trade name: 5 determined to be suspended (positive to antibody titer × 40, ± 80 for × 80)
The test solution was measured using the syphilis TP antibody measurement reagent obtained in (1). Table 3 shows the above measurement results.

【0087】次いで、初回の測定条件の内、試薬のR2
中の固定化担体粒子濃度を半減した以外は初回測定条件
と同様に検量線を作成し、再測定を行った。
Next, among the initial measurement conditions, the R2
A calibration curve was prepared in the same manner as the initial measurement conditions except that the concentration of the immobilized carrier particles in the medium was reduced by half, and the measurement was performed again.

【0088】一方、比較例として、上記被検液につき、
初回測定条件の内、被検液量を倍増した以外は初回測定
条件と同様に再測定した。
On the other hand, as a comparative example,
Remeasurement was carried out in the same manner as the initial measurement conditions except that the amount of the test solution was doubled among the initial measurement conditions.

【0089】結果を表3に示す。Table 3 shows the results.

【0090】尚、初回測定条件の反応液中の固定化担体
粒子濃度は0.027%で、上記比較例の固定化担体粒
子濃度は0.026%となるが、これらの濃度は実質的
に同一の濃度として取り扱うことができるものである。
The concentration of the immobilized carrier particles in the reaction solution under the initial measurement conditions was 0.027%, and the concentration of the immobilized carrier particles in the comparative example was 0.026%. It can be handled as the same concentration.

【0091】表3の結果より、セロディアTPで判定保
留となった陰性例については、被検液1、2、4におい
て初回測定と比較例の結果が大きく異なり、誤った結果
を示す測定条件であることが判った。
From the results shown in Table 3, the results of the first measurement and the comparative example in the test liquids 1, 2, and 4 were significantly different from those of the negative examples in which the determination was suspended by the cellodia TP. I found it to be.

【0092】この原因は不明であるが被検液中の干渉成
分が臨界的に作用して非特異的な反応を起こしたものと
考えられる。
Although the cause is unknown, it is considered that the interference component in the test solution has acted critically to cause a non-specific reaction.

【0093】一方、実施例においては初回測定と良く対
応する測定値が得られ、初回測定下限以下の被検液も測
定可能であると判断することができる。
On the other hand, in the example, a measured value well corresponding to the first measurement can be obtained, and it can be determined that the test liquid having the first measurement lower limit or less can be measured.

【0094】[0094]

【表3】 [Table 3]

【0095】実施例5 実施例4の(1)で得た梅毒試薬のラテックス試液(R
2)を水で4倍に希釈してラテックス濃度を0.05%
に調製し、実施例3と同様にして全自動免疫化学分析装
置501XにR1及び上記希釈R2をセットした。被検
液が15μl、R1が300μl、R2が50μlとし
て実施例4と同様に検量線を作成した。但し、実施例4
と比較して反応の立ち上がりが遅れる傾向が認められた
ため、タイムコースを詳細に観察して光学密度が単調増
加する特定時間間隔を決めた。即ち、実施例4とは異な
り、R2を添加して撹拌し、撹拌後105秒、255
秒、480秒に測光したデータより2種の特定時間(1
50秒間と375秒間)における光学密度の増加を求め
て2本の検量線を得た。
Example 5 A latex test solution (R) of the syphilis reagent obtained in Example 4 (1)
2) 4-fold dilution with water to make latex concentration 0.05%
In the same manner as in Example 3, R1 and the dilution R2 were set in a fully automatic immunochemical analyzer 501X. A calibration curve was prepared in the same manner as in Example 4 except that the test solution was 15 µl, R1 was 300 µl, and R2 was 50 µl. However, Example 4
Since the tendency for the rise of the reaction to be delayed was recognized as compared with, the time course was observed in detail, and a specific time interval at which the optical density monotonously increased was determined. That is, unlike Example 4, R2 was added and stirred, and 105 seconds after stirring, 255
Seconds, two types of specific times (1
Two calibration curves were obtained to determine the increase in optical density between (50 seconds and 375 seconds).

【0096】第一検量線 Y=2.463×10-93−7.695
×10-62+0.1565X−0.048 第二検量線 Y=8.094×10-93−3.311×10-62+0.
2591X−45.14 なお測定範囲は3から150ユニット/mlであった。
First calibration curve Y = 2.463 × 10 −9 X 3 −7.695
× 10 −6 X 2 + 0.1565X−0.048 Second calibration curve Y = 8.094 × 10 −9 X 3 −3.311 × 10 −6 X 2 +0.
2591X-45.14 The measurement range was 3 to 150 units / ml.

【0097】入院患者および、妊婦、胃検診などの外来
患者を対象として採血した血清100例につき上記測定
条件を初回測定条件として測定したところ、3ユニット
/ml未満が96例であり、残り4例は4、7、58ユ
ニット、及び150ユニット/ml超であった。
The above measurement conditions were measured as the initial measurement conditions for 100 cases of sera collected from inpatients and outpatients such as pregnant women and stomach examinations. As a result, 96 cases were less than 3 units / ml and 4 cases were remaining. Was greater than 4, 7, 58 and 150 units / ml.

【0098】この中から実施例4の初回測定条件下で別
途実施した臨床的に陽性と判定された陽性被検液の10
0例に対する最低値12ユニット/mlより高値を示し
陽性と考えられる2例につき、実施例4の初回測定条件
(ラテックス濃度が0.20%)を再測定条件として測
定した。
From among these, 10 of the positive test liquids which were separately determined to be clinically positive under the initial measurement conditions of Example 4
Two cases which were higher than the lowest value of 12 units / ml and considered positive for 0 cases were measured using the initial measurement conditions of Example 4 (latex concentration 0.20%) as the re-measurement conditions.

【0099】この結果、各々60ユニット/ml、47
3ユニット/mlとなった。この2被検液はセロディア
TPでも陽性であり、その後の調査で過去に梅毒に罹患
したが既に治癒したものの、抗TP抗体を保持している
状態であることが判った。
As a result, 60 units / ml, 47
It became 3 units / ml. These two test liquids were also positive for cellodia TP, and subsequent investigations revealed that they had been infected with syphilis in the past but had already been cured, but they had retained the anti-TP antibody.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 抗体または抗原を固定させた不溶性担体
粒子の分散液よりなる試薬と、多数の被検液とを反応さ
せ、反応液中における不溶性担体粒子の凝集状態により
該被検液の抗原または抗体の濃度を測定する方法におい
て、予め不溶性担体粒子の特定濃度を低減させた試薬に
より被検液の全てを測定して、その測定値が所定の基準
値未満である大部分の被検液を確認した後、次に所定の
基準値以上である残余の被検液について特定濃度の試薬
により再測定することを特徴とする抗原または抗体濃度
の測定方法。
1. A reagent comprising a dispersion of insoluble carrier particles having an antibody or antigen immobilized thereon is reacted with a large number of test solutions, and the antigen in the test solution is determined by the state of aggregation of the insoluble carrier particles in the reaction solution. Alternatively , in a method for measuring the concentration of an antibody, a reagent in which the specific concentration of insoluble carrier particles has been reduced in advance.
Measure all of the test solution and measure the value
After confirming that most of the test solution is below the value,
Reagents with specific concentrations for remaining test liquids that are above the reference value
A method for measuring the concentration of an antigen or an antibody, wherein the measurement is carried out again .
【請求項2】 特定濃度を2/3以下に低減した試薬を
用いる請求項1の測定方法。
2. A reagent having a specific concentration reduced to 2/3 or less.
The method according to claim 1, which is used .
JP5230367A 1993-09-16 1993-09-16 How to measure antigen or antibody concentration Expired - Fee Related JP3005400B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5230367A JP3005400B2 (en) 1993-09-16 1993-09-16 How to measure antigen or antibody concentration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5230367A JP3005400B2 (en) 1993-09-16 1993-09-16 How to measure antigen or antibody concentration

Publications (2)

Publication Number Publication Date
JPH0783929A JPH0783929A (en) 1995-03-31
JP3005400B2 true JP3005400B2 (en) 2000-01-31

Family

ID=16906751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5230367A Expired - Fee Related JP3005400B2 (en) 1993-09-16 1993-09-16 How to measure antigen or antibody concentration

Country Status (1)

Country Link
JP (1) JP3005400B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2007297310B2 (en) * 2006-09-13 2013-11-07 Oncimmune Limited Improved immunoassay methods
JP6008645B2 (en) * 2012-08-02 2016-10-19 株式会社Lsiメディエンス Reference materials for BNP measurement and their use
EP3295174B1 (en) * 2015-05-11 2020-11-04 Access Medical Systems, Ltd. Method for re-using test probe and reagents in an immunoassay
JP7101124B2 (en) * 2016-12-15 2022-07-14 株式会社堀場製作所 A sample analyzer having a method for determining the appropriateness of the test substance concentration in concentration measurement using an immunoagglutination reaction and a processing unit for that purpose.
CN112904011A (en) * 2019-12-04 2021-06-04 苏州普瑞斯生物科技有限公司 Detection kit for serum C1q complement and preparation method thereof

Also Published As

Publication number Publication date
JPH0783929A (en) 1995-03-31

Similar Documents

Publication Publication Date Title
JPH0692969B2 (en) Immunological measurement method
JPH03502246A (en) Coagulation methods for the analysis of substances
US20100216257A1 (en) Method of Assaying Antigen and Reagent Therefor
EP0724156A1 (en) Kit for immunologically assaying biological substance and assay process
JPH0765998B2 (en) Assay method and assay reagent for specifically binding substances
EP0263731A1 (en) Method for measuring antigen-antibody reactions
JP3005400B2 (en) How to measure antigen or antibody concentration
JP2000221196A (en) Immunological assay
Cuilliere et al. Microparticle-enhanced nephelometric immunoassay (Nephelia) for immunoglobulins G, A, and M
JP7483109B2 (en) Ferritin measurement reagent
JP3513075B2 (en) Immunoassay and reagent therefor
JP4507439B2 (en) Latex immunoturbidimetric assay and kit used therefor
JPH0448265A (en) Immunoassay
JPH079427B2 (en) Method for measuring antigen or antibody concentration
JPH08101198A (en) Immunological measuring method and device
JPS6293664A (en) Method for measuring antigen or antibody concentration
JPH0614049B2 (en) Method for measuring antigen or antibody concentration
JPH1026622A (en) Determination method for human alpha-fetoproteins and measuring kit
JP3423085B2 (en) Immunoassay
JP3319073B2 (en) Immunological measurement method
JPH09304386A (en) Manufacture of immunity diagnostic drug and immunity diagnostic drug obtained
JP2001091516A (en) METHOD FOR DETERMINING QUANTITY OF HUMAN alpha-FETOPROTEIN AND MEASUREMENT KIT
JP2000258419A (en) Immuno-measuring reagent and immuno-measuring method
JPH0560757A (en) Quantificaiton of antigen and immune reagent therefor
JPH0814581B2 (en) Antigen or antibody quantification method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees