JPH05114525A - Manufacture of amorphous iron core - Google Patents
Manufacture of amorphous iron coreInfo
- Publication number
- JPH05114525A JPH05114525A JP3273673A JP27367391A JPH05114525A JP H05114525 A JPH05114525 A JP H05114525A JP 3273673 A JP3273673 A JP 3273673A JP 27367391 A JP27367391 A JP 27367391A JP H05114525 A JPH05114525 A JP H05114525A
- Authority
- JP
- Japan
- Prior art keywords
- iron core
- magnetic field
- amorphous
- magnetic
- forming
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Manufacturing Cores, Coils, And Magnets (AREA)
- Soft Magnetic Materials (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、アモルファス鉄心の製
造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an amorphous iron core.
【0002】[0002]
【従来の技術】アモルファス磁性材料を鉄心に用いると
珪素鋼板を用いた鉄心に比べて鉄損を大幅に低減できる
ことが一般的に知られている。そのためにアモルファス
磁性材料を用いた鉄心の実用化検討が行われてきた。2. Description of the Related Art It is generally known that when an amorphous magnetic material is used for an iron core, iron loss can be significantly reduced as compared with an iron core using a silicon steel plate. Therefore, the practical application of an iron core using an amorphous magnetic material has been studied.
【0003】従来、アモルファス材料を鉄心として利用
する方法として、アモルファス材料からなる薄体を巻心
に巻回して積層し、その一部を幅方向に切断し、積層方
向に厚さ0.1ないし3mmの積層ブロックに分割して
から積層ブロックを成形用の卷心または型に巻回、積層
し、鉄心の最終形状に成形、保持した状態で磁場アニー
ルを行って鉄心とする方法が検討されている。アモルフ
ァス材料の特徴としては、応力によって磁気特性が変化
すること、磁場アニールすることにより磁気特性が著し
く向上することが知られている。磁場アニール条件とし
ては、例えば380℃で2時間、印加磁界800A/m
で行なっている。Conventionally, as a method of using an amorphous material as an iron core, a thin body made of an amorphous material is wound around a core and laminated, and a part thereof is cut in the width direction to have a thickness of 0.1 to 0.1 in the lamination direction. A method of forming a 3 mm laminated block, winding the laminated block around a forming core or die, laminating, forming the final shape of the iron core, and performing magnetic field annealing while maintaining the iron core is studied. There is. It is known that the characteristics of the amorphous material are that the magnetic characteristics are changed by stress and that the magnetic characteristics are remarkably improved by the magnetic field annealing. The magnetic field annealing conditions are, for example, 380 ° C. for 2 hours and an applied magnetic field of 800 A / m.
It is done in.
【0004】[0004]
【発明が解決しようとする課題】しかしながら従来の製
造方法では、アモルファス材料を用いた鉄心を製造する
ことは可能であるが、磁気特性のばらつきが大きいとい
う問題があった。However, in the conventional manufacturing method, although it is possible to manufacture an iron core using an amorphous material, there is a problem that the magnetic characteristics vary widely.
【0005】本発明は上記従来の問題を解決するもの
で、磁気特性が優れ、ばらつきの少ないアモルファス鉄
心の製造方法を提供することを目的とする。The present invention solves the above-mentioned conventional problems, and an object of the present invention is to provide a method for producing an amorphous iron core having excellent magnetic characteristics and less variation.
【0006】[0006]
【課題を解決するための手段】本発明は上記目的を達成
するために、アモルファス薄体を卷回または積層してな
る鉄心を成形治具により最終形状に成形する成形工程
と、前記鉄心を熱処理する磁場アニール工程とを備え、
前記成形工程において前記鉄心を占積率を0.80から
0.88の間に保持するとともに前記磁場アニール工程
において前記鉄心を磁路方向に600ないし1600A
/mの磁界を加えながら320ないし360℃で熱処理
するものである。In order to achieve the above object, the present invention provides a forming step of forming an iron core formed by rolling or stacking amorphous thin films into a final shape by a forming jig, and heat treating the iron core. And a magnetic field annealing step to
In the forming step, the space factor of the iron core is maintained between 0.80 and 0.88, and in the magnetic field annealing step, the iron core is moved in the magnetic path direction from 600 to 1600A.
The heat treatment is performed at 320 to 360 ° C. while applying a magnetic field of / m.
【0007】[0007]
【作用】上記方法において、成形工程で鉄心の占積率を
0.80から0.88の間に保つことにより、積層体間
の接触による鉄損の増加を抑制するとともにばらつきを
小さくでき、磁場アニール工程で600ないし1600
A/mの磁界を加えながら320ないし360℃で熱処
理することにより磁気特性を向上できる。In the above method, by keeping the space factor of the iron core between 0.80 and 0.88 in the forming step, it is possible to suppress the increase of iron loss due to the contact between the laminated bodies and reduce the variation, and 600 to 1600 in annealing process
Magnetic properties can be improved by heat treatment at 320 to 360 ° C. while applying a magnetic field of A / m.
【0008】[0008]
【実施例】以下、本発明の一実施例を図1〜図5を参照
しながら説明する。図1は成形工程を示すものであり、
アモルファス薄体を卷回した鉄心1は、その外周を珪素
鋼板等からなる形状維持材2によって保持されている。
成形治具3は内枠4と外枠5からなり、前工程で矩形状
の内枠4が鉄心1の内周部に装着され、その状態で外枠
5を矢印の方向に移動させながら積層厚を調整して、鉄
心1の占積率を特定の範囲の間に保持する。つぎに磁場
アニール工程において、鉄心1は成形治具3によって最
終形状に保持された状態で、磁路方向に600ないし1
600A/mの磁界を加えながら320ないし360℃
で熱処理する。そして内枠4と外枠5を外し、図2のよ
うに、鉄心1の内周部には内枠4と同一寸法のボビン6
を取り付け、鉄心1の外周部には形状維持材2が取り付
けられた状態となる。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. FIG. 1 shows the molding process,
An iron core 1 formed by winding an amorphous thin body has its outer periphery held by a shape maintaining material 2 made of a silicon steel plate or the like.
The molding jig 3 is composed of an inner frame 4 and an outer frame 5. The rectangular inner frame 4 is mounted on the inner peripheral portion of the iron core 1 in the previous step, and the outer frame 5 is stacked in this state while moving in the direction of the arrow. By adjusting the thickness, the space factor of the iron core 1 is maintained within a specific range. Next, in the magnetic field annealing step, the iron core 1 is held in the final shape by the molding jig 3 and the iron core 1 is 600 to 1 in the magnetic path direction.
320 to 360 ° C while applying a magnetic field of 600 A / m
Heat treatment. Then, the inner frame 4 and the outer frame 5 are removed, and as shown in FIG. 2, a bobbin 6 having the same size as the inner frame 4 is provided on the inner peripheral portion of the iron core 1.
And the shape maintaining material 2 is attached to the outer peripheral portion of the iron core 1.
【0009】図3は成形工程の前工程における鉄心1の
製造工程を示すものであり、(a)では、外径150φ
の巻心(図示せず)にアモルファス薄体(厚さ25μ
m,幅170mm)を約40mmの厚さに積層してクラ
ンプ7で固定した後、巻心を外し積層体1aの一部を幅
方向に切断し、切断面に接着剤8を塗布して硬化し、ク
ランプ7を外す。つぎに(b)では、積層体1aを1m
m厚のブロックに分割し、その端面間寸法Aを15mm
ずつずらしてテープ9で束ね複数のブロック10とす
る。さらに(c)は丸巻成形工程を示し、予め重量を測
定してある円卷成形心11に磁路長の短いブロック10
より、弛まないように引っ張りながら切断部を突き合わ
せるようにして巻回し積層する。このとき円卷成形心1
1は円形が好ましく、また切断部の突合せ部は一定の角
度の範囲にすることが好ましい。そして最外周に形状維
持材2を巻回する。このとき形状維持材2の重量は事前
に測定しておく。さらに、積層終了後全体の重量を測定
し、円巻成形心11と形状維持材2の重量を引いて鉄心
1の重量を求める。鉄心1の内径、外径、幅より見かけ
の容積を求め、見かけの容積にアモルファス材料の真比
重をかけて占積率100%時の重量を求める。先に求め
た鉄心1の重量を占積率100%時の重量で割って鉄心
1の占積率を求め、その占積率が0.8から0.88の
間に入っていることを確認し、もし入っていない場合は
再度積層、巻回を行って占積率を調整し、このときの見
かけの積層厚を決定する。そして丸巻成形が終了後、円
巻成形心11を外し、図1のように矩形状の内枠4を鉄
心1の内周部に挿入して内周寸法、形状を最終の寸法、
形状に調整して鉄心1と成形治具3を組み立てた状態と
する。以上の方法で複数個の鉄心1を窒素ガス雰囲気下
で温度300ないし380℃、印加磁界800A/mの
条件で熱処理を行い、そのときの温度−鉄損相対値の特
性を図4に示す。ここで鉄損は380℃、磁界800A
/mで熱処理したときの鉄損を100として相対表示し
ている。また、上記した同じ方法で占積率が異なるサン
プルコアを用意しこれらのサンプルコアを330℃の温
度で磁界800A/mを加えながら熱処理を行なう。こ
こで得られた鉄心1についての測定結果を図5に示す。
同一条件で熱処理しても鉄損は占積率に依存しているこ
とが明らかであり、また熱処理時の磁界を600ないし
1600A/mの間で変えても同様の効果が確認され
た。FIG. 3 shows a manufacturing process of the iron core 1 in the pre-process of the molding process. In FIG. 3 (a), the outer diameter is 150φ.
Amorphous thin body (thickness 25μ
m, width 170 mm) to a thickness of about 40 mm and fixed with a clamp 7, then the core is removed, a part of the laminate 1a is cut in the width direction, and an adhesive 8 is applied to the cut surface to cure. Then, the clamp 7 is removed. Next, in (b), the laminated body 1a is
It is divided into m-thick blocks, and the dimension A between the end faces is 15 mm.
They are shifted one by one and bundled with the tape 9 to form a plurality of blocks 10. Further, (c) shows a round roll forming step, in which a block 10 having a short magnetic path length is formed on a circular frame forming core 11 whose weight has been measured in advance.
Further, the layers are wound and laminated so that the cut portions abut against each other while pulling so as not to loosen. At this time, the circular core forming core 1
1 is preferably circular, and the abutting portion of the cutting portion is preferably within a certain angle range. Then, the shape maintaining material 2 is wound around the outermost circumference. At this time, the weight of the shape maintaining material 2 is measured in advance. Further, after the completion of the lamination, the total weight is measured, and the weights of the circular core 11 and the shape maintaining material 2 are subtracted to obtain the weight of the iron core 1. The apparent volume is obtained from the inner diameter, outer diameter, and width of the iron core 1, and the apparent volume is multiplied by the true specific gravity of the amorphous material to obtain the weight when the space factor is 100%. The space factor of the iron core 1 is calculated by dividing the weight of the iron core 1 obtained earlier by the weight when the space factor is 100%, and it is confirmed that the space factor is between 0.8 and 0.88. If it does not enter, the layer is laminated and wound again to adjust the space factor, and the apparent layer thickness at this time is determined. Then, after the completion of the round winding, the round forming core 11 is removed, and the rectangular inner frame 4 is inserted into the inner peripheral portion of the iron core 1 as shown in FIG.
The iron core 1 and the molding jig 3 are assembled by adjusting the shape. A plurality of iron cores 1 were heat-treated under the conditions of a temperature of 300 to 380 ° C. and an applied magnetic field of 800 A / m in a nitrogen gas atmosphere by the above method, and the characteristics of the temperature-iron loss relative value at that time are shown in FIG. Here, the iron loss is 380 ° C and the magnetic field is 800A.
The iron loss when heat-treated at / m is set to 100 for relative display. Further, sample cores having different space factors are prepared by the same method as described above, and these sample cores are heat-treated at a temperature of 330 ° C. while applying a magnetic field of 800 A / m. The measurement result of the iron core 1 obtained here is shown in FIG.
It is clear that the iron loss depends on the space factor even when heat-treated under the same conditions, and the same effect was confirmed even when the magnetic field during heat-treatment was changed between 600 and 1600 A / m.
【0010】このように実施例の製造方法では、鉄心1
の占積率を0.80から0.88の間に保つことにより
積層体1a間の接触による鉄損の増加を抑制するととも
にばらつきを小さくでき、600ないし1600A/m
の磁界を加えながら320ないし360℃で熱処理する
ことにより磁気特性を向上できる。As described above, according to the manufacturing method of the embodiment, the iron core 1
By keeping the space factor of between 0.80 and 0.88, it is possible to suppress an increase in iron loss due to the contact between the laminated bodies 1a and reduce the variation, and it is possible to obtain 600 to 1600 A / m.
The magnetic characteristics can be improved by performing heat treatment at 320 to 360 ° C. while applying the magnetic field.
【0011】なお、実施例では鉄心1の突合せ部の構造
はステップラップ構造になっているが、この構造に制約
されるものではなく他の構造にしてもよい。Although the structure of the abutting portion of the iron core 1 is a step lap structure in the embodiment, it is not limited to this structure and may be another structure.
【0012】[0012]
【発明の効果】上記実施例から明らかなように本発明の
アモルファス鉄心の製造方法は、アモルファス薄体を卷
回または積層してなる鉄心を成形治具により最終形状に
成形する成形工程と、前記鉄心を熱処理する磁場アニー
ル工程とを備え、前記成形工程において前記鉄心を占積
率を0.80から0.88の間に保持するとともに前記
磁場アニール工程において前記鉄心を磁路方向に600
ないし1600A/mの磁界を加えながら320ないし
360℃で熱処理するものであり、この製造方法とする
ことにより、磁気特性が優れ、ばらつきの少ない鉄心を
得ることができる。As is apparent from the above embodiments, the method for producing an amorphous iron core of the present invention comprises a forming step of forming an iron core formed by rolling or stacking amorphous thin bodies into a final shape by a forming jig, and A magnetic field annealing step of heat-treating the iron core, wherein the space factor of the iron core is maintained between 0.80 and 0.88 in the forming step, and the iron core is moved in the magnetic path direction by 600 in the magnetic field annealing step.
The heat treatment is performed at 320 to 360 ° C. while applying a magnetic field of 1 to 1600 A / m. By this manufacturing method, an iron core having excellent magnetic characteristics and less variation can be obtained.
【図1】本発明の一実施例によるアモルファス鉄心の製
造方法における成形工程の正面図FIG. 1 is a front view of a forming process in a method for manufacturing an amorphous iron core according to an embodiment of the present invention.
【図2】同アモルファス鉄心の正面図FIG. 2 is a front view of the amorphous iron core.
【図3】(a)(b)(c)同アモルファス鉄心の製造
方法の工程図3 (a), (b) and (c) are process diagrams of the method for manufacturing the same amorphous iron core.
【図4】同アモルファス鉄心の製造方法による鉄心の特
性図FIG. 4 is a characteristic diagram of an iron core produced by the method for producing the amorphous iron core.
【図5】同アモルファス鉄心の製造方法による鉄心の特
性図FIG. 5 is a characteristic diagram of an iron core manufactured by the same method for manufacturing an amorphous iron core.
1 鉄心 3 成形治具 1 Iron core 3 Forming jig
フロントページの続き (72)発明者 原 宏光 大阪府門真市大字門真1006番地 松下電器 産業株式会社内Front page continuation (72) Inventor Hiromitsu Hara 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.
Claims (1)
る鉄心を成形治具により最終形状に成形する成形工程
と、前記鉄心を熱処理する磁場アニール工程とを備え、
前記成形工程において前記鉄心を占積率を0.80から
0.88の間に保持するとともに前記磁場アニール工程
において前記鉄心を磁路方向に600ないし1600A
/mの磁界を加えながら320ないし360℃で熱処理
するアモルファス鉄心の製造方法。1. A forming step of forming an iron core formed by rolling or laminating an amorphous thin body into a final shape by a forming jig, and a magnetic field annealing step of heat-treating the iron core,
In the forming step, the space factor of the iron core is kept between 0.80 and 0.88, and in the magnetic field annealing step, the iron core is moved in the magnetic path direction from 600 to 1600A.
A method of manufacturing an amorphous iron core, in which a heat treatment is performed at 320 to 360 ° C. while applying a magnetic field of / m.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3273673A JP2584163B2 (en) | 1991-10-22 | 1991-10-22 | Manufacturing method of amorphous iron core |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3273673A JP2584163B2 (en) | 1991-10-22 | 1991-10-22 | Manufacturing method of amorphous iron core |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05114525A true JPH05114525A (en) | 1993-05-07 |
JP2584163B2 JP2584163B2 (en) | 1997-02-19 |
Family
ID=17530954
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3273673A Expired - Fee Related JP2584163B2 (en) | 1991-10-22 | 1991-10-22 | Manufacturing method of amorphous iron core |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2584163B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007234714A (en) * | 2006-02-28 | 2007-09-13 | Hitachi Industrial Equipment Systems Co Ltd | Amorphous transformer for power distribution |
JP2008251672A (en) * | 2007-03-29 | 2008-10-16 | Nippon Steel Corp | Manufacturing method for steel core |
CN103426622A (en) * | 2013-08-05 | 2013-12-04 | 大同(上海)有限公司 | Amorphous iron core universal type moving die |
US8680736B2 (en) | 2008-11-10 | 2014-03-25 | Hitachi Industrial Equipment Systems Co., Ltd. | Armature core, motor using same, and axial gap electrical rotating machine using same |
KR101594482B1 (en) * | 2015-01-08 | 2016-02-17 | 주식회사 케이피일렉트릭 | A solid wound core for transformers combining the silicon steel sheet and the amorphous alloy sheet |
CN110246678A (en) * | 2019-07-23 | 2019-09-17 | 北流市柯顺电子有限公司 | A kind of amorphous, nanocrystalline magnet core annealing fixture |
CN110415937A (en) * | 2019-08-27 | 2019-11-05 | 金三角电力科技股份有限公司 | Silicon steel sheet, the single frame iron core of amorphous ribbon mixing three dimensional wound core and manufacturing method |
-
1991
- 1991-10-22 JP JP3273673A patent/JP2584163B2/en not_active Expired - Fee Related
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007234714A (en) * | 2006-02-28 | 2007-09-13 | Hitachi Industrial Equipment Systems Co Ltd | Amorphous transformer for power distribution |
US20090189728A1 (en) * | 2006-02-28 | 2009-07-30 | Kazuyuki Fukui | Amorphous transformer for electric power supply |
JP4558664B2 (en) * | 2006-02-28 | 2010-10-06 | 株式会社日立産機システム | Amorphous transformer for power distribution |
US20110203705A1 (en) * | 2006-02-28 | 2011-08-25 | Kazuyuki Fukui | Method of producing an amorphous transformer for electric power supply |
US9177706B2 (en) | 2006-02-28 | 2015-11-03 | Hitachi Industrial Equipment Systems Co., Ltd. | Method of producing an amorphous transformer for electric power supply |
JP2008251672A (en) * | 2007-03-29 | 2008-10-16 | Nippon Steel Corp | Manufacturing method for steel core |
US8680736B2 (en) | 2008-11-10 | 2014-03-25 | Hitachi Industrial Equipment Systems Co., Ltd. | Armature core, motor using same, and axial gap electrical rotating machine using same |
CN103426622A (en) * | 2013-08-05 | 2013-12-04 | 大同(上海)有限公司 | Amorphous iron core universal type moving die |
KR101594482B1 (en) * | 2015-01-08 | 2016-02-17 | 주식회사 케이피일렉트릭 | A solid wound core for transformers combining the silicon steel sheet and the amorphous alloy sheet |
CN110246678A (en) * | 2019-07-23 | 2019-09-17 | 北流市柯顺电子有限公司 | A kind of amorphous, nanocrystalline magnet core annealing fixture |
CN110415937A (en) * | 2019-08-27 | 2019-11-05 | 金三角电力科技股份有限公司 | Silicon steel sheet, the single frame iron core of amorphous ribbon mixing three dimensional wound core and manufacturing method |
CN110415937B (en) * | 2019-08-27 | 2020-09-25 | 金三角电力科技股份有限公司 | Single-frame iron core of silicon steel sheet and amorphous strip mixed three-dimensional wound iron core and manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
JP2584163B2 (en) | 1997-02-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH05114525A (en) | Manufacture of amorphous iron core | |
JPS61149433A (en) | Method and apparatus for reducing iron loss in crystal grainorientation type silicon steel | |
EP0367602B1 (en) | Improvements in magnetic cores | |
CN1175436C (en) | High stach factor amorphous metal ribbon and transformer cores | |
JP2716258B2 (en) | Method for thermal smoothing grain oriented silicon steel | |
JPS59159929A (en) | Production of magnet material | |
US3005737A (en) | Method and apparatus for making laminated transformer cores | |
JPS6115309A (en) | Wound core for transformer with low iron loss | |
JPH0237082B2 (en) | MAKITETSUSHINNOSEIZOHOHO | |
JPS5974616A (en) | Manufacture of wound core | |
JPS58124219A (en) | Manufacture of wound core for transformer | |
JPH0623411B2 (en) | Manufacturing method of electrical steel sheet with small anisotropy | |
JPH0855736A (en) | Magnetic core for high frequency | |
JPS6142906A (en) | Manufacture of stationary induction electric apparatus | |
JPS5861225A (en) | Unidirectional electrical steel plate of extra low watt loss | |
JP2584157B2 (en) | Manufacturing method of amorphous iron core | |
JP2970424B2 (en) | Method and apparatus for manufacturing wound iron core | |
JPS6256204B2 (en) | ||
JPS6234829B2 (en) | ||
JP4414557B2 (en) | Amorphous alloy ribbon for wound core and wound core using the same | |
JPS6144413A (en) | Manufacture of iron core in electric apparatus | |
JPS5989719A (en) | Finish annealing method of directional electrical sheet | |
JPH02274845A (en) | Semiprocessed silicon steel sheet | |
JPH0296313A (en) | Manufacture of winding core | |
JPH03263309A (en) | Manufacture of static electrical equipment provided with wound iron core |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |