JPH0511521U - Quadrature demodulation circuit - Google Patents
Quadrature demodulation circuitInfo
- Publication number
- JPH0511521U JPH0511521U JP5548791U JP5548791U JPH0511521U JP H0511521 U JPH0511521 U JP H0511521U JP 5548791 U JP5548791 U JP 5548791U JP 5548791 U JP5548791 U JP 5548791U JP H0511521 U JPH0511521 U JP H0511521U
- Authority
- JP
- Japan
- Prior art keywords
- demodulation circuit
- quadrature demodulation
- absolute value
- agc
- orthogonal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
- Control Of Amplification And Gain Control (AREA)
Abstract
(57)【要約】
【目的】 本考案は直交復調回路に関し、二乗平均を導
出する前に直交する二つの信号の絶対値レベルが一致す
るように補正する場合にも適切なAGCがかけられる直
交復調回路の実現を目的とする。
【構成】 直交する二つの信号の二乗平均を導出して復
調信号を得る直交復調回路において、二乗平均を導出す
る前の段階に設けられ、二つの直交信号の絶対値レベル
を一致させるように補正するレベル一致補正手段、及び
レベル一致補正手段の更に前の段階で直交する二つの信
号の強度が所定の範囲内に入るように制御する自動利得
制御手段を備える。
(57) [Summary] [Object] The present invention relates to a quadrature demodulation circuit, in which an appropriate AGC is applied even when correcting the absolute value levels of two signals which are orthogonal to each other before deriving the root mean square. The purpose is to realize a demodulation circuit. In a quadrature demodulation circuit that obtains a demodulated signal by deriving the root mean square of two orthogonal signals, the quadrature demodulation circuit is provided in a stage before deriving the root mean square, and is corrected so that the absolute value levels of the two quadrature signals match. Level matching correction means, and automatic gain control means for controlling so that the intensities of the two signals orthogonal to each other at a stage before the level matching correction means fall within a predetermined range.
Description
【0001】[0001]
本考案はAMラジオ等のダイレクト検波方式の音声無線受信装置に用いられる 直交復調回路に関する。 The present invention relates to a quadrature demodulation circuit used in a direct detection type audio wireless receiver such as an AM radio.
【0002】[0002]
AMラジオ等の音声無線受信装置において、従来のスーパーヘテロダイン方式 の替りに、直交復調回路を用いたダイレクトコンバージョン受信方式が用いられ るようになっている。ダイレクトコンバージョン受信方式によれば、回路構成を 簡単にして高い信頼性が得られるという利点がある。直交復調回路においては、 直交する二つの信号の二乗平均を導出することにより復調信号が得られる。本出 願人は、特開昭61−273005号公報で簡単な構成で高い信頼性の得られる直交復調 回路を提案している。 In voice radio receivers such as AM radio, a direct conversion reception system using a quadrature demodulation circuit has been used instead of the conventional super-heterodyne system. The direct conversion reception method has the advantage that the circuit configuration can be simplified and high reliability can be obtained. In the quadrature demodulation circuit, a demodulated signal is obtained by deriving the root mean square of two signals that are orthogonal to each other. The applicant of the present invention has proposed a quadrature demodulation circuit having a simple structure and high reliability in JP-A-61-273005.
【0003】 AMラジオ等の音声無線受信機では、受信位置等により受信電波の強度が一定 しないため、そのまま復調信号を出力したのでは、安定した音量が得られない。 そのため受信電波の強度にかかわらず一定の音量が得られるように、信号強度を 自動的に一定に保つように制御する自動利得制御(以下AGCと称する。)と呼 ばれる方式が利用される。AGC機能を有する直交復調回路の構成例を図3に示 す。なお図においては同一の機能部分には同一番号を付し、順にアルファベット の小文字を付して表わす。In a voice radio receiver such as an AM radio, the intensity of the received radio wave is not constant depending on the receiving position and the like, so that if the demodulated signal is output as it is, a stable volume cannot be obtained. Therefore, a method called automatic gain control (hereinafter referred to as AGC) is used to automatically keep the signal strength constant so that a constant volume can be obtained regardless of the strength of the received radio wave. FIG. 3 shows an example of the configuration of a quadrature demodulation circuit having an AGC function. In the drawings, the same functional parts are designated by the same reference numerals, which are sequentially denoted by lowercase letters.
【0004】 図3に示すように、アンテナからの受信電波は帯域フィルタ13cで搬送波に相 当する周波数成分のみが取り出され、RF増幅器81cで増幅される。RF増幅器 81cは、利得可変の増幅器でAGCのための信号強度の調整を行なう。発振器11 cは基準波を発生し、移相器12cで90°位相の異なるもう一つの基準波になる。 二つの基準波は混合器2cと3cで受信信号に混合され直交する二つの信号が作 られる。これらの直交信号は、BPF4cと5cで直流成分を含まない低周波成 分が取り出され、演算回路6cに入力される。演算回路6cでは演算器61cから 64cで二乗平均が導出され復調信号となる。As shown in FIG. 3, in the received radio wave from the antenna, only the frequency component corresponding to the carrier wave is extracted by the band filter 13c and amplified by the RF amplifier 81c. The RF amplifier 81c is a variable gain amplifier and adjusts the signal strength for AGC. The oscillator 11c generates a reference wave, and the phase shifter 12c becomes another reference wave having a 90 ° phase difference. The two reference waves are mixed with the received signal by mixers 2c and 3c to generate two orthogonal signals. From these quadrature signals, low-frequency components containing no DC component are extracted by the BPFs 4c and 5c and input to the arithmetic circuit 6c. In the arithmetic circuit 6c, the root mean square is derived from the arithmetic units 61c to 64c and becomes a demodulated signal.
【0005】 通常AGCをかける場合には、図3に示すように復調信号をAGC制御部8c で処理した後に、RF増幅器81cにフィードバックして一定の復調出力を得るよ うにしている。図3の回路において、各構成要素はRF増幅器81cから所定の強 度の信号が出力された時に最適になるようにダイナミックレンジが定められてお り、AGCがかからない場合には、一定の音量が得られないだけでなく信号に歪 みが生じるという問題が発生する。Normally, when applying AGC, the demodulated signal is processed by the AGC controller 8c as shown in FIG. 3 and then fed back to the RF amplifier 81c to obtain a constant demodulated output. In the circuit of FIG. 3, the dynamic range of each component is set to be optimum when a signal of a predetermined intensity is output from the RF amplifier 81c, and when AGC is not applied, a constant volume is maintained. Not only can it not be obtained, but the problem arises that the signal is distorted.
【0006】 直交復調回路で直交する二つの信号を二乗平均して復調信号を得る場合、直交 する二つの信号が正確に直交し、等しい絶対値レベルを有していることが必要で ある。もしこれらの条件が満されない場合には復調信号に歪みが生じることにな る。上記の直交する二つの信号が正確に直交せず、等しい絶対値レベルにならな い原因としては、90°移相器12cの誤差やBPF4cと5cの特性の差等のいく つかの要因がある。そこで二乗平均を導出する前段階で、直交する二つの信号を 正確に直交させ、等しい絶対値レベルを有するように補正することが行なわれる 。図4は、二乗平均を導出する前に、直交する二つの信号の絶対値レベルを一致 させる従来例の構成を示す図である。When a quadrature demodulation circuit obtains a demodulated signal by square-rooting two orthogonal signals, it is necessary that the two orthogonal signals be exactly orthogonal and have equal absolute value levels. If these conditions are not met, the demodulated signal will be distorted. There are some factors such as the error of the 90 ° phase shifter 12c and the difference in the characteristics of the BPFs 4c and 5c that cause the two signals that are orthogonal to each other not to be exactly orthogonal and have the same absolute value level. . Therefore, before deriving the root mean square, two orthogonal signals are accurately orthogonalized and corrected so that they have equal absolute value levels. FIG. 4 is a diagram showing a configuration of a conventional example in which the absolute value levels of two orthogonal signals are matched before deriving the root mean square.
【0007】 図4は、二乗平均の導出及び上記の補正をディジタルシグナルプロセッサ(以 下DSPと称する。)を用いてディジタル処理により行なう例である。図示のよ うに直交する二つの信号の絶対値を算出し、低周波成分のみを取り出す。これが 絶対値レベルであるからその比率を算出して、その比率分だけ増幅することによ り一致させる。また位相補正についても同様に行なわれ、本出願人は特願平3− 113118号でディジタル処理により位相補正を行なう直交復調回路を開示している 。位相補正を行なうと絶対値レベルが変動するため、位相補正を行なう場合には 絶対値レベルの補正も行なうことが望ましい。FIG. 4 shows an example in which the root mean square derivation and the above correction are performed by digital processing using a digital signal processor (hereinafter referred to as DSP). As shown in the figure, the absolute values of two orthogonal signals are calculated, and only the low frequency component is extracted. Since this is an absolute value level, the ratio is calculated, and amplification is performed by that ratio to make them match. The same applies to the phase correction, and the applicant of the present application discloses a quadrature demodulation circuit that performs the phase correction by digital processing in Japanese Patent Application No. 3-113118. Since absolute value level changes when phase correction is performed, it is desirable to correct absolute value level when performing phase correction.
【0008】[0008]
上記のように二乗平均を算出する前段階に直交する二つの信号の絶対値レベル を一致させるような補正を行なう絶対値レベル補正手段を設けた直交復調回路で 、図3に示したように復調信号を検出してAGCをかけた場合を考えてみる。こ の場合復調信号としては一定強度の信号が得られるが、復調信号には上記の絶対 値レベルの補正の結果が含まれる。そのため復調信号と入力信号のレベルは完全 に対応しているとはいえず、復調信号に基づいてAGCをかけた場合絶対値レベ ルの補正分が影響することになる。 As described above, the quadrature demodulation circuit provided with absolute value level correction means for performing correction so as to match the absolute value levels of two signals orthogonal to each other prior to the step of calculating the root mean square, demodulation as shown in FIG. Consider the case where a signal is detected and AGC is applied. In this case, a signal having a constant intensity is obtained as the demodulated signal, but the demodulated signal includes the result of the correction of the absolute value level. Therefore, it cannot be said that the levels of the demodulated signal and the input signal completely correspond, and when AGC is applied based on the demodulated signal, the correction amount of the absolute value level has an influence.
【0009】 前述のようにAGCは一定強度の復調信号を得るためだけでなく、回路を構成 する各構成要素のダイナミックレンジが入力信号に対して適切な範囲になるよう にする役割も果している。特に入力信号がダイナミックレンジを越えた場合には 、直ちに信号の歪みになる。もし途中で絶対値レベルが補正された復調信号によ りAGCをかけた場合、適切なAGCがかからずに構成要素のダイナミックレン ジに対して適切な入力信号のレベルが確保できないという問題が発生する。As described above, the AGC not only serves to obtain a demodulated signal of constant intensity, but also serves to ensure that the dynamic range of each constituent element of the circuit is within an appropriate range with respect to the input signal. Especially when the input signal exceeds the dynamic range, the signal is immediately distorted. If AGC is applied by a demodulated signal whose absolute value level has been corrected in the middle, there is a problem that an appropriate AGC does not occur and an appropriate input signal level cannot be secured for the dynamic range of the constituent elements. Occur.
【0010】 本考案は上記問題点に鑑みてなされたものであり、二乗平均を導出する前に直 交する二つの信号の絶対値レベルを補正する絶対値レベル補正を行う場合にも適 切なAGCがかけられる直交復調回路を実現することを目的とする。The present invention has been made in view of the above problems, and is suitable for AGC even when performing absolute value level correction for correcting the absolute value levels of two signals that directly intersect each other before deriving the root mean square. It is an object of the present invention to realize a quadrature demodulation circuit that can be multiplied.
【0011】[0011]
本考案の直交復調回路は、上記問題点を解決するため、絶対値レベル補正を行 なう前の段階で信号の強度が所定の範囲内に入るようにAGCをかける。 すなわち本考案の直交復調回路は、90°位相の異なる基準波を受信波にそれぞ れ混合し、得られた直交する二つの信号の復調に必要な周波数成分のみを取り出 した後に二乗平均を導出して復調信号を得る直交復調回路において、二乗平均を 導出する前の段階に設けられ、直交する二つの信号の絶対値レベルを一致させる ように補正するレベル一致補正手段、及びレベル一致補正手段の更に前の段階で 、直交する二つの信号の強度が所定の範囲内に入るように制御する自動利得制御 手段を備える。 In order to solve the above problems, the quadrature demodulation circuit of the present invention applies AGC so that the signal strength falls within a predetermined range before the absolute value level correction. That is, the quadrature demodulation circuit of the present invention mixes reference waves having different 90 ° phases with the received wave, respectively, extracts only the frequency components necessary for demodulation of the obtained two orthogonal signals, and then calculates the root mean square. In a quadrature demodulation circuit for deriving and obtaining a demodulation signal, a level coincidence correction unit and a level coincidence correction unit, which are provided at a stage before deriving a root mean square and correct the absolute value levels of two orthogonal signals In a step before the step of (1), an automatic gain control means is provided for controlling the strengths of the two signals which are orthogonal to each other so as to fall within a predetermined range.
【0012】[0012]
直交する二つの信号の絶対値レベルを一致させるように補正する前の段階でA GCがかけられるため、絶対値レベルを一致させる補正の影響を受けず、適切な AGCをかけることができる。 Since the AGC is applied at the stage before the correction so that the absolute value levels of the two orthogonal signals are made to coincide with each other, an appropriate AGC can be applied without being affected by the correction of making the absolute value levels coincide.
【0013】[0013]
二乗平均を導出する直交復調回路においては、二乗平均を導出する処理や前述 の絶対値レベルの補正及び位相差の補正は、複雑な補正を必要とするためアナロ グ回路により実現するのは回路が大きくなるという問題がある。そこで上記のよ うな処理をDSPを用いたディジタル処理により行なうのが、信頼性やコストの 点から望ましい。そこでディジタル処理により二乗平均と補正を行なう回路にお いて、AGCをかける実施例を説明する。 In the quadrature demodulation circuit that derives the root mean square, the process of deriving the root mean square, the above-described correction of the absolute value level and the correction of the phase difference require complicated correction, and therefore the circuit is not realized by the analog circuit. There is a problem of getting bigger. Therefore, it is desirable from the standpoint of reliability and cost to perform the above-mentioned processing by digital processing using a DSP. Therefore, an embodiment will be described in which AGC is applied to a circuit for performing root mean square and correction by digital processing.
【0014】 図1は、この実施例の構成を示す図である。図3及び図4で示されたのと共通 な部分の説明は省略するが、AGCにより信号強度を変化させるために利得可変 増幅器81a,82a及び83aが設けられている。レベル補正部71aは図4に示した 直交する二つの信号の絶対値レベルを一致させるように補正を行なう部分であり 、位相補正部72aは特願平3−113118号に開示されるような回路を例とするもの である。FIG. 1 is a diagram showing the configuration of this embodiment. Although description of the portions common to those shown in FIGS. 3 and 4 is omitted, variable gain amplifiers 81a, 82a and 83a are provided to change the signal strength by the AGC. The level correction section 71a is a section for performing correction so as to match the absolute value levels of the two orthogonal signals shown in FIG. 4, and the phase correction section 72a is a circuit as disclosed in Japanese Patent Application No. 3-113118. Is an example.
【0015】 図1において、8aはAGC制御部であり、ディジタル変換された直交する二 つの信号の強度を検出してAGCをかけるように各増幅器81a,82a及び83aに フィードバックする。AGC制御部8aの処理はディジタル処理により行なわれ 、アナログ信号に変換された後各増幅器にフィードバックされる。 図2はAGC制御部8aの回路構成を示す図であり、広く知られている回路で ある。直交する二つの信号はそれぞれ独立にAGCがかけられ、直交する二つの 信号を合せた信号に基づいて最初の増幅器81aにフィードバックがかけられる。In FIG. 1, reference numeral 8a denotes an AGC control unit, which detects the intensities of two digitally-converted orthogonal signals and feeds them back to the amplifiers 81a, 82a, and 83a so as to apply AGC. The processing of the AGC controller 8a is performed by digital processing, and after being converted into an analog signal, it is fed back to each amplifier. FIG. 2 is a diagram showing a circuit configuration of the AGC control section 8a, which is a widely known circuit. Two orthogonal signals are independently subjected to AGC, and feedback is applied to the first amplifier 81a based on the combined signal of the two orthogonal signals.
【0016】 本実施例においては、図1及び図2に示すようにAGCは最初のRF増幅器81 aだけでなく、直交する二つの信号のA/D変換器91aと92aの前の増幅器82a と83aにもかけられる。これはA/D変換器91aと92aでは、入力信号とダイナ ミックレンジの関係が特に厳しく、入力信号がA/D変換器の基準電圧を越えた 場合は飽和したディジタル信号になり、入力信号が基準電圧より小さ過ぎると桁 落ちしたディジタル信号になるためである。但し、LPF等の特性が充分な精度 を有する場合には、増幅器82aと83aでAGCをかける必要はなく、この部分は なくても構わない。In this embodiment, as shown in FIGS. 1 and 2, the AGC includes not only the first RF amplifier 81a but also the amplifier 82a in front of the two orthogonal A / D converters 91a and 92a. You can also call 83a. In the A / D converters 91a and 92a, the relationship between the input signal and the dynamic range is particularly strict. When the input signal exceeds the reference voltage of the A / D converter, it becomes a saturated digital signal, and the input signal becomes This is because if it is lower than the reference voltage, the digital signal will be lost. However, if the characteristics of the LPF or the like have sufficient accuracy, it is not necessary to apply AGC in the amplifiers 82a and 83a, and this portion may be omitted.
【0017】 以上のように二乗平均の導出や補正をディジタル処理で行なう場合には、アナ ログ信号からディジタル信号への変換時や他の演算時にも桁落ちによる精度の低 下という問題が伴うため、AGCにより信号強度をダイナミックレンジに対して 適切な値にすることは特に重要である。As described above, when the root mean square is derived or corrected by digital processing, there is a problem that precision is lowered due to digit cancellation during conversion from an analog signal to a digital signal and during other calculations. , AGC, it is particularly important to make the signal strength an appropriate value for the dynamic range.
【0018】[0018]
本考案により直交する二つの信号の絶対値レベルを補正して歪のない復調信号 を得られるようにした場合にも、適切なAGCをかけることが可能になり、より 良好な復調信号が得られる直交復調回路が実現できる。 Even when the present invention corrects the absolute value levels of two signals that are orthogonal to each other to obtain a demodulated signal without distortion, it is possible to apply an appropriate AGC, and a better demodulated signal can be obtained. A quadrature demodulation circuit can be realized.
【図1】本考案の実施例の構成を示す図である。FIG. 1 is a diagram showing a configuration of an embodiment of the present invention.
【図2】図1のAGC回路の例を示す図である。FIG. 2 is a diagram showing an example of the AGC circuit of FIG.
【図3】従来のAGC機能を有する直交復調回路の構成
を示す図である。FIG. 3 is a diagram showing a configuration of a conventional quadrature demodulation circuit having an AGC function.
【図4】直交する二つの信号の絶対値レベルを一致する
ようにディジタル処理により補正する従来例を示す図で
ある。FIG. 4 is a diagram showing a conventional example in which absolute values of two orthogonal signals are corrected by digital processing so as to match each other.
2a,3a…混合器 4a,5a…帯域通過フィルタ 8a…AGC制御部 11a…発振器 12a…90°移相器 71a…レベル補正部 72a…位相補正部 81a…RF可変増幅器 82a,83a…可変増幅器 84a,85a,86a…D/A変換器 91a,92a…A/D変換器 2a, 3a ... Mixer 4a, 5a ... Bandpass filter 8a ... AGC control section 11a ... Oscillator 12a ... 90 ° phase shifter 71a ... Level correction section 72a ... Phase correction section 81a ... RF variable amplifier 82a, 83a ... Variable amplifier 84a , 85a, 86a ... D / A converter 91a, 92a ... A / D converter
Claims (1)
ぞれ混合し、得られた直交する二つの信号の復調に必要
な周波数成分のみを取り出した後に二乗平均を導出して
復調信号を得る直交復調回路において、 二乗平均を導出する前の段階に設けられ、該直交する二
つの信号の絶対値レベルを一致させるように補正するレ
ベル一致補正手段、及び該レベル一致補正手段の更に前
の段階で、該直交する二つの信号の強度が所定の範囲内
に入るように制御する自動利得制御手段を備えることを
特徴とする直交復調回路。[Claims for utility model registration] [Claim 1] Mixing reference waves with different 90 ° phases into the received waves, extracting only the frequency components necessary for demodulation of the two orthogonal signals obtained, and then taking the root mean square In a quadrature demodulation circuit for deriving a demodulated signal by deriving the quadrature signal and a level coincidence correction means for correcting the absolute value levels of the two orthogonal signals so as to coincide with each other, and the level. A quadrature demodulation circuit comprising automatic gain control means for controlling the intensities of the two orthogonal signals to fall within a predetermined range at a stage before the coincidence correction means.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5548791U JPH0511521U (en) | 1991-07-17 | 1991-07-17 | Quadrature demodulation circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5548791U JPH0511521U (en) | 1991-07-17 | 1991-07-17 | Quadrature demodulation circuit |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0511521U true JPH0511521U (en) | 1993-02-12 |
Family
ID=12999989
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5548791U Pending JPH0511521U (en) | 1991-07-17 | 1991-07-17 | Quadrature demodulation circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0511521U (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005197968A (en) * | 2004-01-06 | 2005-07-21 | Fujitsu Ltd | Signal processing circuit, quadrature demodulator and method for estimating error in same |
US7602865B2 (en) | 2003-11-22 | 2009-10-13 | Lg Electronics Inc. | Apparatus and method for enhancing a reception rate of a receiver |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59204319A (en) * | 1983-05-04 | 1984-11-19 | Toshiba Corp | Pll synchronous demodulating circuit |
JPS61273005A (en) * | 1985-05-28 | 1986-12-03 | Fujitsu Ten Ltd | Amplitude modulation system receiver |
JPS63133777A (en) * | 1986-11-25 | 1988-06-06 | Nec Home Electronics Ltd | Keyed automatic level control circuit for four-phase psk modulator |
EP0424009A2 (en) * | 1989-10-18 | 1991-04-24 | Nokia Mobile Phones Ltd. | Automatic gain control circuit in a radio telephone receiver |
-
1991
- 1991-07-17 JP JP5548791U patent/JPH0511521U/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59204319A (en) * | 1983-05-04 | 1984-11-19 | Toshiba Corp | Pll synchronous demodulating circuit |
JPS61273005A (en) * | 1985-05-28 | 1986-12-03 | Fujitsu Ten Ltd | Amplitude modulation system receiver |
JPS63133777A (en) * | 1986-11-25 | 1988-06-06 | Nec Home Electronics Ltd | Keyed automatic level control circuit for four-phase psk modulator |
EP0424009A2 (en) * | 1989-10-18 | 1991-04-24 | Nokia Mobile Phones Ltd. | Automatic gain control circuit in a radio telephone receiver |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7602865B2 (en) | 2003-11-22 | 2009-10-13 | Lg Electronics Inc. | Apparatus and method for enhancing a reception rate of a receiver |
JP2005197968A (en) * | 2004-01-06 | 2005-07-21 | Fujitsu Ltd | Signal processing circuit, quadrature demodulator and method for estimating error in same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU614702B2 (en) | Gain and phase correction in a dual branch receiver | |
US7522900B2 (en) | DC offset correction for use in a radio architecture | |
US5946607A (en) | Method of apparatus for automatic gain control, and digital receiver using same | |
US7196579B2 (en) | Gain-controlled amplifier, receiver circuit and radio communication device | |
JPH0690261A (en) | Method and apparatus for control of gain and phase error between signal channels in direct-conversion receiver | |
EP0496621A2 (en) | System for controlling phase and gain errors in an I/Q direct conversion receiver | |
JP4416981B2 (en) | High dynamic range low ripple RSSI signal for zero-IF or low-IF receiver | |
US6640093B1 (en) | Broadcast receiver | |
US4648127A (en) | Noise detector | |
JP3689986B2 (en) | Digital satellite broadcast receiver and antenna level display method thereof | |
US4799212A (en) | Circuit for controlling two signals approximately 90 degree apart in phase | |
JPH1051402A (en) | Reception electric field detection circuit | |
JP4350027B2 (en) | Apparatus and method for improving reception rate of receiving end having automatic gain control system (AGC) | |
JP3518430B2 (en) | Digital FM demodulator | |
JPH0511521U (en) | Quadrature demodulation circuit | |
JP2857320B2 (en) | Received signal level detection method | |
JP3833924B2 (en) | Direct conversion receiver | |
JP4281260B2 (en) | FM demodulator and receiver | |
JP2577027Y2 (en) | Digital quadrature demodulation circuit | |
JP4164507B2 (en) | Direct conversion receiver and receiving method thereof | |
JPS6246349Y2 (en) | ||
JPS61169030A (en) | Reception circuit | |
US7209723B2 (en) | Direct conversion circuit having reduced bit errors | |
JP2004193724A (en) | Direct conversion receiver | |
US6810092B1 (en) | Method and circuitry for demodulating a digital frequency modulated signal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 19970422 |