JPH05115466A - Metabolic information measuring instrument - Google Patents

Metabolic information measuring instrument

Info

Publication number
JPH05115466A
JPH05115466A JP3279064A JP27906491A JPH05115466A JP H05115466 A JPH05115466 A JP H05115466A JP 3279064 A JP3279064 A JP 3279064A JP 27906491 A JP27906491 A JP 27906491A JP H05115466 A JPH05115466 A JP H05115466A
Authority
JP
Japan
Prior art keywords
light
probe
catheter
metabolic information
axial direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3279064A
Other languages
Japanese (ja)
Inventor
Akio Nakada
明雄 中田
Mamoru Kaneko
守 金子
Seiji Kuramoto
聖治 倉本
Yasuhiko Omagari
泰彦 大曲
Yoshio Tashiro
芳夫 田代
Kazunari Nakamura
一成 中村
Koichi Umeyama
広一 梅山
Yoshinao Ooaki
義直 大明
Seiji Yamaguchi
征治 山口
Shuichi Takayama
修一 高山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP3279064A priority Critical patent/JPH05115466A/en
Publication of JPH05115466A publication Critical patent/JPH05115466A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

PURPOSE:To provide the subject instrument which can exactly measure the metabolic information at the plural points of a biotissue in a short period of time. CONSTITUTION:A probe 6 provided freely movably along an axial direction is provided in a catheter 4 which is provided with a light transparent part 5a and a light shielding part 5b along the axial direction and has flexibility. An irradiating surface 7a which is provided along the axial direction and emits inspecting light and a photodetecting surface 8a which receives the inspecting light are provided in this probe 6. The inspecting light projected from the irradiating surface 7a transmits the biotissue while scattering and reflecting. The reflected light is received by the photodetecting surface 8a but the reflected light which does not contain the metabolic information is shielded by the light shielding part 5b and is prevented from being received from the photodetecting surface 8a.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、光を用いて心臓や脳
等の生体組織や器官内の酸素飽和度すなわち酸素代謝等
の生体情報を測定するのに適した生体組織の代謝情報測
定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for measuring metabolic information of biological tissue, which is suitable for measuring biological information such as oxygen saturation in biological tissue and organs such as heart and brain using light, that is, oxygen metabolism. Regarding

【0002】[0002]

【従来の技術】赤色から近赤外領域の光は生体組織に対
しての高い透過性やヘモグロビン、ミオグロビン、チト
クローム酸化酵素などの生体の酸素代謝をつかさどる物
質への吸光性やその酸素結合情報に対応する吸光スペク
トルの変化といった特徴を持っている。
2. Description of the Related Art Light in the red to near-infrared region has high permeability to living tissues and its light absorption and oxygen binding information to substances that control oxygen metabolism of living organisms such as hemoglobin, myoglobin, and cytochrome oxidase. It has features such as corresponding changes in absorption spectrum.

【0003】このような特徴を利用して、USP422
3680,USP4281645に示されているよう
に、生体内の心臓や脳などの各種器官の酸素代謝を測定
する方法が知られている。これは、700〜1300n
mの近赤外領域の光を生体内の器官や組織に照射し、前
記器官および組織深部より反射してきた反射光、あるい
は透過してきた光を検出して、波長間の光強度を比較演
算することで血液量、ヘモグロビンおよびチトクローム
の酸素化度を測定している。
Utilizing such characteristics, USP422
As shown in 3680, US Pat. No. 4,281,645, a method of measuring oxygen metabolism of various organs such as heart and brain in a living body is known. This is 700-1300n
Light in the near-infrared region of m is applied to an organ or a tissue in a living body, reflected light reflected from the deep organ or tissue or light transmitted therethrough is detected, and light intensity between wavelengths is compared and calculated. It measures blood volume, hemoglobin and cytochrome oxygenation.

【0004】ここで、前記チトクロームとは、細胞のミ
トコンドリア内に存在する銅を持つ色素タンパク質(酸
化型Cu2+還元型Cu+ )。通常80%が酸化型である
が、虚血時、早期に還元型となる。このため、各波長の
吸収量からチトクロームの酸化還元状態を測定でき、組
織の酸素代謝の指標として使用される。
Here, the cytochrome is a pigment protein (oxidized Cu2 + reduced Cu +) having copper existing in the mitochondria of cells. Usually, 80% is an oxidative type, but during ischemia, it becomes a reducing type early. Therefore, the redox state of cytochrome can be measured from the absorption amount at each wavelength, and it can be used as an index of tissue oxygen metabolism.

【0005】心筋梗塞が起きた場合、最悪の場合は心筋
の壊死に至るが、早期や急性の場合には心筋の活動は停
止しているが、壊死に至らない場合がある。このような
場合にはPTCAやバイパスが有効である。これまで、
PETを用いて心筋が生きているか、死んでいるかの診
断を行い、バイパス術の実施の判断を行っていたが、P
ET装置は、きわめて高価であり、あまり普及していな
い。
When myocardial infarction occurs, myocardial necrosis is caused in the worst case, but in early or acute cases, myocardial activity is stopped but sometimes it is not. In such a case, PTCA and bypass are effective. So far
I used PET to diagnose whether myocardium was alive or dead, and decided to perform bypass surgery.
ET devices are extremely expensive and not very popular.

【0006】心筋組織を測定する場合、実際には、下肢
大動脈からスコープを挿入し、図5に示すように、スコ
ープ1の先端部2を心筋組織としての心筋3に押し当て
ながら冠状動脈にあらかじめ配置されたバルーン等で所
定期間閉塞させて心筋の代謝変化を測定することで診断
している。このとき、心筋が死んでいると代謝変化はな
いことから、心筋が生きているか、死んでいるかを診断
できる。
When measuring the myocardial tissue, in practice, the scope is inserted from the aorta of the lower extremity, and as shown in FIG. Diagnosis is performed by occluding a balloon for a predetermined period of time and measuring metabolic changes in myocardium. At this time, since there is no metabolic change when the myocardium is dead, it is possible to diagnose whether the myocardium is alive or dead.

【0007】ところで、従来の代謝情報測定装置として
知られている特開昭59−230533号公報は、光源
からの光を投光用ファイバを通じて生体組織に投光し、
生体組織からの反射光を複数の光ファイバ束を用いて受
光部へ伝送し、端面にそれぞれ設けた異なる波長フィル
タで分光した後、各波長別に反射光の強さを測定して対
象となる生体組織の情報を測定している。
By the way, Japanese Patent Application Laid-Open No. 59-230533, which is known as a conventional metabolic information measuring apparatus, projects light from a light source onto a living tissue through a light projecting fiber,
The reflected light from the living tissue is transmitted to the light receiving part using a plurality of optical fiber bundles, and after being separated by different wavelength filters provided on the end faces, the intensity of the reflected light is measured for each wavelength and the target living body It measures the information of the organization.

【0008】また、特公昭61−11614号公報は、
700〜1300nmのスペクトル範囲内にある各種波
長の光を含む近赤外領域を所定のサイクルで交互に断続
的に生体組織に投光し、生体組織からの反射光を受光部
で受光し、各波長別に反射光の強さを測定して対象とな
る生体組織の情報を測定している。
Further, Japanese Patent Publication No. 61-11614 discloses
Near-infrared regions including light of various wavelengths within a spectrum range of 700 to 1300 nm are alternately and intermittently projected onto a living tissue in a predetermined cycle, and reflected light from the living tissue is received by a light receiving unit, Information on the target biological tissue is measured by measuring the intensity of reflected light for each wavelength.

【0009】[0009]

【発明が解決しようとする課題】ところで、USP42
23680,USP4281645の両特許において、
出願人は近赤外領域の光を用いて酸素代謝を計測する場
合では、その光の経路は比較的長くなければならないと
強調している。つまり、長い経路にまたがるというよう
にするということは対象とする組織に対し深部の代謝情
報を含むことができるからである。
By the way, USP42
In both patents of 23680 and USP 4281645,
The applicant emphasizes that when measuring oxygen metabolism using light in the near infrared region, the light path must be relatively long. In other words, the fact that it spans a long path can include the metabolic information of the deep part in the target tissue.

【0010】また、臓器の代謝を一方向から光を照射お
よび検出する(これを反射方式と呼ぶ)場合、前記目的
を達成するためには、光の照射部および検出部はそれぞ
れ数センチ程度離す必要があると述べている。“近赤外
生体計測法を用いた対外循環時の脳酸素代謝の監視”人
口臓器19(1)535-538(1990)では脳内の酸素代謝を測定す
るため照射部と検出部を3〜4cm離している。
Further, in the case of irradiating and detecting the metabolism of an organ with light from one direction (this is called a reflection system), in order to achieve the above-mentioned object, the light irradiation part and the detection part are separated from each other by several centimeters. States that it is necessary. “Monitoring cerebral oxygen metabolism during external circulation using near-infrared biometrics” In artificial organ 19 (1) 535-538 (1990), the irradiation part and the detection part are 3 to measure oxygen metabolism in the brain. 4 cm apart.

【0011】また、近年、光ファイバーバンドルを用い
て、胃、大腸はもちろんのこと血管内を画像で観察でき
る内視鏡が医学全般で利用されている。この内視鏡は対
外から見えない臓器を体腔内から直接観察することで疾
患の診断を正確かつ早期に行える特徴を持つ。
In recent years, an endoscope which uses an optical fiber bundle to observe not only the stomach and large intestine but also the inside of blood vessels has been used in general medicine. This endoscope has a characteristic that a disease can be diagnosed accurately and early by directly observing an organ that cannot be seen from the outside from the body cavity.

【0012】さらに、内視鏡にはチャンネルという孔が
設けられており、対外よりチャンネルを通じて体内に生
検鉗子、電気メスなどの処置具が挿入可能で画像による
診断では分からない病変部の診断や治療等に用いられ
る。
Furthermore, the endoscope is provided with a hole called a channel, and a treatment instrument such as biopsy forceps or an electric scalpel can be inserted into the body through the channel from the outside. Used for medical treatment.

【0013】最近ではこのチャンネルを利用して酸素飽
和度を測定するための光ファイバープローブを挿入し
て、病変部の代謝情報を診断したり、または光プローブ
をX線透視下で直接挿入して臓器の酸素代謝を求める検
討が行われている。
Recently, an optical fiber probe for measuring oxygen saturation using this channel is inserted to diagnose metabolic information of a lesion site, or an optical probe is directly inserted under X-ray fluoroscopy to detect organs. Studies are being conducted to determine the oxygen metabolism of.

【0014】前記光プローブについては“光ファイバー
プローブを用いた医用反射光スペクトル分析装置”医用
電子と生体工学Vol.28No3(1990),特開昭59−2305
33に詳しい。
Regarding the optical probe, "Medical reflection spectrum analyzer using optical fiber probe" Medical Electronics and Biotechnology Vol.28 No3 (1990), JP-A-59-2305
Detailed in 33.

【0015】ところで、前述のような光ファイバープロ
ーブは体腔内に挿入可能なように、そのプローブの挿入
部の外径は細く、そのため、光を照射する照射部と検出
する検出部が極めて近接して配置されており、また光速
に比べ十分に長い時間幅のパルス光を使っているため、
光が比較的長い経路をまたがらず組織表面を通過した光
を検出するようになっている。すなわち、このような方
法は組織の表面に限って代謝情報を測定するものであ
り、組織深部の代謝情報は組織の表皮や表皮表面につい
た体液や血液の影響を強く受け測定できなかった。
By the way, the above-mentioned optical fiber probe has a small outer diameter at the insertion portion of the probe so that it can be inserted into the body cavity, and therefore the irradiation portion for irradiating light and the detecting portion for detecting are extremely close to each other. Since it is arranged and uses pulsed light with a time width that is sufficiently longer than the speed of light,
It is designed to detect light that has passed through the tissue surface without crossing a relatively long path. That is, such a method measures the metabolic information only on the surface of the tissue, and the metabolic information in the deep tissue cannot be measured because it is strongly influenced by the epidermis of the tissue, the body fluid attached to the surface of the epidermis, and blood.

【0016】この発明は、前記事情に着目してなされた
もので、その目的とするところは、生体組織の複数部位
の代謝情報を正確に測定できる代謝情報測定装置を提供
することにある。
The present invention has been made in view of the above circumstances, and an object thereof is to provide a metabolic information measuring device capable of accurately measuring metabolic information of a plurality of parts of a living tissue.

【0017】[0017]

【課題を解決するための手段】この発明は、前記目的を
達成するために、生体組織を透過する検査光を検出する
ことにより、組織の代謝情報を測定する代謝情報測定装
置において、可撓性を有するガイド部材と、このガイド
部材内に軸方向に沿って移動自在に設けたプローブと、
このプローブに軸方向に沿って設けた検査光出射部およ
び検査光を受光する検査光受光部とを具備したことにあ
る。
In order to achieve the above-mentioned object, the present invention provides a metabolic information measuring apparatus for measuring metabolic information of a tissue by detecting inspection light passing through a living tissue, which is flexible. A guide member having, and a probe movably provided in the guide member along the axial direction,
This probe is provided with an inspection light emitting portion provided along the axial direction and an inspection light receiving portion for receiving the inspection light.

【0018】[0018]

【作用】生体の体腔内に挿入したガイド部材を生体組織
に押し当て、このガイド部材内に検査光出射部と検査光
受光部を有するプローブを挿入すると、プローブはガイ
ド部材によって目的部位に案内され、プローブの検査光
出射部から検査光を出射すると、検査光は生体組織を散
乱、反射しながら透過し、検査光受光部に受光され、代
謝情報を測定する。
When the guide member inserted into the body cavity of the living body is pressed against the living tissue and the probe having the inspection light emitting portion and the inspection light receiving portion is inserted into the guide member, the probe is guided to the target site by the guide member. When the inspection light is emitted from the inspection light emitting portion of the probe, the inspection light is transmitted while being scattered and reflected by the living tissue, and is received by the inspection light receiving portion to measure metabolic information.

【0019】[0019]

【実施例】以下、この発明の一実施例を図面に基づいて
説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0020】図1に示す、4はガイド部材としてカテー
テルであり、断面が半円形状で、可撓性を有する長尺の
中空パイプによって形成され、軸方向に平行な平坦面4
aと円弧面4bを有している。したがって、カテーテル
4を曲げた際に、この面に垂直な方向にカテーテル4の
曲率中心があるように構成され、さらにカテーテル4は
円周方向の動きが規制される形状に形成されている。
Reference numeral 4 shown in FIG. 1 denotes a catheter as a guide member, which is formed by a long hollow pipe having a semicircular cross section and flexibility, and a flat surface 4 parallel to the axial direction.
It has a and an arc surface 4b. Therefore, when the catheter 4 is bent, the center of curvature of the catheter 4 is arranged in a direction perpendicular to this plane, and the catheter 4 is formed in a shape in which movement in the circumferential direction is restricted.

【0021】さらに、カテーテル4の外周面には軸方向
に沿って複数の光透過部5aと複数の光遮光部5bとが
交互に所定間隔を存して設けられている。前記光透過部
5aは後述する検査光を透過する透光面に、光遮光部5
bは検査光を遮光する遮光膜または光吸収膜によって形
成されている。
Further, on the outer peripheral surface of the catheter 4, a plurality of light transmitting portions 5a and a plurality of light shielding portions 5b are alternately provided at predetermined intervals along the axial direction. The light transmitting portion 5a is formed on a light transmitting surface which transmits inspection light, which will be described later, and the light shielding portion 5a.
b is formed of a light shielding film or a light absorbing film that shields the inspection light.

【0022】また、前記カテーテル4には代謝情報検出
用プローブ6が軸方向にスライド自在に挿入されるよう
になっており、このプローブ6の少なくとも先端部はカ
テーテル4の内腔形状に倣って軸方向に平行な平坦面6
aと円弧面6bを有している。
A metabolic information detecting probe 6 is slidably inserted into the catheter 4 in the axial direction, and at least the tip of the probe 6 follows the inner shape of the catheter 4. Flat surface 6 parallel to the direction
It has a and an arc surface 6b.

【0023】このプローブ6にはその軸方向に亘って検
査光としての照射光を導光する照射用ファイバー7と受
光した検査光を導光する受光用ファイバー8が内装され
ている。そして、照射用ファイバー7はプローブ6の平
坦面6aに設けた検査光出射部としての照射面7aに接
続され、受光用ファイバー8はプローブ6の平坦面6a
に設けた検査光受光部としての受光面8aに接続されて
いる。前記照射面7aと受光面8aとはプローブ5の軸
方向に沿って離間しており、この間隔は前記カテーテル
4の光遮光部5b相互の間隔と一致している。
The probe 6 is internally provided with an irradiation fiber 7 for guiding the irradiation light as the inspection light and a light receiving fiber 8 for guiding the received inspection light along its axial direction. The irradiating fiber 7 is connected to the irradiating surface 7a as an inspection light emitting portion provided on the flat surface 6a of the probe 6, and the light receiving fiber 8 is connected to the flat surface 6a of the probe 6.
It is connected to the light receiving surface 8a as the inspection light receiving portion provided in the. The irradiation surface 7a and the light receiving surface 8a are separated from each other along the axial direction of the probe 5, and the distance between the irradiation surface 7a and the light receiving surface 8a is equal to the distance between the light shielding portions 5b of the catheter 4.

【0024】一方、プローブ6の照射用ファイバー7の
他端側はパルス光を発光する光源としてのレーザダイオ
ード9に、受光用ファイバー8は検出器としての受光素
子10に対向している。したがって、レーザダイオード
9から所定の波長のパルス光を発光すると、照射用ファ
イバー7を介して照射面7aから照射され、また受光面
8aから受光された反射光は受光用ファイバー8によっ
て導光されて受光素子10に受光されるようになってい
る。
On the other hand, the other end of the irradiation fiber 7 of the probe 6 faces a laser diode 9 as a light source for emitting pulsed light, and the light reception fiber 8 faces a light receiving element 10 as a detector. Therefore, when the laser diode 9 emits pulsed light of a predetermined wavelength, it is irradiated from the irradiation surface 7a through the irradiation fiber 7, and the reflected light received from the light receiving surface 8a is guided by the light receiving fiber 8. The light receiving element 10 receives light.

【0025】前記パルス光は、例えばこの波長は酸素代
謝情報を含むチトクローム、ヘモグロビンに吸収のある
700nm〜950nmの近赤外光であり、生体組織の
深部を通過した反射光を有効に捕らえることができ、こ
の反射光は受光素子10によって検出してそれぞれの波
長の検出光を演算することにより、ヘモグロビン、ミオ
グロビン、チトクロームの酸素飽和度を求める。
The pulsed light is, for example, near-infrared light having a wavelength of 700 nm to 950 nm which has absorption in cytochrome and hemoglobin containing oxygen metabolism information, and can effectively capture the reflected light that has passed through the deep part of the living tissue. This reflected light can be detected by the light receiving element 10 and the detection light of each wavelength is calculated to obtain the oxygen saturation levels of hemoglobin, myoglobin, and cytochrome.

【0026】次に、前述のように構成された代謝情報測
定装置の作用について説明する。まず、図3および図4
に示すように、カテーテル4を生体腔内に挿入し、カテ
ーテル4の先端部の平坦面4aを生体組織としての心筋
3に押し当てる。
Next, the operation of the metabolic information measuring device configured as described above will be described. First, FIG. 3 and FIG.
As shown in, the catheter 4 is inserted into the living body cavity, and the flat surface 4a of the distal end portion of the catheter 4 is pressed against the myocardium 3 as a living tissue.

【0027】次に、前記カテーテル4の内部にプローブ
6を挿入し、カテーテル4をガイドとしてプローブ6を
カテーテル4の先端部へ導く。そして、プローブ6を図
2(a)に示すように、光透過部4aに照射面7aおよ
び受光面8aを位置した状態で、照射面7aからパルス
光を照射すると、照射された照射光は心筋3の生体組織
内を拡散しながら進行し、生体組織を通過した反射光は
受光面8aに受光される。
Next, the probe 6 is inserted into the catheter 4, and the probe 6 is guided to the tip of the catheter 4 by using the catheter 4 as a guide. When the probe 6 is irradiated with pulsed light from the irradiation surface 7a in a state where the irradiation surface 7a and the light receiving surface 8a are positioned on the light transmitting portion 4a as shown in FIG. 2 (a), the irradiation light emitted is myocardium. The reflected light that has propagated through the living tissue 3 and has passed through the living tissue is received by the light receiving surface 8a.

【0028】しかし、照射面7aから照射された照射光
はプローブ6とカテーテル4との間、カテーテル4内お
よびカテーテル4と心筋3との間を反射し、その反射光
が受光面8aに受光されてしまう。つまり、代謝情報を
含まない反射光が受光面8aから受光されてしまうため
代謝情報を正確に測定できない。しかし、図2(b)に
示すように、カテーテル4に対してプローブ6を軸方向
にスライドし、照射面7aと受光面8aとの間にカテー
テル4の光遮光部5bを位置し、照射面7aと受光面8
aをそれぞれ光透過部5a,5aに位置する。
However, the irradiation light emitted from the irradiation surface 7a is reflected between the probe 6 and the catheter 4, inside the catheter 4 and between the catheter 4 and the myocardium 3, and the reflected light is received by the light receiving surface 8a. Will end up. That is, the reflected light that does not include metabolic information is received from the light receiving surface 8a, so that the metabolic information cannot be accurately measured. However, as shown in FIG. 2B, the probe 6 is slid in the axial direction with respect to the catheter 4, and the light shielding portion 5b of the catheter 4 is positioned between the irradiation surface 7a and the light receiving surface 8a. 7a and light receiving surface 8
a is located in the light transmitting portions 5a and 5a, respectively.

【0029】そして、前述と同様に照射面7aからパル
ス光を照射すると、照射された照射光は心筋3の生体組
織内を拡散しながら進行し、生体組織を通過した反射光
は受光面8aに受光される。
When pulsed light is irradiated from the irradiation surface 7a in the same manner as described above, the irradiated irradiation light travels while diffusing in the living tissue of the myocardium 3, and the reflected light passing through the living tissue is received by the light receiving surface 8a. Received light.

【0030】このとき、照射面7aから照射された照射
光がプローブ6とカテーテル4との間、カテーテル4内
およびカテーテル4と心筋3との間に導かれても、その
反射光は光遮光部5bに遮光または吸収され、つまり、
代謝情報を含まない反射光を取り除き、代謝情報を含む
反射光のみが受光面8aから受光され、代謝情報を正確
に測定できる。
At this time, even if the irradiation light emitted from the irradiation surface 7a is guided between the probe 6 and the catheter 4 and inside the catheter 4 and between the catheter 4 and the myocardium 3, the reflected light is the light shielding portion. Is blocked or absorbed by 5b, that is,
The reflected light that does not include metabolic information is removed, and only the reflected light that includes metabolic information is received from the light receiving surface 8a, and the metabolic information can be accurately measured.

【0031】このように、心筋3の1箇所の被測定部位
を測定した後、カテーテル4に対してプローブ6を軸方
向にスライドしてプローブ6の照射面7aおよび受光面
8aを他の被測定部位に位置して再び照射面7aから照
射光を照射することにより、心筋3の複数箇所を測定で
き、カテーテル4を体腔内に挿入して置くことにより、
広範囲の代謝状態を測定することができる。
After measuring one measurement site of the myocardium 3 as described above, the probe 6 is slid in the axial direction with respect to the catheter 4 so that the irradiation surface 7a and the light receiving surface 8a of the probe 6 are measured on another measurement surface. By irradiating irradiation light from the irradiation surface 7a again at the site, it is possible to measure a plurality of points of the myocardium 3, and by inserting the catheter 4 into the body cavity and placing
A wide range of metabolic states can be measured.

【0032】[0032]

【発明の効果】以上説明したように、この発明によれ
ば、生体の体腔内に挿入したガイド部材を生体組織に押
し当て、このガイド部材を案内として検査光出射部と検
査光受光部を有するプローブを挿入し、プローブの検査
光出射部から検査光を出射すると、検査光は生体組織を
散乱、反射しながら透過し、検査光受光部に受光され
る。
As described above, according to the present invention, the guide member inserted in the body cavity of the living body is pressed against the living tissue, and the guide member has the inspection light emitting portion and the inspection light receiving portion as a guide. When the probe is inserted and the inspection light is emitted from the inspection light emitting portion of the probe, the inspection light is transmitted while being scattered and reflected by the living tissue, and is received by the inspection light receiving portion.

【0033】したがって、プローブを容易に目的部位に
導くことができ、また、ガイド部材を体腔内に挿入して
置くことにより、このガイド部材を案内してプローブを
何回も挿入することができ、また生体組織の複数の被測
定部位を簡単に短時間に測定できるという効果がある。
Therefore, the probe can be easily guided to the target site, and by inserting and placing the guide member in the body cavity, the guide member can be guided and the probe can be inserted many times. Further, there is an effect that it is possible to easily measure a plurality of measurement sites of the living tissue in a short time.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例に係わる代謝情報測定装置
のカテーテルおよびプローブの先端部の斜視図。
FIG. 1 is a perspective view of a distal end portion of a catheter and a probe of a metabolic information measuring device according to an embodiment of the present invention.

【図2】(a)(b)は同実施例の使用状態の縦断側面
図。
2 (a) and 2 (b) are vertical cross-sectional side views of the same embodiment in use.

【図3】同実施例のカテーテルおよびプローブを体腔内
に挿入した状態の斜視図。
FIG. 3 is a perspective view showing a state where the catheter and the probe of the embodiment are inserted into a body cavity.

【図4】同実施例のカテーテルおよびプローブを心筋に
密着させた状態の斜視図。
FIG. 4 is a perspective view showing a state in which the catheter and the probe of the same embodiment are brought into close contact with myocardium.

【図5】心筋の一般的な測定状態を示す斜視図。FIG. 5 is a perspective view showing a general measurement state of a myocardium.

【符号の説明】[Explanation of symbols]

4…カテーテル、6…プローブ、7…照射用ファイバ
ー、8…受光用ファイバー、7a…照射面、8a…受光
面。
4 ... Catheter, 6 ... Probe, 7 ... Irradiation fiber, 8 ... Receiving fiber, 7a ... Irradiation surface, 8a ... Receiving surface.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年2月21日[Submission date] February 21, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0010[Correction target item name] 0010

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0010】また、臓器の代謝を一方向から光を照射お
よび検出する(これを反射方式と呼ぶ)場合、前記目的
を達成するためには、光の照射部および検出部はそれぞ
れ数センチ程度離す必要があると述べている。“近赤外
生体計測法を用いた体外循環時の脳酸素代謝の監視”人
口臓器19(1)535−538(1990)では脳内
の酸素代謝を測定するため照射部と検出部を3〜4cm
離している。
Further, in the case of irradiating and detecting the metabolism of an organ with light from one direction (this is called a reflection system), in order to achieve the above-mentioned object, the light irradiation part and the detection part are separated from each other by several centimeters. States that it is necessary. “Monitoring cerebral oxygen metabolism during extracorporeal circulation using near-infrared biometrics” In artificial organ 19 (1) 535-538 (1990), the irradiation unit and the detection unit are 3 to 3 in order to measure oxygen metabolism in the brain. 4 cm
Separated.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0011[Correction target item name] 0011

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0011】また、近年、光ファイバーバンドルを用い
て、胃、大腸はもちろんのこと血管内を画像で観察でき
る内視鏡が医学全般で利用されている。この内視鏡は
から見えない臓器を体腔内から直接観察することで疾
患の診断を正確かつ早期に行える特徴を持つ。
In recent years, an endoscope which uses an optical fiber bundle to observe not only the stomach and large intestine but also the inside of blood vessels has been used in general medicine. This endoscope is the body
By directly observing internal organs that cannot be seen from the inside of the body cavity, it is possible to accurately and early diagnose diseases.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0012[Correction target item name] 0012

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0012】さらに、内視鏡にはチャンネルという孔が
設けられており、体外よりチャンネルを通じて体内に生
検鉗子、電気メスなどの処置具が挿入可能で画像による
診断では分からない病変部の診断や治療等に用いられ
る。
Further, the endoscope is provided with a hole called a channel, and a treatment tool such as a biopsy forceps or an electric scalpel can be inserted into the body from the outside of the body through the channel to diagnose a lesion portion which cannot be detected by image diagnosis. Used for medical treatment.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0023[Name of item to be corrected] 0023

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0023】このプローブ6にはその軸方向に亘って検
査光としての照射光を導光する照射用ファイバー7と受
光した検査光を導光する受光用ファイバー8が内装され
ている。そして、照射用ファイバー7はプローブ6の平
坦面6aに設けた検査光出射部としての照射面7aに接
続され、受光用ファイバー8はプローブ6の平坦面6a
に設けた検査光受光部としての受光面8aに接続されて
いる。前記照射面7aと受光面8aとはプローブの軸
方向に沿って離間しており、この間隔は前記カテーテル
4の光遮光部5b相互の間隔と一致している。
The probe 6 is internally provided with an irradiation fiber 7 for guiding the irradiation light as the inspection light and a light receiving fiber 8 for guiding the received inspection light along its axial direction. The irradiating fiber 7 is connected to the irradiating surface 7a as an inspection light emitting portion provided on the flat surface 6a of the probe 6, and the light receiving fiber 8 is connected to the flat surface 6a of the probe 6.
It is connected to the light receiving surface 8a as the inspection light receiving portion provided in the. The irradiation surface 7a and the light receiving surface 8a are separated from each other along the axial direction of the probe 6 , and this distance is equal to the distance between the light shielding portions 5b of the catheter 4.

フロントページの続き (72)発明者 大曲 泰彦 東京都渋谷区幡ケ谷2丁目43番2号 オリ ンパス光学工業株式会社内 (72)発明者 田代 芳夫 東京都渋谷区幡ケ谷2丁目43番2号 オリ ンパス光学工業株式会社内 (72)発明者 中村 一成 東京都渋谷区幡ケ谷2丁目43番2号 オリ ンパス光学工業株式会社内 (72)発明者 梅山 広一 東京都渋谷区幡ケ谷2丁目43番2号 オリ ンパス光学工業株式会社内 (72)発明者 大明 義直 東京都渋谷区幡ケ谷2丁目43番2号 オリ ンパス光学工業株式会社内 (72)発明者 山口 征治 東京都渋谷区幡ケ谷2丁目43番2号 オリ ンパス光学工業株式会社内 (72)発明者 高山 修一 東京都渋谷区幡ケ谷2丁目43番2号 オリ ンパス光学工業株式会社内Front Page Continuation (72) Inventor Yasuhiko Omagari 2-43-2 Hatagaya, Shibuya-ku, Tokyo Within Olympus Optical Co., Ltd. (72) Inventor Yoshio Tashiro 2-43-2 Hatagaya, Shibuya-ku, Tokyo Olympus Optics Kogyo Co., Ltd. (72) Inventor Issei Nakamura 2-43-2 Hatagaya, Shibuya-ku, Tokyo Olympus Optical Co., Ltd. (72) Koichi Umeyama 2-43-2 Hatagaya, Shibuya-ku, Tokyo Olympus Optical Industry Co., Ltd. (72) Inventor Yoshinao Daimei 2-43-2 Hatagaya, Shibuya-ku, Tokyo Olympus Optical Industry Co., Ltd. (72) Inventor Seiji Yamaguchi 2-43-2 Hatagaya, Shibuya-ku, Tokyo Olympus Inside Optical Industry Co., Ltd. (72) Inventor Shuichi Takayama 2-43-2 Hatagaya, Shibuya-ku, Tokyo Inside Olympus Optical Industry Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 生体組織を透過する検査光を検出するこ
とにより、組織の代謝情報を測定する代謝情報測定装置
において、可撓性を有するガイド部材と、このガイド部
材内に軸方向に沿って移動自在に設けたプローブと、こ
のプローブに軸方向に沿って設けた検査光出射部および
検査光を受光する検査光受光部とを具備したことを特徴
とする代謝情報測定装置。
1. A metabolic information measuring device for measuring metabolic information of a tissue by detecting an inspection light transmitted through a living tissue, wherein a flexible guide member and an axial direction within the guide member are provided. A metabolic information measuring device comprising: a probe that is movably provided; and a test light emitting unit and an test light receiving unit that receives the test light and that is provided along the axial direction of the probe.
JP3279064A 1991-10-25 1991-10-25 Metabolic information measuring instrument Withdrawn JPH05115466A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3279064A JPH05115466A (en) 1991-10-25 1991-10-25 Metabolic information measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3279064A JPH05115466A (en) 1991-10-25 1991-10-25 Metabolic information measuring instrument

Publications (1)

Publication Number Publication Date
JPH05115466A true JPH05115466A (en) 1993-05-14

Family

ID=17605908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3279064A Withdrawn JPH05115466A (en) 1991-10-25 1991-10-25 Metabolic information measuring instrument

Country Status (1)

Country Link
JP (1) JPH05115466A (en)

Similar Documents

Publication Publication Date Title
US11457812B1 (en) Using an oximeter probe to detect intestinal ischemia
US6594518B1 (en) Device and method for classification of tissue
JP2583730B2 (en) Sensor device
US9113785B2 (en) Fluid media for bio-sensitive applications
US10674947B1 (en) Diagnosing intestinal ischemia based on oxygen saturation measurements
JP3532800B2 (en) Stethoscope
JPH05103746A (en) Metabolism information measuring device
US20080039715A1 (en) Three-dimensional optical guidance for catheter placement
JP4559995B2 (en) Tumor testing device
EP1871221B1 (en) Human cavity gas measurement device and method
JP7317624B2 (en) Cerebral clot characterization and corresponding stent selection using optical signal analysis
EP2378953B1 (en) Device for optical detection of the condition of joints
EP1620001B1 (en) Catheter head
JPH05103774A (en) Measuring device for metabolism information
US20210379395A1 (en) Treatment Method and Treatment System
JPH05115466A (en) Metabolic information measuring instrument
JPH05103775A (en) Measuring device for metabolism information
JPH05103786A (en) Measuring device for metabolism information
JPH05115467A (en) Metabolic information measuring system
JPH05115463A (en) Metabolism information measuring system
RU2234853C1 (en) Diagnostic device for measuring physical and biological characteristics of skin and mucous membranes in vivo
JPH05115465A (en) Metabolic information measuring instrument
JPH05111477A (en) Metabolism information measuring instrument
JPH05115484A (en) Endoscopic device
JPH05111478A (en) Metabolism information measuring instrument

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990107