JPH0511714B2 - - Google Patents

Info

Publication number
JPH0511714B2
JPH0511714B2 JP16226486A JP16226486A JPH0511714B2 JP H0511714 B2 JPH0511714 B2 JP H0511714B2 JP 16226486 A JP16226486 A JP 16226486A JP 16226486 A JP16226486 A JP 16226486A JP H0511714 B2 JPH0511714 B2 JP H0511714B2
Authority
JP
Japan
Prior art keywords
transducer
piezoelectric
acoustic
cylinder
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16226486A
Other languages
Japanese (ja)
Other versions
JPS6318799A (en
Inventor
Tadashi Konno
Takeshi Inoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP16226486A priority Critical patent/JPS6318799A/en
Priority to US07/069,057 priority patent/US4823041A/en
Priority to EP87305864A priority patent/EP0251797B1/en
Priority to DE87305864T priority patent/DE3787677T2/en
Publication of JPS6318799A publication Critical patent/JPS6318799A/en
Publication of JPH0511714B2 publication Critical patent/JPH0511714B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Transducers For Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、広帯域で無指向性を有するハイパワ
ー水中超音波トランスジユーサに関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a high-power underwater ultrasonic transducer that is broadband and omnidirectional.

(従来の技術) 従来、無指向性を有するトランスジユーサとし
て、周知の如く第4図に示すような径拡がり振動
モード(ラジアルエクステンシヨナルモード)で
動作する円筒状圧電セラミツクトランスジユーサ
が広く用いられている。このトランスジユーサ
は、内外表面に銀あるいは金焼き付け電極41,
42が形成され、この電極41,42間に直流高
電界を加えて矢印に示す如く肉厚方向に放射状に
分極処理が施される。このトランスジユーサは電
気端子43,44から交流電圧を印加することに
より、直径が一様に伸縮する所謂径拡がり振動モ
ードで中心軸0−0′に関して二重矢印で示すよう
に円筒の外表面から無指向性の音響放射が行われ
る。
(Prior Art) Conventionally, as a transducer having omnidirectional properties, a cylindrical piezoelectric ceramic transducer that operates in a radial expansion vibration mode (radial extensional mode) as shown in Fig. 4 has been widely used. It is used. This transducer has silver or gold baked electrodes 41 on the inner and outer surfaces.
42 is formed, and a DC high electric field is applied between the electrodes 41 and 42 to perform polarization treatment radially in the thickness direction as shown by the arrows. By applying an alternating voltage from the electrical terminals 43 and 44, this transducer operates in a so-called radial expansion vibration mode in which the diameter expands and contracts uniformly. Omnidirectional acoustic radiation is performed from the

(発明が解決しようとする問題点) 従来の円筒状圧電セラミツクトランスジユーサ
は、中心軸に対して無指向性の音響放射を行うこ
とができるが、以下のような問題点がある。第4
図から明らかな如く、従来のトランスジユーサは
すべて圧電セラミツクスからできている。圧電セ
ラミツクスは密度が約8.0×103Kg/m3で、径拡が
りモードに関係する音速が3000〜3500m/secで
あるため、固有音響インピーダンス(密度と音速
の積で定義される)が24×106〜28×106
MKSraylsと媒質である水の固有音響インピーダ
ンスの20倍近くあり極めて大きい。このため水と
トランスジユーサとの間で音響インピーダンスの
ミスマツチングが生じ、得られる帯域幅は15%か
らせいぜい30%と制限されたものになる。従つて
例えばこれをソーナーシステムに用いた場合、狭
帯域特性のためにパルスの尾引きが長くなり距離
分解能が劣化するといつた欠点があつた。一般
に、パルスの尾引きの小さなコンパクトなパルス
応答特性を得ようとすると広帯域のトランスジユ
ーサが必要不可欠なものとなる。円筒状圧電セラ
ミツクトランスジユーサにおいて、広帯域化を達
成するためには、単一共振型であるためにトラン
スジユーサの機械インピーダンスを小さくするこ
と(これは音響放射面積当たりのトランスジユー
サの質量を小さくすることに相当する)が必要で
あり、従来トランスジユーサの肉厚を薄くするこ
としか手段がなかつた。しかしながら、トランス
ジユーサの肉厚を薄くすると圧電セラミツクスの
加工が難かしくなるばかりか、機械的強度が著し
く劣化することにより、ハイパワー音響放射が不
可能になるといつた問題があつた。
(Problems to be Solved by the Invention) Conventional cylindrical piezoelectric ceramic transducers can radiate sound omnidirectionally with respect to the central axis, but they have the following problems. Fourth
As is clear from the figure, all conventional transducers are made of piezoelectric ceramics. Piezoelectric ceramics has a density of approximately 8.0×10 3 Kg/m 3 and the sound velocity related to the diameter expansion mode is 3000 to 3500 m/sec, so the specific acoustic impedance (defined as the product of density and sound velocity) is 24× 106 ~28× 106
The characteristic acoustic impedance of MKSrayls is nearly 20 times that of water, which is the medium, and is extremely large. This results in an acoustic impedance mismatch between the water and the transducer, which limits the available bandwidth to 15% to 30% at best. Therefore, when this is used in a sonar system, for example, it has the disadvantage that the narrowband characteristic causes a long pulse tail and degrades the distance resolution. In general, a broadband transducer is indispensable in order to obtain compact pulse response characteristics with little pulse tailing. In order to achieve a wide band in a cylindrical piezoelectric ceramic transducer, it is necessary to reduce the mechanical impedance of the transducer because it is a single resonance type (this means that the mass of the transducer per acoustic radiation area is reduced). (corresponding to a reduction in the size of the transducer), and conventionally the only way to do this was to reduce the thickness of the transducer. However, reducing the thickness of the transducer not only makes it difficult to process piezoelectric ceramics, but also causes a significant deterioration in mechanical strength, making it impossible to radiate high-power acoustics.

本発明の目的は、広帯域で高効率の音響放射特
性を有し、かつハイパワー送波が可能な無指向性
トランスジユーサを実現することである。
An object of the present invention is to realize an omnidirectional transducer that has wide-band, highly efficient acoustic radiation characteristics and is capable of high-power transmission.

(問題点を解決するための手段) 本発明に従つたトランスジユーサの基本構成
は、径拡がり振動モードで動作する小口径の円筒
状圧電変換子を、該円筒状圧電振動子の径拡がり
振動で駆動され、同じく径拡がり振動モードで動
作する外表面が音響放射面となつている大口径の
円筒状放射体の中に、中心軸が一致するように収
納し、かつ該小口径円筒状圧電変換子と該大口径
円筒状音響放射体を結合させる結合子からなる。
(Means for Solving the Problems) The basic configuration of the transducer according to the present invention includes a small-diameter cylindrical piezoelectric transducer that operates in a diameter-expanding vibration mode. The small-diameter cylindrical piezoelectric material is housed in a large-diameter cylindrical radiator whose outer surface is an acoustic radiation surface and whose central axis coincides with that of a large-diameter cylindrical radiator that also operates in a diameter-expanding vibration mode. It consists of a connector that connects a transducer and the large diameter cylindrical acoustic radiator.

本発明のトランスジユーサは全体として二つの
共振モード、即ち共振周波数の低い同相モード
(該小口径円筒状圧電変換子と該大口径円筒状音
響放射体とが同相となつているモード)と共振周
波数の高い逆相モード(該小口径円筒状圧電変換
子と該大口径円筒状音響放射体とが逆相となつて
いる振動モード)が存在し、この二つの共振モー
ドの周波数間で、水中において強勢に音響放射が
可能な広帯域特性を有する無指向性超音波トラン
スジユーサである。
The transducer of the present invention has two resonance modes as a whole, namely, an in-phase mode with a low resonance frequency (a mode in which the small-diameter cylindrical piezoelectric transducer and the large-diameter cylindrical acoustic radiator are in phase) and resonance. There is a high-frequency anti-phase mode (a vibration mode in which the small-diameter cylindrical piezoelectric transducer and the large-diameter cylindrical acoustic radiator are in anti-phase), and between the frequencies of these two resonance modes, underwater This is an omnidirectional ultrasonic transducer with broadband characteristics that allows for intensive acoustic radiation.

(作用) 本発明に従つて無指向性のハイパワー水中超音
波トランスジユーサの基本的な構成例を第1図に
示す。第1図に示した斜視図において、10は小
口径の円筒状圧電変換子、13は大口径の円筒状
音響放射体、14は結合子である。10の圧電変
換子は内側に圧電セラミツク円筒12と外側に金
属もしくは繊維強化複合材料でできた円筒11で
できており、12と11は接着剤によつて強固に
接着される。この圧電セラミツク円筒12は、た
とえば上下面にそれぞれ電極を設けるか、あるい
は内外周面にそれぞれ電極を設け、これらの電極
でもつて分極処理を行うことにより圧電性を付与
することができ、いずれも横効果31モード径拡が
り振動を強勢に励振することができる。また、縦
効果33モードで径拡がり振動を強勢に励振する場
合には、周知の如く、圧電セラミツク円筒を円周
に直角な面で放射状に分割し、分割してできた円
周に直角な面に電極を形成し、この電極でもつて
分極処理を行い、然る後この電極で駆動すること
により容易に行うことができる。
(Operation) FIG. 1 shows a basic configuration example of a non-directional high-power underwater ultrasonic transducer according to the present invention. In the perspective view shown in FIG. 1, 10 is a small-diameter cylindrical piezoelectric transducer, 13 is a large-diameter cylindrical acoustic radiator, and 14 is a connector. The piezoelectric transducer 10 is made of a piezoelectric ceramic cylinder 12 on the inside and a cylinder 11 made of metal or fiber-reinforced composite material on the outside, and 12 and 11 are firmly bonded with an adhesive. This piezoelectric ceramic cylinder 12 can be imparted with piezoelectricity by, for example, providing electrodes on the upper and lower surfaces, or electrodes on the inner and outer circumferential surfaces, and polarizing these electrodes. Effect 31 mode diameter expansion vibration can be strongly excited. In addition, when exciting radial expansion vibration in the longitudinal effect 33 mode, as is well known, the piezoelectric ceramic cylinder is divided radially on a plane perpendicular to the circumference, and the resulting divided planes are perpendicular to the circumference. This can be easily carried out by forming an electrode on the electrode, performing polarization treatment using this electrode, and then driving with this electrode.

円筒状圧電変換子10は、円筒12と11が一
体となつて径拡がり振動を行うことが必要不可欠
であり、またハイパワー動作を保証するために、
圧電セラミツク振動子12に圧縮バイアス応力を
常時加えた状態にしておくことが望ましい。なぜ
なら、圧電セラミツクは張力に対して脆く、張力
に対する強度は圧力に対する強度の数分の1であ
るため、径拡がり振動モードにおいて、円筒12
が一様に拡がつた場合、破壊を防ぐことができる
からである。このため、本発明に基づくトランス
ジユーサの圧電振動子10において以下のような
対策が講じられている。即ち、金属あるいは繊維
強化複合材料でできた円筒は、圧電セラミツク円
筒に比べて1桁以上熱膨張係数が大きく、これを
利用して60℃〜200℃の温度下において、円筒1
1の内側接着面に接着剤を塗布して、圧電セラミ
ツク円筒12に接着する。これにより通常の動作
温度では常に圧電セラミツク円筒12に圧縮バイ
アスの応力の加わつた状態となり、従来の圧電セ
ラミツクトランスジユーサに比べて遥かに大振幅
駆動を行うことができる。
In the cylindrical piezoelectric transducer 10, it is essential that the cylinders 12 and 11 are integrated to perform radial expansion vibration, and in order to guarantee high power operation,
It is desirable to keep compressive bias stress applied to the piezoelectric ceramic vibrator 12 at all times. This is because piezoelectric ceramics are brittle against tension, and the strength against tension is a fraction of the strength against pressure.
This is because if it spreads uniformly, destruction can be prevented. For this reason, the following measures are taken in the piezoelectric vibrator 10 of the transducer based on the present invention. In other words, cylinders made of metal or fiber-reinforced composite materials have a coefficient of thermal expansion that is more than an order of magnitude larger than piezoelectric ceramic cylinders, and by utilizing this, cylinders made of metal or fiber-reinforced composite materials can be
An adhesive is applied to the inner adhesive surface of the piezoelectric ceramic cylinder 12, and the piezoelectric ceramic cylinder 12 is bonded to the piezoelectric ceramic cylinder 12. As a result, at normal operating temperatures, a compressive bias stress is always applied to the piezoelectric ceramic cylinder 12, making it possible to drive with a much larger amplitude than conventional piezoelectric ceramic transducers.

また、円筒状音響放射体13は、水との広帯域
整合を容易にするために軽量であること、さらに
は変換子10と同程度の共振周波数で一様な径拡
がり振動を行い、かつ大口径円筒として実現させ
るため、剛性の大きな繊維強化複合材料、または
Al合金、Mg合金等の軽金属合金あるいは軽金属
合金の上に繊維強化複合材料を複合化したものな
どが望ましい。Al合金やMg合金では径振動モー
ドに関する音速が約5000m/secあり、圧電セラ
ミツクスの音速の約1.6倍あるため、単純に同一
周波数の円筒で比較して、Al合金やMg合金製円
筒の直径は圧電セラミツクス円筒の直径の約1.6
倍となる。円周方向に繊維の配されたグラスフア
イバー強化複合材料(G−FRP)はAl合金の1.5
〜2倍程度の径振動モードに関する音速が得られ
ることから、これらの材料が放射体13に好適で
あると言える。一方、圧電変換子10において、
変換子10の質量の大部分は密度の大きな圧電セ
ラミツクス12が専有しているため、円筒11に
Al合金のような高い音速を有する材料を配した
としても、圧電セラミツクスの音速が支配的とな
る。以上述べたように、軽量で高剛性を有する材
料で放射体13を実現した場合には、変換子10
と音響放射体13の大きな音速差により、結合子
14が両円筒内に入る余地が生まれてくるわけで
ある。
In addition, the cylindrical acoustic radiator 13 is lightweight in order to facilitate broadband matching with water, and furthermore, the cylindrical acoustic radiator 13 has a uniform diameter expansion vibration at a resonance frequency similar to that of the transducer 10, and has a large diameter. In order to realize the cylinder, fiber-reinforced composite material with high rigidity, or
It is desirable to use a light metal alloy such as an Al alloy or a Mg alloy, or a combination of a light metal alloy and a fiber-reinforced composite material. In Al alloys and Mg alloys, the sound speed in the radial vibration mode is about 5000 m/sec, which is about 1.6 times the sound speed in piezoelectric ceramics, so simply comparing cylinders with the same frequency, the diameter of an Al alloy or Mg alloy cylinder is Approximately 1.6 of the diameter of the piezoceramic cylinder
It will be doubled. Glass fiber reinforced composite material (G-FRP) with fibers arranged in the circumferential direction is made of Al alloy 1.5
These materials can be said to be suitable for the radiator 13 because they can obtain a sound velocity in the radial vibration mode that is about twice as high. On the other hand, in the piezoelectric transducer 10,
Most of the mass of the transducer 10 is occupied by the high-density piezoelectric ceramics 12;
Even if a material with a high sound velocity such as an Al alloy is used, the sound velocity of piezoelectric ceramics will be dominant. As described above, when the radiator 13 is made of a lightweight and highly rigid material, the transducer 10
Due to the large sound speed difference between the acoustic radiator 13 and the acoustic radiator 13, there is room for the connector 14 to enter into both cylinders.

結合子14は、高強度の金属材料たとえばAl
合金、Mg合金、Ti合金、スチール合金あるいは
繊維強化複合材料が望ましい。また、11,1
4,13部は一体もので構成することも可能であ
ることは言うまでもない。
The connector 14 is made of a high strength metal material such as Al.
Alloys, Mg alloys, Ti alloys, steel alloys or fiber reinforced composites are preferred. Also, 11,1
It goes without saying that the 4th and 13th parts can be constructed as one piece.

次に、本発明のトランスジユーサの動作原理に
ついて説明する。前述の如く、本発明に基づくト
ランスジユーサは、二つの振動モード、即ち、同
相モードと逆相モードが存在する。同相モードは
変換子11が径方向に拡がつたときに、音響放射
体13が同じく径方向に拡がる振動モードあるい
は、変換子11が径方向に一様に縮んだとき、音
響放射体13も同じく径方向に一様に縮む振動モ
ードでありこのとき結合子14は並進変位するだ
けで、ほとんど変形が生じない。逆相モードは、
変換子10が径方向に一様に拡がつたとき、音響
放射体13が逆に径方向に一様に縮む振動モード
であり、このとき結合子14は圧縮され、また変
換子10が径方向に一様に収縮したとき音響放射
体13が逆に一様に拡がる振動モードであり、こ
のとき結合子14は引張される。同相モードに比
べて逆相モードは結合子14に変形が生じ、結合
子13のスチフネスの分だけ共振周波数が高くな
る。即ち、本発明のトランスジユーサでは、共振
周波数の互いに異なる独立に二つの共振モード、
同相モードと逆相モードが存在する。
Next, the principle of operation of the transducer of the present invention will be explained. As mentioned above, the transducer according to the present invention has two modes of vibration: an in-phase mode and an anti-phase mode. The in-phase mode is a vibration mode in which when the transducer 11 expands in the radial direction, the acoustic radiator 13 also expands in the radial direction, or when the transducer 11 uniformly contracts in the radial direction, the acoustic radiator 13 also expands in the radial direction. This is a vibration mode in which the vibration mode uniformly contracts in the radial direction, and at this time, the connector 14 only undergoes translational displacement and is hardly deformed. The reverse phase mode is
When the transducer 10 expands uniformly in the radial direction, the acoustic radiator 13 conversely contracts uniformly in the radial direction in a vibration mode, and at this time the coupler 14 is compressed and the transducer 10 expands in the radial direction. This is a vibration mode in which the acoustic radiator 13 uniformly expands when it contracts uniformly, and at this time the connector 14 is pulled. Compared to the in-phase mode, the connector 14 is deformed in the anti-phase mode, and the resonance frequency becomes higher by the stiffness of the connector 13. That is, the transducer of the present invention has two independently resonant modes with different resonant frequencies.
There are in-phase mode and anti-phase mode.

本発明に基づくトランスジユーサの等価回路
は、第2図に示す集中定数近似等価回路で表すこ
とができる。第2図から明らかな如く、本発明に
基づくトランスジユーサは従来の単一共振型トラ
ンスジユーサと全く異り、水を音響負荷とする帯
域通過形フイルタとなつていることがわかる。第
2図において、Cdは制動容量、−Cdは周知の如く
縦効果のセラミツク振動子を用いたときに現われ
てくるもので、横効果の振動子では−Cdは現わ
れてこない。Aは力係数、m1,c1はそれぞれ円
筒状圧電変換子10の等価質量、等価コンプライ
アンス、m2,c2はそれぞれ音響放射体13の等
価質量、等価コンプライアンス、ccは結合子のコ
ンプライアンス、またSaは音響放射断面積、Za
音響系における水の音響放射インピーダンスであ
る。
The equivalent circuit of the transducer according to the present invention can be expressed as a lumped constant approximate equivalent circuit shown in FIG. As is clear from FIG. 2, the transducer according to the present invention is completely different from the conventional single-resonance type transducer, and is a band-pass type filter using water as an acoustic load. In FIG. 2, C d is the damping capacity, and -C d appears when a longitudinal effect ceramic vibrator is used, as is well known, and -C d does not appear in a transverse effect vibrator. A is the force coefficient, m 1 and c 1 are the equivalent mass and equivalent compliance of the cylindrical piezoelectric transducer 10, m 2 and c 2 are the equivalent mass and equivalent compliance of the acoustic radiator 13, respectively, and c c is the compliance of the coupler. , and S a is the acoustic radiation cross section, and Z a is the acoustic radiation impedance of water in the acoustic system.

本トランスジユーサにおいて、結合子14をは
さんで圧電変換子10と音響放射体13の等価質
量と共振周波数がそれぞれ等しいトランスジユー
サ(m1=m2,c1=c2)は勿論のこと、非対称動
作パラメータ法あるいは変成器フイルタ理論を駆
使して等価質量と共振周波数を異ならしめた非対
称な水中超音波トランスジユーサ(m1≠m2,c1
≠c2)が構成可能なことは言うまでもない。
In this transducer, of course, the piezoelectric transducer 10 and the acoustic radiator 13 with the coupler 14 in between have the same equivalent mass and the same resonance frequency (m 1 = m 2 , c 1 = c 2 ). In particular, an asymmetric underwater ultrasonic transducer (m 1 ≠ m 2 , c 1
It goes without saying that ≠c 2 ) can be constructed.

(実施例 1) 本発明に基づくトランスジユーサの一実施例を
第1図に示す。第1図において、12は肉厚方向
に放射状に分極処理が施された圧電セラミツク円
筒で内外周面にそれぞれ銀焼き付け電極が形成さ
れている。また11はAl合金でできた円筒で温
度150℃においてエポキシ系接着剤を介して、前
記のような方法に従つて強固に接着されている。
従つて常温では常に圧電セラミツクスに圧縮バイ
アス応力が加わつた状態となる。14は結合子、
13は円筒状音響放射体であり、11,14,1
3部は同一のAl合金製で一体化されている。
(Example 1) An example of a transducer based on the present invention is shown in FIG. In FIG. 1, reference numeral 12 is a piezoelectric ceramic cylinder which is polarized radially in the thickness direction, and silver baked electrodes are formed on the inner and outer peripheral surfaces of the cylinder. Reference numeral 11 denotes a cylinder made of Al alloy, which is firmly bonded at a temperature of 150° C. with an epoxy adhesive in accordance with the method described above.
Therefore, at room temperature, a compressive bias stress is always applied to the piezoelectric ceramic. 14 is a connector,
13 is a cylindrical acoustic radiator; 11, 14, 1
The three parts are made of the same Al alloy and are integrated.

本実施例のトランスジユーサは、圧電変換子1
0と音響放射体13の等価質量及び共振周波は全
く同一となるように設計された(m1=m2,c1
c2)。このトランスジユーサは、周知の水密技術、
即ちトランスジユーサ長手方向の両端面におい
て、音響的デカツプリング材であるキルクゴムを
介してAl合金製円板で蓋をし、さらにはネオプ
レンゴムでモールドすることにより水密が保持さ
れている。試作したトランスジユーサの外形寸法
は高さ6cm、直径10.7cmである。
The transducer of this embodiment has a piezoelectric transducer 1
0 and the acoustic radiator 13 were designed so that the equivalent mass and resonance frequency were exactly the same (m 1 = m 2 , c 1 =
c2 ). This transducer uses well-known watertight technology,
That is, both ends of the transducer in the longitudinal direction are covered with Al alloy disks via Kirk rubber, which is an acoustic decoupling material, and are further molded with neoprene rubber to maintain watertightness. The external dimensions of the prototype transducer are 6 cm in height and 10.7 cm in diameter.

本実施例のトランスジユーサでは、同相モード
と逆相モードという二つの共振モードが存在し、
この二つの共振が利用できるため従来のトランス
ジユーサに比べて著るしい広帯域化がはかれるこ
と、Al合金のような高強度の材料を使用してい
ること等のため、中心周波数20kHzで比帯域幅60
%以上、出力音圧レベル190dBre1μPa(at1m)以
上の広帯域ハイパワー送波を極めて容易に行うこ
とができ、また水との音響整合性に優れているた
めに効率の良いものとなつている。
In the transducer of this example, there are two resonance modes: in-phase mode and anti-phase mode.
Because these two resonances can be used, the band can be significantly broadened compared to conventional transducers, and because high-strength materials such as Al alloy are used, the center frequency is 20 kHz. width 60
% or more and output sound pressure level of 190 dBre 1 μPa (at 1 m) or more, it is extremely easy to transmit broadband high power waves, and it is highly efficient because it has excellent acoustic matching with water.

(実施例 2) 本発明に基づくトランスジユーサの他の実施例
を第3図に示す。第3図において、圧電セラミツ
ク円筒11、Al合金製円筒12からなる変換子
10、結合子14は実施例1と同じである。音響
放射体13部分を構成する円筒31に、前記円筒
12、結合子14と全く同じAl合金を用い、1
2,14及び31部分は完全に一体化されてい
る。本実施例において、音響放射体13を構成す
る円筒32に中心軸方向及び円周方向ともに炭素
繊維が配された炭素繊維強化プラスチツクス(C
−FRP)でできている。円筒32は朱子織のC
−FRPシートを有機接着剤を介して、Al合金製
円筒31に巻きつけることにより実現できる。さ
らにAl合金円筒31とC−FRP円筒との接着強
度を増大させるため、音響放射体13部分の円周
方向に沿つて、炭素繊維、ガラス繊維などの強化
繊維で強く巻くことも可能である(図示せず)。
これは、ハイパワー送波レベルを向上させるのに
有効である。本トランスジユーサにおいても、実
施例1と同様に、広帯域、高効率かつハイパワー
送波を容易に達成しうることが可能である。
(Embodiment 2) Another embodiment of the transducer based on the present invention is shown in FIG. In FIG. 3, a piezoelectric ceramic cylinder 11, a transducer 10 consisting of an Al alloy cylinder 12, and a connector 14 are the same as in the first embodiment. The cylinder 31 constituting the acoustic radiator 13 is made of the same Al alloy as the cylinder 12 and the connector 14, and 1
Sections 2, 14 and 31 are completely integrated. In this embodiment, carbon fiber-reinforced plastics (C
-Made of FRP). The cylinder 32 is C of satin weave
- This can be realized by wrapping an FRP sheet around an Al alloy cylinder 31 via an organic adhesive. Furthermore, in order to increase the adhesive strength between the Al alloy cylinder 31 and the C-FRP cylinder, it is also possible to tightly wrap reinforcing fibers such as carbon fibers and glass fibers along the circumferential direction of the acoustic radiator 13 portion ( (not shown).
This is effective in improving the high power transmission level. In this transducer as well, as in the first embodiment, it is possible to easily achieve broadband, high efficiency, and high power transmission.

(発明の効果) 以上詳述した如く、本発明に従えば広帯域、高
効率でハイパワ特性に優れた無指向性の水中超音
波トランスジユーサを提供することができる。
(Effects of the Invention) As described in detail above, according to the present invention, it is possible to provide an omnidirectional underwater ultrasonic transducer with a wide band, high efficiency, and excellent high power characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に基づく無指向性水中超音波ト
ランスジユーサの実施例を示す図。第2図は第1
図に示したトランスジユーサの等価回路図。第3
図は本発明に基づくトランスジユーサの他の実施
例を示す図。第4図は従来の無指向性水中超音波
トランスジユーサを示す図。 図において、10は円筒状圧電変換子、13は
円筒状音響放射体、14は結合子、11,31,
32は非圧電性円筒、12は圧電セラミツク円
筒、41,42は電極、43,44は電気端子。
FIG. 1 is a diagram showing an embodiment of an omnidirectional underwater ultrasonic transducer according to the present invention. Figure 2 is the first
An equivalent circuit diagram of the transducer shown in the figure. Third
The figure shows another embodiment of the transducer according to the present invention. FIG. 4 is a diagram showing a conventional omnidirectional underwater ultrasonic transducer. In the figure, 10 is a cylindrical piezoelectric transducer, 13 is a cylindrical acoustic radiator, 14 is a connector, 11, 31,
32 is a non-piezoelectric cylinder, 12 is a piezoelectric ceramic cylinder, 41 and 42 are electrodes, and 43 and 44 are electrical terminals.

Claims (1)

【特許請求の範囲】[Claims] 1 円筒状圧電変換子が円筒状音響放射体の内部
にそれぞれの中心軸が一致するように収納されて
おり、かつ該圧電変換子外周面から該音響放射体
の内周面に達する結合子が径方向に放射状に配置
されていることを特徴とする無指向性水中超音波
トランスジユーサ。
1 Cylindrical piezoelectric transducers are housed inside a cylindrical acoustic radiator so that their central axes coincide, and a connector that reaches from the outer circumferential surface of the piezoelectric transducer to the inner circumferential surface of the acoustic radiator An omnidirectional underwater ultrasonic transducer characterized by being arranged radially in the radial direction.
JP16226486A 1986-07-02 1986-07-09 Non-directional underwater ultrasonic transducer Granted JPS6318799A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP16226486A JPS6318799A (en) 1986-07-09 1986-07-09 Non-directional underwater ultrasonic transducer
US07/069,057 US4823041A (en) 1986-07-02 1987-07-02 Non-directional ultrasonic transducer
EP87305864A EP0251797B1 (en) 1986-07-02 1987-07-02 Non-directional ultrasonic transducer
DE87305864T DE3787677T2 (en) 1986-07-02 1987-07-02 Non-directional ultrasound transducer.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16226486A JPS6318799A (en) 1986-07-09 1986-07-09 Non-directional underwater ultrasonic transducer

Publications (2)

Publication Number Publication Date
JPS6318799A JPS6318799A (en) 1988-01-26
JPH0511714B2 true JPH0511714B2 (en) 1993-02-16

Family

ID=15751141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16226486A Granted JPS6318799A (en) 1986-07-02 1986-07-09 Non-directional underwater ultrasonic transducer

Country Status (1)

Country Link
JP (1) JPS6318799A (en)

Also Published As

Publication number Publication date
JPS6318799A (en) 1988-01-26

Similar Documents

Publication Publication Date Title
EP0251797B1 (en) Non-directional ultrasonic transducer
US4706230A (en) Underwater low-frequency ultrasonic wave transmitter
US4672591A (en) Ultrasonic transducer
JP2002542005A (en) Ultrasonic transducer with improved transmission of compression pressure
US4779020A (en) Ultrasonic transducer
Shuyu Study of the sandwiched piezoelectric ultrasonic torsional transducer
Shuyu Analysis of the equivalent circuit of piezoelectric ceramic disk resonators in coupled vibration
JP2985509B2 (en) Low frequency underwater transmitter
JPH0511714B2 (en)
JP2814817B2 (en) Low frequency underwater ultrasonic transmitter
JP3649151B2 (en) Flexural transducer
JPH0511711B2 (en)
JPH0511712B2 (en)
JPH02309799A (en) Transmitter-receiver
JP2546488B2 (en) Low frequency underwater transmitter
Bradfield Ultrasonic transducers: 1. Introduction to ultrasonic transducers Part A
JPH0475720B2 (en)
JPH0511717B2 (en)
JP2001148896A (en) Ultrasonic wave transmitter-receiver and its vibration control method
JPS6313499A (en) Nondirectional underwater ultrasonic transducer
JPH07231496A (en) Low frequency underwater wave transmitter
JP2910412B2 (en) Low frequency underwater ultrasonic transmitter
JPH0511719B2 (en)
JPH07284197A (en) Dipole radiating type low-frequency underwater sound wave transmitter
JPH047880B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term