JPH0511643B2 - - Google Patents

Info

Publication number
JPH0511643B2
JPH0511643B2 JP61196639A JP19663986A JPH0511643B2 JP H0511643 B2 JPH0511643 B2 JP H0511643B2 JP 61196639 A JP61196639 A JP 61196639A JP 19663986 A JP19663986 A JP 19663986A JP H0511643 B2 JPH0511643 B2 JP H0511643B2
Authority
JP
Japan
Prior art keywords
container
heat insulating
cylindrical
support
helium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61196639A
Other languages
Japanese (ja)
Other versions
JPS6353907A (en
Inventor
Tomokazu Koda
Tsuyoshi Takahashi
Mitsuru Saeki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61196639A priority Critical patent/JPS6353907A/en
Publication of JPS6353907A publication Critical patent/JPS6353907A/en
Publication of JPH0511643B2 publication Critical patent/JPH0511643B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、浸漬冷却方式の超電導装置に係り、
特に核磁式共鳴断層撮影装置(NMR−CTスキ
ヤナ)に用いられる横置き型のクライオスタツト
(clyostat)を用いる超電導装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an immersion cooling type superconducting device,
In particular, the present invention relates to a superconducting device using a horizontal cryostat used in a nuclear magnetic resonance tomography device (NMR-CT scanner).

〔従来の技術〕[Conventional technology]

従来一般に、この種の超電導装置は固定的に据
付けて用いられており、移動あるいは運搬して使
用されるという使われ方は考えられていない。し
たがつて、真空断熱容器内のヘリウム容器の支持
構造も建屋内の据付運転に対する機械的強度およ
び外部からの熱の侵入の防止のみを考慮して作ら
れているのが現状である。超電導装置の支持構造
に関する従来の例としては、特開昭60−147105
号、特開昭60−147104号公報、特開昭60−147106
号等が知られている。
Conventionally, this type of superconducting device has generally been used in a fixed manner, and has not been considered to be used while being moved or transported. Therefore, the support structure for the helium container inside the vacuum insulated container is currently made with consideration only to mechanical strength for installation and operation inside the building and prevention of heat intrusion from the outside. A conventional example of a support structure for a superconducting device is JP-A-60-147105.
No., JP-A-60-147104, JP-A-60-147106
The number etc. are known.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、最近ではNMR−CTの有効活
用のために、1つのNMR−CTを各地に移動し
て用いる考え方がある。したがつて、従来の支持
構造のままで冷媒(ヘリウム)を充填した状態で
移動または輸送する場合に振動や衝撃荷重に充分
耐えうるか否かははなはだ疑問である。
However, recently, in order to make effective use of NMR-CT, there is a concept of moving one NMR-CT to various locations. Therefore, it is highly questionable whether the conventional support structure can sufficiently withstand vibrations and shock loads when being moved or transported while being filled with refrigerant (helium).

このように、従来では冷却しながら超電導装置
を移動するという発想ならびに必要性がなかつた
ので、現状のまま輸送した場合には超電導コイル
に致命的な損傷を与えてしまうおそれがある。
As described above, in the past, there was no idea or need to move a superconducting device while cooling it, so if the superconducting coil was transported as it is, there is a risk of fatal damage to the superconducting coil.

そこで、本発明は、冷却しながら移動する場合
に充分な支持強度を有し、かつ、熱の侵入を防止
しうる支持構造を備えた超電導装置を提供するこ
とを目的とする。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a superconducting device having a support structure that has sufficient support strength when moving while being cooled and can prevent heat from entering.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点を解決するために、本発明は軸方向
を水平に配して置かれる筒状断熱真空容器内に円
筒状冷却材容器がその軸方向中央部において前記
筒状断熱真空容器に連結され、前記円筒状冷却材
容器の円周側に前記冷却材容器の軸方向両端部か
らそれぞれ延在されたアーム状取付座および断熱
支持体を介して超電導コイルおよび液体ヘリウム
が格納されたヘリウム容器が支持固定されてなる
超電動装置において、前記断熱支持体によるヘリ
ウム容器の支持点を当該ヘリウム容器の径方向断
面でみて鉛直方向に1、水平方向対称位置に2の
割合で設けたことを特徴とするものである。
In order to solve the above-mentioned problems, the present invention includes a cylindrical coolant container connected to the cylindrical insulating vacuum container at its axial center in a cylindrical insulating vacuum container placed with its axial direction horizontally arranged. , a helium container in which a superconducting coil and liquid helium are stored is disposed on the circumferential side of the cylindrical coolant container via an arm-shaped mounting seat and a heat insulating support member extending from both axial ends of the coolant container, respectively; In the superelectric device which is supported and fixed, the support points of the helium container by the heat insulating support are provided at a ratio of 1 in the vertical direction and 2 at symmetrical positions in the horizontal direction when viewed in a radial cross section of the helium container. It is something to do.

〔作用〕[Effect]

輸送中のヘリウム容器支持体へ作用する荷重は
輸送中の状件によつて種々異なるが、おおむね縦
方向及び横方向に各々静止荷重の3倍、1.5倍と
なる。即ち、支持体の耐荷重比を2:1にすれば
理想的である。一方、多重円筒支持体の特性は、
長手方向とその直角方向では耐荷重、剛性とも長
手方向がはるかに大きい。従つて長手方向で荷重
を受ける方が有効的で、本案は長手方向を縦方
向:横方向に2:1に配列し最小の熱浸入量で可
搬に耐える支持構造にした。
The load acting on the helium container support during transportation varies depending on the conditions during transportation, but is approximately 3 times and 1.5 times the static load in the vertical and lateral directions, respectively. That is, it is ideal if the load-bearing ratio of the support is 2:1. On the other hand, the characteristics of multiple cylindrical supports are:
In the longitudinal direction and the direction perpendicular to the longitudinal direction, both load capacity and rigidity are much greater in the longitudinal direction. Therefore, it is more effective to receive the load in the longitudinal direction, and in this case, the longitudinal direction is arranged in a ratio of 2:1 in the longitudinal direction to the horizontal direction, and the supporting structure is made to withstand transport with a minimum amount of heat penetration.

真空断熱容器内の限られたスペース内において
ヘリウム容器を支持する場合、支持体1個当りの
熱侵入量は一定であるとしても、移動の際の振動
や衝撃に対する充分な支持強度を得るためには、
支持点の増大、したがつて断熱支持体の使用本数
を上記支持強度を執たす限度をおいて必要なだけ
用いなければならない。換言すれば、支持強度の
増大はそれに伴つて熱侵入量の増大を招くことを
意味する。このような観点から、本発明は、移動
に際してその横揺れや縦揺れに対する最適支持強
度を確保しつつ熱の侵入を最小限に抑制しうるよ
うにしたものである。
When supporting a helium container within a limited space within a vacuum insulated container, even if the amount of heat intrusion per support is constant, it is necessary to obtain sufficient support strength against vibrations and shocks during movement. teeth,
The number of support points must be increased, and therefore the number of heat-insulating supports must be used within the limits necessary to maintain the above-mentioned support strength. In other words, an increase in support strength means an increase in the amount of heat penetration. From this point of view, the present invention is designed to ensure optimal support strength against horizontal and vertical vibrations during movement while minimizing heat infiltration.

〔実施例〕〔Example〕

次に、本発明の実施例を図面に基づいて説明す
る。
Next, embodiments of the present invention will be described based on the drawings.

まず、第2図に本発明に係る超電導装置の全体
を示す。この超電導装置は横置き型であり、した
がつて筒状断熱真空容器7はその軸方向を水平に
した状態で配置される。この真空容器7内には筒
状の窒素容器1が収納されている。この窒素容器
1はその軸方向中央部において4ケ所(上下左
右)で支持され、宙吊り状態で収納されている。
(第3図参照)。さらに、窒素容器1の内周側には
ヘリウム容器2が同じく宙吊り状態で収納されて
いる。すなわち、ヘリウム容器2は窒素容器1の
軸方向両端から内周側に延在されたL形アーム状
の取付座5および断熱支持体3a,3bを介して
支持されている。支持個所は、第1図に示すよう
に、ヘリウム容器2の径方向断面において鉛直方
向上部に1ケ所3a、水平方向対称位置に2ケ所
3a,3bの合計3ケ所に1:2の比で設けられ
ている。ヘリウム容器2内には液体ヘリウム8お
よび超電導コイル9が充填されている。
First, FIG. 2 shows the entire superconducting device according to the present invention. This superconducting device is of a horizontal type, so the cylindrical insulating vacuum container 7 is placed with its axial direction horizontal. A cylindrical nitrogen container 1 is housed within the vacuum container 7. This nitrogen container 1 is supported at four locations (top, bottom, left and right) in its axially central portion, and is housed in a suspended state.
(See Figure 3). Furthermore, a helium container 2 is also housed in a suspended state on the inner peripheral side of the nitrogen container 1. That is, the helium container 2 is supported via an L-shaped arm-shaped mounting seat 5 extending inward from both axial ends of the nitrogen container 1 and heat insulating supports 3a and 3b. As shown in FIG. 1, the support points are provided at a total of three places in the radial cross section of the helium container 2, one place 3a at the top in the vertical direction and two places 3a and 3b at symmetrical positions in the horizontal direction, at a ratio of 1:2. It is being The helium container 2 is filled with liquid helium 8 and a superconducting coil 9.

断熱支持体3a,3bは熱抵抗の大きな構造と
して熱の侵入(冷温の放出)を極力低くするよう
に多重円筒構造となつている。というのは、上記
した超電導装置のクライオスタツトの構造におい
てヘリウム容器2への熱の侵入の大半はこの断熱
支持体3a,3bの経路を通じてくるものであ
り、断熱支持体の熱抵抗を極力大きくすべきこと
ともに、支持強度との関係においてその使用個数
が問題となることは先にも述べた通りである。こ
のようなことから、断熱支持体の構造は、第4図
に示すように、多重円筒からなる断熱支持体で熱
侵入は矢印のように伝達されるので、断熱材の円
筒の長さlを出来るだけ長く厚みをうすくするこ
とが有効である。
The heat insulating supports 3a and 3b have a multi-cylindrical structure with a high thermal resistance so as to minimize the intrusion of heat (release of cold and hot water). This is because, in the structure of the cryostat of the superconducting device described above, most of the heat that enters the helium container 2 comes through the path of the heat insulating supports 3a and 3b, and it is necessary to increase the thermal resistance of the heat insulating supports as much as possible. As mentioned above, the number of pieces used is a problem in relation to the support strength as well as the power. Based on this, the structure of the heat insulating support is as shown in Figure 4. Since the heat insulating support is made up of multiple cylinders and heat is transmitted as shown by the arrow, the length l of the cylinder of the heat insulating material is It is effective to make it as long and thin as possible.

従つて、円筒を水平方向にて支持するには熱侵
入量を小にすればする程、支持体の剛性は小にな
る。多重円筒断熱支持体に第4図のA方向に対す
る耐荷重は円筒の曲げ応力値で決り、また剛性は
それぞれ円筒の撓みで決つてくる。一方、B方向
の荷重に対する耐荷重は、円筒の断面積にかかる
圧縮応力又はそれぞれの円筒間の接着力で決り、
剛性は長さlと断面積で決つてくる。A又はBの
両方向の各々の耐荷重および剛性を比較すると、
耐荷重は差がないが剛性は荷重方向をBにした方
が圧倒的に大である。ところが、剛性が小なる支
持体では輸送中の荷重変動でヘリウム容器2が上
下に大きくゆられてヘリウム容器2の周囲の部品
の破損等で超電源コイル9が大きなイメージを受
ける心配がある。よつて、荷重の大きさに見合つ
た剛性にする必要がある。B方向(長手方向)
は、耐荷重さえもてば剛性が大きいので荷重がか
つてもほとんど変位しない。したがつて、輸送中
の支持体3a,3bにかかる荷重状態はおおむね
縦方向と横方向が静荷重の3:1.5倍とみなされ
るので複数個配置する多重円筒断熱支持体3a,
3bの取付方向を第1図のように縦方向:横方向
の比を2:1に配置すれば経済的な可搬式断熱支
持体を提供できる。又、第5図に示すように、荷
重方向Bにおける各円筒に発生する圧縮応力は、
それぞれの断面積に反比例する。すなわち、円筒
3−1〜3−4までの厚みが一定なら最小径円筒
が最大である。よつて、各々の円筒の径に反比例
させて厚みを変化させれば熱侵入量の少ない断熱
支持体が得られる。
Therefore, in order to support the cylinder in the horizontal direction, the smaller the amount of heat penetration, the smaller the rigidity of the support. The load capacity of the multi-cylindrical heat insulating support in the direction A in FIG. 4 is determined by the bending stress value of the cylinder, and the rigidity is determined by the deflection of the cylinder. On the other hand, the load resistance against the load in the B direction is determined by the compressive stress applied to the cross-sectional area of the cylinder or the adhesive force between the cylinders,
Rigidity is determined by length l and cross-sectional area. Comparing the load capacity and rigidity in both directions A and B,
There is no difference in load capacity, but the rigidity is overwhelmingly greater when the load direction is B. However, with a support having low rigidity, there is a concern that the helium container 2 will be shaken up and down significantly due to load fluctuations during transportation, and parts around the helium container 2 will be damaged, causing the superpower coil 9 to be affected greatly. Therefore, it is necessary to make the rigidity commensurate with the magnitude of the load. B direction (longitudinal direction)
As long as it can withstand a load, it has high rigidity, so the load will hardly shift. Therefore, since the load applied to the supports 3a and 3b during transportation is considered to be approximately 3:1.5 times the static load in the vertical and horizontal directions, multiple cylindrical heat-insulating supports 3a and 3b are arranged in plural numbers.
An economical portable heat insulating support can be provided by arranging the mounting directions of the parts 3b at a vertical:horizontal ratio of 2:1 as shown in FIG. Furthermore, as shown in Fig. 5, the compressive stress generated in each cylinder in the loading direction B is
It is inversely proportional to each cross-sectional area. That is, if the thicknesses of the cylinders 3-1 to 3-4 are constant, the cylinder with the smallest diameter is the largest. Therefore, by changing the thickness in inverse proportion to the diameter of each cylinder, a heat insulating support with a small amount of heat penetration can be obtained.

〔発明の効果〕 以上述べた如く、本発明によれば、冷却しなが
ら輸送される超電導装置において、輸送に伴う振
動や衝撃に対して充分な機械的支持強度を有し、
かつ熱の侵入を極力抑制しうる支持構造を備えた
超電導装置を提供することができる。
[Effects of the Invention] As described above, according to the present invention, a superconducting device that is transported while being cooled has sufficient mechanical support strength against vibrations and shocks associated with transportation,
Moreover, it is possible to provide a superconducting device having a support structure that can suppress heat intrusion as much as possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す第3図の−
断面図、第2図は本発明の超電導装置の全体を示
す部分破断斜視図、第3図は縦断面図、第4図は
断熱支持体の構造を示す縦断面図、第5図はその
−断面図である。 1……窒素容器、2……ヘリウム容器、3……
多重円筒断熱支持体、3−1〜3−4……円筒1
〜4、3a……横方向断熱支持体、3b……縦方
向断熱支持体、4……窒素容器側取付座、5……
ヘリウム容器側取付座、6……断熱支持体軸、7
……断熱真空容器、8……液体ヘリウム、9……
超電導コイル。
FIG. 1 shows an embodiment of the present invention in FIG. 3.
2 is a partially cutaway perspective view showing the entire superconducting device of the present invention, FIG. 3 is a longitudinal sectional view, FIG. 4 is a longitudinal sectional view showing the structure of the heat insulating support, and FIG. 5 is its - FIG. 1... Nitrogen container, 2... Helium container, 3...
Multiple cylindrical heat insulating support, 3-1 to 3-4...Cylinder 1
~4, 3a... Horizontal heat insulating support, 3b... Vertical heat insulating support, 4... Nitrogen container side mounting seat, 5...
Helium container side mounting seat, 6...Insulation support shaft, 7
...Insulated vacuum container, 8...Liquid helium, 9...
superconducting coil.

Claims (1)

【特許請求の範囲】 1 軸方向を水平に配して置かれる筒状断熱真空
容器内に円筒状冷却材容器がその軸方向中央部に
おいて前記筒状断熱真容器に連結され、前記円筒
状冷却材容器の内周側に前記冷却材容器の軸方向
両端部からそれぞれ延在されたアーム状取付座お
よび断熱支持体を介して超電導コイルおよび液体
ヘリウムが格納されたヘリウム容器が支持固定さ
れてなる超電動装置において、 前記断熱支持体によるヘリウム容器の支持点を
当該ヘリウム容器の径方向断面でみて鉛直方向に
1、水平方向対称位置に2の割合で設けたことを
特徴とする超電導装置。 2 特許請求の範囲第1項記載の装置において、
前記断熱支持体は多重円筒構造を有し、各断熱円
筒の断面がほぼ等しくなるように各断熱円筒の厚
みを変化させてなることを特徴とする超電導装
置。
[Scope of Claims] 1. A cylindrical coolant container is connected to the cylindrical heat insulating true container at its axial center in a cylindrical heat insulating vacuum container placed with its axial direction horizontal, and the cylindrical cooling A helium container storing a superconducting coil and liquid helium is supported and fixed on the inner peripheral side of the coolant container via arm-shaped mounting seats and heat insulating supports extending from both axial ends of the coolant container. A superconducting device, characterized in that the support points of the helium container by the heat insulating support are provided at a ratio of 1 in the vertical direction and 2 at symmetrical positions in the horizontal direction when viewed in a radial cross section of the helium container. 2. In the device according to claim 1,
A superconducting device characterized in that the heat insulating support has a multi-cylindrical structure, and the thickness of each heat insulating cylinder is varied so that the cross section of each heat insulating cylinder is approximately equal.
JP61196639A 1986-08-22 1986-08-22 Superconducting apparatus Granted JPS6353907A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61196639A JPS6353907A (en) 1986-08-22 1986-08-22 Superconducting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61196639A JPS6353907A (en) 1986-08-22 1986-08-22 Superconducting apparatus

Publications (2)

Publication Number Publication Date
JPS6353907A JPS6353907A (en) 1988-03-08
JPH0511643B2 true JPH0511643B2 (en) 1993-02-16

Family

ID=16361114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61196639A Granted JPS6353907A (en) 1986-08-22 1986-08-22 Superconducting apparatus

Country Status (1)

Country Link
JP (1) JPS6353907A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3695501B2 (en) 1998-07-31 2005-09-14 Nok株式会社 Diaphragm actuator

Also Published As

Publication number Publication date
JPS6353907A (en) 1988-03-08

Similar Documents

Publication Publication Date Title
US5532663A (en) Support structure for a superconducting coil
CN101512687B (en) A supported superconducting magnet
US4516405A (en) Supporting tie configuration for cryostat for cold shipment of NMR magnet
US7741738B2 (en) Machine comprising a rotor and a superconducting rotor winding
EP0207286B1 (en) Conical, unimpregnated winding for mr magnets
EP0294639B1 (en) Cryogenic support system
US5034713A (en) Radial support system for a MR magnet
EP0228683A2 (en) A low cost intermediate radiation shield for a magnet cryostat
JPH04226005A (en) Mr magnet longitudinal support system
US4599592A (en) Device for holding the housing of a superconducting magnet winding
EP0450971B1 (en) Superconductive magnet
JPH0511643B2 (en)
US4819450A (en) Low cost intermediate radiation shield for a magnet cryostat
US3768765A (en) Thermally isolating structural support system and cryogenic assembly embodying the same
US4487332A (en) Cryostat vessel wall spacing system
EP0805546B1 (en) Support structure for a superconducting coil
JPH11340532A (en) Superconducting magnet equipment
JPH0685375B2 (en) Insulation support device for cryogenic containers
JP2691111B2 (en) Superconducting magnet structure
JPH01241807A (en) Thermal insulation supporting device for superconductive coil
JPS6119089B2 (en)
JPH0574627A (en) Low temperature structure body
JPH04200263A (en) Rotor of superconducting rotating machine
JPS59132690A (en) Cryogenic supporting structure
JPS6313308A (en) Superconducting apparatus