JPH0511742B2 - - Google Patents

Info

Publication number
JPH0511742B2
JPH0511742B2 JP62248266A JP24826687A JPH0511742B2 JP H0511742 B2 JPH0511742 B2 JP H0511742B2 JP 62248266 A JP62248266 A JP 62248266A JP 24826687 A JP24826687 A JP 24826687A JP H0511742 B2 JPH0511742 B2 JP H0511742B2
Authority
JP
Japan
Prior art keywords
temperature
mold
molding
time
hot runner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62248266A
Other languages
Japanese (ja)
Other versions
JPS6487319A (en
Inventor
Nobuyuki Nakamura
Michiaki Takizawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissei Plastic Industrial Co Ltd
Original Assignee
Nissei Plastic Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissei Plastic Industrial Co Ltd filed Critical Nissei Plastic Industrial Co Ltd
Priority to JP24826687A priority Critical patent/JPS6487319A/en
Publication of JPS6487319A publication Critical patent/JPS6487319A/en
Publication of JPH0511742B2 publication Critical patent/JPH0511742B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/27Sprue channels ; Runner channels or runner nozzles
    • B29C45/30Flow control means disposed within the sprue channel, e.g. "torpedo" construction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/27Sprue channels ; Runner channels or runner nozzles
    • B29C45/2737Heating or cooling means therefor
    • B29C2045/2754Plurality of independent heating or cooling means, e.g. independently controlling the heating of several zones of the nozzle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/27Sprue channels ; Runner channels or runner nozzles
    • B29C45/2737Heating or cooling means therefor

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は金型にホツトランナチツプを備えた射
出成形機の温度制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a temperature control method for an injection molding machine equipped with a hot runner chip in a mold.

〔背景技術及びその問題点〕[Background technology and its problems]

一般に、射出成形機では成形開始に先立つて、
金型、射出装置側の加熱筒や射出ノズルの昇温が
行われる。昇温後の温度は成形材料等によつても
異なるが、通常、金型で80℃前後、加熱筒や射出
ノズルで200℃前後となる。
Generally, in an injection molding machine, before starting molding,
The temperature of the mold, the heating cylinder on the injection device side, and the injection nozzle is raised. The temperature after heating varies depending on the molding material, etc., but it is usually around 80°C for the mold and around 200°C for the heating tube or injection nozzle.

一方、昇温が終了して安定した温度に達すると
成形を開始するが、成形初期には射出装置側から
高温の溶融樹脂が金型へ充填されるため、金型は
溶融樹脂から熱を貰い、再び温度が上昇する。そ
して、このように温度上昇する過渡領域を経て、
昇温直後の温度よりも高い温度で平衡して安定状
態となる。
On the other hand, when the temperature has finished rising and reached a stable temperature, molding begins, but at the beginning of molding, the mold is filled with high-temperature molten resin from the injection device, so the mold receives heat from the molten resin. , the temperature rises again. Then, after passing through the transient region where the temperature rises,
A stable state is reached in equilibrium at a temperature higher than the temperature immediately after the temperature rise.

ところで、このような過渡領域では金型内での
樹脂の流動性や粘度が不十分となり、ジエツテイ
ング、シヨートシヨツト、ヒケ等の不良品を発生
しやすい。このため、かかる過渡領域では作業者
が手動によつて成形(空打ち)を行い、このとき
の成形品は全て廃棄しているのが実情である。
By the way, in such a transient region, the fluidity and viscosity of the resin within the mold become insufficient, and defective products such as jetting, shotting, and sink marks are likely to occur. For this reason, the reality is that workers manually perform molding (dry stamping) in such a transitional region, and all molded products at this time are discarded.

しかし、空打ちは、通常数十回にものぼるた
め、無駄な労力と成形材料や電力の消費を強いら
れ、生産性の低下を招くとともに、さらに、自動
成形を行う開始点は作業者の経験と勘に頼らざる
を得ないため、特に成形初期において、安定した
成形品質を得にくい問題があつた。
However, since blank punching is usually repeated dozens of times, it wastes labor, consumes molding materials and electricity, and reduces productivity. Furthermore, the starting point for automatic molding is the operator's experience. Because the process had to rely on intuition, it was difficult to obtain stable molding quality, especially in the early stages of molding.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上述した背景技術に存在する諸問題を
解決した射出成形機の温度制御方法の提供を目的
とするもので、以下に示す温度制御方法によつて
達成される。
The present invention aims to provide a temperature control method for an injection molding machine that solves the problems existing in the background art described above, and is achieved by the temperature control method described below.

即ち、本発明に係る温度制御方法は、成形サイ
クルに対応して、金型2のゲート部3に備えるホ
ツトランナチツプ5の通電をオン−オフし、これ
により、ホツトランナチツプ5の加熱温度を制御
するに際し、金型温度の変動する過渡領域で金型
温度Tmを検出し、検出した金型温度Tmをパラ
メータとして、少なくとも金型温度Tmが基準温
度Ttよりも低いときはホツトランナチツプ5に
おける通電のオン時間(加熱時間tp)を長くする
ように、成形サイクル単位で制御するようにした
ことを特徴とする。
That is, the temperature control method according to the present invention turns on and off the power supply to the hot runner chip 5 provided in the gate portion 3 of the mold 2 in accordance with the molding cycle, thereby controlling the heating temperature of the hot runner chip 5. When controlling, the mold temperature Tm is detected in a transient region where the mold temperature fluctuates, and the detected mold temperature Tm is used as a parameter.When the mold temperature Tm is lower than the reference temperature Tt, at least The present invention is characterized in that the energization on time (heating time tp) is controlled in units of molding cycles so as to lengthen it.

この場合、過渡領域として、成形初期における
溶融樹脂の射出により金型2が昇温する昇温領域
に適用することが望ましい。また、オン時間の制
御は通電開始のタイミングを可変して行うことが
できる。
In this case, it is desirable to apply the transition region to a temperature rising region where the temperature of the mold 2 rises due to injection of molten resin in the initial stage of molding. Further, the on-time can be controlled by varying the timing of starting energization.

〔作用〕[Effect]

次に、本発明の作用について説明する。 Next, the operation of the present invention will be explained.

まず、ホツトランナチツプ5の通電は成形サイ
クルに対応してオン−オフ制御される。この際の
オン時間は加熱時間tpとなり、ホツトランナチツ
プ5は断続的に加熱される。
First, the energization of the hot runner chip 5 is controlled on and off in accordance with the molding cycle. The on time at this time becomes the heating time tp, and the hot runner chip 5 is intermittently heated.

一方、金型温度の変動する過渡領域、例えば、
成形初期における溶融樹脂の射出により金型2が
昇温する昇温領域での金型温度Tmは、成形時の
安定した温度(基準温度Tt)よりも低いため、
金型温度Tmに基づいてホツトランナチツプ5に
おける通電のオン時間、即ち、ホツトランナチツ
プ5の加熱時間tpを強制的に長くし、金型温度
Tmが本来の基準温度に満たない場合であつて
も、溶融樹脂の流動性或いは粘性を常に一定とな
るように制御する。よつて、金型温度の変動する
過渡領域であつても良品を得ることができる。
On the other hand, in the transient region where the mold temperature fluctuates, e.g.
Since the mold temperature Tm in the temperature rising region where the mold 2 rises in temperature due to injection of molten resin in the early stage of molding is lower than the stable temperature during molding (reference temperature Tt),
Based on the mold temperature Tm, the energization time in the hot tranquilizer chip 5, that is, the heating time tp of the hot tranquilizer chip 5, is forcibly lengthened, and the mold temperature is increased.
Even if Tm is lower than the original reference temperature, the fluidity or viscosity of the molten resin is controlled to always be constant. Therefore, good products can be obtained even in a transient region where the mold temperature fluctuates.

〔実施例〕〔Example〕

以下には、本発明に係る好適な実施例を図面に
基づき詳細に説明する。
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.

まず、第1図(温度制御装置のブロツク系統
図)を参照して本発明方法を実施できる温度制御
装置Eの構成について説明する。
First, with reference to FIG. 1 (block system diagram of temperature control device), the configuration of temperature control device E that can carry out the method of the present invention will be described.

同図中、2は射出成形機における金型を示し、
固定型2aと可動型2bを備える。また、11は
固定型2aと可動型2b間に形成されるキヤビテ
イであり、このキヤビテイ11はゲート部3、ラ
ンナ部12、スプル部13を介して射出装置側の
射出ノズル14に連通する。一方、ランナ部12
内にはヒータ15hを内蔵する発熱体15が内挿
され、この発熱体15の周囲に当該ランナ部12
が形成される。また、発熱体15の先端には尖頭
形に構成したホツトランナチツプ5を一体的に備
える。ホツトランナチツプ5はゲート部3内に臨
み、同チツプ5の周囲に比較的狭いゲート部3が
形成される。ホツトランナチツプ5の内部には前
記ヒータ15hとは別系で制御されるヒータ5h
を内蔵する。
In the figure, 2 indicates a mold in an injection molding machine,
It includes a fixed mold 2a and a movable mold 2b. Further, 11 is a cavity formed between the fixed mold 2a and the movable mold 2b, and this cavity 11 communicates with an injection nozzle 14 on the injection device side via a gate part 3, a runner part 12, and a sprue part 13. On the other hand, the runner section 12
A heating element 15 having a built-in heater 15h is inserted therein, and the runner section 12 is placed around this heating element 15.
is formed. Further, a hot runner tip 5 having a pointed shape is integrally provided at the tip of the heating element 15. The hot runner chip 5 faces into the gate portion 3, and a relatively narrow gate portion 3 is formed around the chip 5. Inside the hot runner chip 5 is a heater 5h which is controlled separately from the heater 15h.
Built-in.

一方、ヒータ5hは電力供給を行うパワーコン
トローラ16に接続し、このパワーコントローラ
16は通電スイツチ17を介してパワー設定器1
8に接続する。また、通電スイツチ17は中央コ
ントローラ19によつて制御される。中央コント
ローラ19は基準時間、安定時基準温度、上限補
正時間、下限補正時間、成形サイクルタイミング
等のシーケンス制御に必要な各種設定系、補正系
を備えるとともに、本発明に従つて変換ゲイン設
定系を備える。
On the other hand, the heater 5h is connected to a power controller 16 that supplies power, and this power controller 16 is connected to the power setting device 1 via an energization switch 17.
Connect to 8. Further, the energization switch 17 is controlled by a central controller 19. The central controller 19 is equipped with various setting systems and correction systems necessary for sequence control such as reference time, stable reference temperature, upper limit correction time, lower limit correction time, and molding cycle timing, and also has a conversion gain setting system according to the present invention. Be prepared.

また、キヤビテイ11付近には金型温度Tmを
検出する温度センサ20を設置し、温度センサ2
0は信号処理を行う処理回路21を介して前記中
央コントローラ19に接続する。
In addition, a temperature sensor 20 is installed near the cavity 11 to detect the mold temperature Tm.
0 is connected to the central controller 19 via a processing circuit 21 that performs signal processing.

次に、かかる温度制御装置Eの機能について説
明する。
Next, the functions of the temperature control device E will be explained.

なお、第2図は金型の温度変化特性を示す。同
図中、特性曲線C1は金型温調部の温度変化を示
す。金型温調部の温度は温調開始とともに上昇
し、次第に一定となる。一方、金型温度Tmの温
度変化は特性曲線C2で示すように上記金型温調
部の温度よりも若干低い温度で推移し、次第に安
定する。今、ヒータ部のみの加熱により安定する
P1点で成形を開始すると、前述のように高温の
溶融樹脂が射出ノズル14から金型2に充填され
るため、この溶融樹脂からの熱伝導によつて金型
温度Tmが再び上昇する。温度は成形サイクルの
回数とともに上昇し、平衡するP2点で安定す
る。第3図aは第2図中P1点以降の拡大曲線を
示す。
Note that FIG. 2 shows the temperature change characteristics of the mold. In the figure, a characteristic curve C1 shows a temperature change in the mold temperature control section. The temperature of the mold temperature control section rises with the start of temperature control, and gradually becomes constant. On the other hand, as shown by characteristic curve C2, the mold temperature Tm changes at a temperature slightly lower than the temperature of the mold temperature control section, and gradually becomes stable. Now, when molding is started at point P1, which is stabilized by heating only the heater part, the mold 2 is filled with high-temperature molten resin from the injection nozzle 14 as described above. Mold temperature Tm rises again. The temperature increases with the number of molding cycles and stabilizes at the equilibrium point P2. FIG. 3a shows an enlarged curve after point P1 in FIG.

このような温度特性下において、まず安定した
正規の成形時(第2図P2点以降)においては中
央コントローラ19のシーケンス制御機能によ
り、通電スイツチ17をオン−オフし、成形サイ
クルに対応してホツトランナチツプ5の通電時間
を第5図bのように断続的に制御する。なお、対
応する温度変化を同図aに示す。
Under such temperature characteristics, during stable regular molding (from point P2 onwards in Figure 2), the sequence control function of the central controller 19 turns the energization switch 17 on and off, and turns on and off the hot water in accordance with the molding cycle. The energization time of the runner chip 5 is controlled intermittently as shown in FIG. 5b. Note that the corresponding temperature change is shown in Figure a.

一方、昇温直後から安定温度に達する過渡領域
(第2図P1点〜P2点)においては本発明方法
に従つて、次のように制御される。
On the other hand, in the transient region (points P1 to P2 in FIG. 2) in which the temperature reaches a stable temperature immediately after the temperature rises, the control is performed as follows according to the method of the present invention.

まず、中央コントローラ19は温度センサ20
からのデータをパラメータとして、ホツトランナ
チツプ5の加熱時間(通電時間)tpを算出する。
加熱時間tpは例えば次式に基づく演算処理によつ
て算出できる。
First, the central controller 19 uses the temperature sensor 20
The heating time (current application time) tp of the hot runner chip 5 is calculated using the data from as a parameter.
The heating time tp can be calculated, for example, by arithmetic processing based on the following equation.

加熱時間tp=to+(Tt−Tm)・G ただし to:基準時間 Tt:安定時基準温度 Tm:金型温度 G:変換ゲイン 第4図はこのように設定された金型温度Tmに
対する加熱時間tpの特性を示す。そして、これよ
り得た加熱時間tpに基づいて通電開始時間のタイ
ミングを成形サイクル単位で順次可変設定する。
第3図cは実際に設定される加熱時間tpのタイム
チヤートを示している。
Heating time tp=to+(Tt-Tm)・G where to: Reference time Tt: Stable reference temperature Tm: Mold temperature G: Conversion gain Figure 4 shows the heating time tp for the mold temperature Tm set in this way. shows the characteristics of Then, based on the heating time tp obtained from this, the timing of the energization start time is sequentially and variably set for each molding cycle.
FIG. 3c shows a time chart of the actually set heating time tp.

よつて、金型温度Tmが比較的低いとき、つま
り、昇温直後には加熱時間tpが長く、また、金型
温度Tmの上昇に伴つて次第に加熱時間tpが短く
なり、金型温度TmがP2点において安定すると
基準時間である本来の加熱時間tpを維持する。な
お、同図dは従来の加熱時間特性を示すタイムチ
ヤートである。また、同図bの実線は本方法によ
る温度の補正曲線であり、点線は上限及び下限を
それぞれ示す。
Therefore, when the mold temperature Tm is relatively low, that is, immediately after the temperature rises, the heating time tp is long, and as the mold temperature Tm increases, the heating time tp gradually becomes shorter, and the mold temperature Tm increases. Once stabilized at point P2, the original heating time tp, which is the reference time, is maintained. Note that d in the same figure is a time chart showing conventional heating time characteristics. Further, the solid line in FIG. 1B is a temperature correction curve according to the present method, and the dotted lines indicate the upper and lower limits, respectively.

このような制御方法によつて、前記過渡領域
(P1点〜P2点)においても溶融樹脂の流動性
或は粘性をほぼ一定に維持することができ、成形
開始から良品を得ることができた。
By using such a control method, it was possible to maintain the fluidity or viscosity of the molten resin almost constant even in the transient region (point P1 to point P2), and it was possible to obtain a good product from the start of molding.

以上、実施例について詳細に説明したが、本発
明はこのような実施例に限定されるものではな
い。例えば、制御は成形開始時の昇温の際を例示
したが、成形中において、外乱等によつて一時的
に金型温度が変化した場合や一時的に成形を中断
したような場合にも同様に適用することができ
る。また、金型温度と加熱時間は逆相関の場合
(第4図)を示したが、正相関、さらには任意の
関数制御が可能である。その他、細部の構成、手
法、条件等において、本発明の要旨を逸脱しない
範囲で任意に変更実施できる。
Although the embodiments have been described in detail above, the present invention is not limited to these embodiments. For example, although the example of control is performed when the temperature rises at the start of molding, the same applies when the mold temperature changes temporarily due to disturbance etc. during molding, or when molding is temporarily interrupted. It can be applied to Further, although the mold temperature and heating time are inversely correlated (FIG. 4), a positive correlation or even arbitrary function control is possible. In addition, the detailed structure, method, conditions, etc. can be arbitrarily changed without departing from the gist of the present invention.

〔発明の効果〕〔Effect of the invention〕

このように、本発明に係る射出成形機の温度制
御方法は、金型温度の変動する過渡領域で金型温
度を検出し、検出した金型温度をパラメータとし
て、少なくとも金型温度が基準温度よりも低いと
きはホツトランナチツプにおける通電のオン時間
を長くするように、成形サイクル単位で制御する
ようにしたため、次のような顕著な効果を奏す
る。
As described above, the temperature control method for an injection molding machine according to the present invention detects the mold temperature in a transient region where the mold temperature fluctuates, and uses the detected mold temperature as a parameter to control the temperature of the injection molding machine so that at least the mold temperature is lower than the reference temperature. Since the control is performed in units of molding cycles so as to lengthen the energization time in the hot runner chip when the temperature is low, the following remarkable effects are achieved.

昇温直後から直ちに成形を行うことができる
とともに、良品を得ることができる。したがつ
て、労力の軽減、成形材料と消費電力の無駄を
排除することができ、生産性を大幅に向上でき
る。
Molding can be performed immediately after the temperature is raised, and good products can be obtained. Therefore, labor can be reduced, waste of molding material and power consumption can be eliminated, and productivity can be greatly improved.

常に、一定の流動性及び粘性を得れるように
制御されるため、成形品質を一定にすることが
できる。
Since it is controlled to always obtain constant fluidity and viscosity, molding quality can be kept constant.

温度センサの付設とプログラム変更程度で実
施でき、小型化、低コスト化に寄与できるとと
もに、汎用性に優れる。
It can be implemented by simply adding a temperature sensor and changing the program, contributing to miniaturization and cost reduction, and is highly versatile.

【図面の簡単な説明】[Brief explanation of drawings]

第1図:温度制御装置のブロツク系統図、第2
図:金型の温度特性図、第3図:本発明に係る温
度制御方法を説明するタイムチヤート、第4図:
本発明に係る温度制御方法による金型温度対加熱
時間特性図、第5図:安定時における加熱時間及
び温度のタイムチヤート。 尚図面中、2……金型、3……ゲート部、5…
…ホツトランナチツプ、Tm……金型温度、tp…
…加熱時間。
Fig. 1: Block diagram of temperature control device, Fig. 2
Figure: Temperature characteristic diagram of the mold, Figure 3: Time chart explaining the temperature control method according to the present invention, Figure 4:
FIG. 5 is a characteristic diagram of mold temperature versus heating time according to the temperature control method according to the present invention: a time chart of heating time and temperature during stable conditions. In addition, in the drawing, 2...Mold, 3...Gate part, 5...
…hot tranchip, Tm…mold temperature, tp…
...Heating time.

Claims (1)

【特許請求の範囲】 1 成形サイクルに対応して、金型のゲート部に
備えるホツトランナチツプの通電をオン−オフ
し、これにより、ホツトランナチツプの加熱温度
を制御する射出成形機の温度制御方法において、
金型温度の変動する過渡領域で金型温度を検出
し、検出した金型温度をパラメータとして、少な
くとも金型温度が基準温度よりも低いときはホツ
トランナチツプにおける通電のオン時間を長くす
るように、成形サイクル単位で制御することを特
徴とする射出成形機の温度制御方法。 2 過渡領域は成形初期における溶融樹脂の射出
により金型が昇温する昇温領域であることを特徴
とする特許請求範囲第1項記載の射出成形機の温
度制御方法。 3 オン時間の制御は通電開始のタイミングを可
変して行うことを特徴とする特許請求の範囲第1
項記載の射出成形機の温度制御方法。
[Scope of Claims] 1. Temperature control of an injection molding machine that turns on and off electricity to a hot runner chip provided in a gate portion of a mold in response to a molding cycle, thereby controlling the heating temperature of the hot runner chip. In the method,
The mold temperature is detected in the transient region where the mold temperature fluctuates, and the detected mold temperature is used as a parameter to lengthen the energization time in the hot runner chip, at least when the mold temperature is lower than the reference temperature. , a temperature control method for an injection molding machine characterized by controlling the temperature in units of molding cycles. 2. The temperature control method for an injection molding machine according to claim 1, wherein the transient region is a temperature increasing region in which the temperature of the mold increases due to injection of molten resin at an early stage of molding. 3. The first claim characterized in that the on-time is controlled by varying the timing of starting energization.
Temperature control method for an injection molding machine as described in .
JP24826687A 1987-09-30 1987-09-30 Method for controlling temperature of injection molder Granted JPS6487319A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24826687A JPS6487319A (en) 1987-09-30 1987-09-30 Method for controlling temperature of injection molder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24826687A JPS6487319A (en) 1987-09-30 1987-09-30 Method for controlling temperature of injection molder

Publications (2)

Publication Number Publication Date
JPS6487319A JPS6487319A (en) 1989-03-31
JPH0511742B2 true JPH0511742B2 (en) 1993-02-16

Family

ID=17175576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24826687A Granted JPS6487319A (en) 1987-09-30 1987-09-30 Method for controlling temperature of injection molder

Country Status (1)

Country Link
JP (1) JPS6487319A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5037598A (en) * 1990-04-16 1991-08-06 Husky Injection Molding Systems, Ltd. Reciprocating heated nozzle
FR2774323A1 (en) * 1998-02-05 1999-08-06 Segaplast Automatic closed loop viscosity regulation equipment for injection molding press
DE102005049804A1 (en) 2004-10-18 2006-05-11 Mold-Masters Limited, Georgetown Multiple zone temperature controller includes printed circuit board card with ports for receiving temperature signals from thermocouples and driving the heating elements, and multiplexer for selecting the temperature signals

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5143317A (en) * 1974-10-14 1976-04-14 Honda Motor Co Ltd KANAGATACHUZONIOKERU IMONOREIKYAKUJIKANNO SEIGYOSOCHI
JPS51121071A (en) * 1975-04-16 1976-10-22 Sumitomo Bakelite Co Method of forming hot runner
JPS54146857A (en) * 1978-05-10 1979-11-16 Hitachi Ltd Control of injection molding and its device
JPS5538667B2 (en) * 1974-03-12 1980-10-06

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50129658U (en) * 1974-04-10 1975-10-24
JPS5538667U (en) * 1978-08-31 1980-03-12

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5538667B2 (en) * 1974-03-12 1980-10-06
JPS5143317A (en) * 1974-10-14 1976-04-14 Honda Motor Co Ltd KANAGATACHUZONIOKERU IMONOREIKYAKUJIKANNO SEIGYOSOCHI
JPS51121071A (en) * 1975-04-16 1976-10-22 Sumitomo Bakelite Co Method of forming hot runner
JPS54146857A (en) * 1978-05-10 1979-11-16 Hitachi Ltd Control of injection molding and its device

Also Published As

Publication number Publication date
JPS6487319A (en) 1989-03-31

Similar Documents

Publication Publication Date Title
KR890700456A (en) Injection process control method in injection molding machine
CN109483842B (en) Control method and system for stepwise temperature rise and heat preservation of injection molding machine
JPH0155085B2 (en)
EP1138458A3 (en) Method for controlling an injection moulding machine by minimizing variations in density of the molten resin
US6861018B2 (en) Temperature control method and apparatus for injection molding structure
JPH0511742B2 (en)
EP0605975B1 (en) Temperature control system for hot nozzle used in runner-less moulding process and method of temperature control of same
US4844847A (en) Method and apparatus for controlling injection molding machines
JPS5549238A (en) Plasticizing process controlling method for in-line screw type jet-form machine
JP4295906B2 (en) Method for controlling filling process of injection molding machine
JPH09193225A (en) Method for controlling temperature of molding machine
JP5809337B1 (en) Resin temperature control method in injection nozzle
JPS5933102B2 (en) Injection molding control device
JP3309345B2 (en) Nozzle heater temperature control method and its resin molding machine
JPS6139175B2 (en)
JP2934702B2 (en) Hot plate temperature control method in contact heating molding machine
JPH02239916A (en) Temperature control method for heating cylinder of molding machine
JPH0516197A (en) Method for controlling injection of injection molding machine
JPS6471723A (en) Method for elevating temperature of injection molding machine
JPH0536220B2 (en)
JPS6250061A (en) Die casting method
JPH0356887B2 (en)
JP2000117800A (en) Equipment and method for raising temperature of injection molding machine
JPS61181624A (en) Controller of motor driven injection molding machine
JP2799903B2 (en) Control device for injection molding machine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees