JPH05113394A - Analysis of distribution state of conductive substance in glass region of thick film resistor - Google Patents

Analysis of distribution state of conductive substance in glass region of thick film resistor

Info

Publication number
JPH05113394A
JPH05113394A JP3302318A JP30231891A JPH05113394A JP H05113394 A JPH05113394 A JP H05113394A JP 3302318 A JP3302318 A JP 3302318A JP 30231891 A JP30231891 A JP 30231891A JP H05113394 A JPH05113394 A JP H05113394A
Authority
JP
Japan
Prior art keywords
thick film
film resistor
glass
glass region
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3302318A
Other languages
Japanese (ja)
Inventor
Kenji Adachi
健治 足立
Juichi Nishii
重一 西井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP3302318A priority Critical patent/JPH05113394A/en
Publication of JPH05113394A publication Critical patent/JPH05113394A/en
Pending legal-status Critical Current

Links

Landscapes

  • Apparatuses And Processes For Manufacturing Resistors (AREA)

Abstract

PURPOSE:To obtain a key elucidating the relation between the kind or amount and resistance value or CTR of the conductive powder compounded with resistance paste forming a thick film resistor. CONSTITUTION:In the analysis of the distribution state of the conductive substance in the glass region of a thick film resistor, a mixture of glass frit containing 2-25wt.% of a conductive powder with a particle size of 0.2mum or more and org. vehicle is printed on a ceramic substrate and baked to form the thick film resistor on the ceramic substrate. A sample having the thick film resistor is formed from the obtained substrate and the part only of the thick film resistor with a thickness of 100mum or less is formed from the sample to be observed by a transmission type electron microscope. Energy dispersion type X-ray spectra at a plurality of different distances from a predetermined position are calculated along the line traversing the glass region of the thick film resistor and the same component quantities in the respective spectra are plotted in the order of distances to form a graph.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、チップ抵抗器や、ハイ
ブリッドICの抵抗素子として使用される厚膜抵抗体の
ガラス領域中の導電性物質の分布状態を推定するための
分析法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an analysis method for estimating a distribution state of a conductive substance in a glass region of a chip resistor or a thick film resistor used as a resistance element of a hybrid IC.

【0002】[0002]

【従来の技術】電気回路の抵抗素子として用いられる抵
抗ペースト材料は、導電性の粉末と絶縁性のガラス粉末
とを有機ビヒクルで混練し、ペースト状にしたものであ
る。このペースト材料を基板材料上にスクリーン印刷
し、次いで加熱焼成して有機ビヒクルを除去すると共に
ガラス成分を溶融し、ガラスマトリックス中に導電性粉
末が含有された厚膜抵抗体を基板上に固着形成させる。
2. Description of the Related Art A resistance paste material used as a resistance element of an electric circuit is a paste formed by kneading a conductive powder and an insulating glass powder with an organic vehicle. This paste material is screen-printed on the substrate material, then heated and baked to remove the organic vehicle and melt the glass component, and a thick film resistor containing conductive powder in the glass matrix is fixedly formed on the substrate. Let

【0003】ところで、抵抗ペースト用として用いられ
る導電性の粉末は、通常酸化ルテニウム(RuO2)或
はパイロクロア型Ru酸化物が使用されており、高抵抗
用にはSnO2、窒素雰囲気中での焼成用にはLaB6
TaN等も使用される。このような導電性の粉末を用い
た抵抗ペーストを焼成した場合、導電性の粉末を構成す
る導電性物質の極微量がガラス中へ溶解し拡散し、これ
が電子を媒介して抵抗体全体の導電パスの重要な一部を
担うとされている。
By the way, as the conductive powder used for the resistance paste, ruthenium oxide (RuO 2 ) or pyrochlore type Ru oxide is usually used. For high resistance, SnO 2 is used in a nitrogen atmosphere. LaB 6 or TaN is also used for firing. When a resistance paste using such a conductive powder is fired, an extremely small amount of the conductive substance that constitutes the conductive powder is dissolved and diffused in the glass, and this mediates electrons to conduct the entire resistor. It is said to play an important part of the path.

【0004】導電物としてRu化合物を用いた場合を例
として説明すると、Ru化合物は焼成中、温度の上昇を
伴い一部が還元されてRuとなり、更に再度酸化してR
uO2、RuO3、RuO4等になり、その一部がガラス
中に溶解する。ガラス中へのRuの溶解量は数ppm〜数
百ppmと極めて僅かであり、その形態も未だに不明であ
る。そして、このガラス中に溶解した微量のRuが電気
伝導を媒介するのである。従って、厚膜抵抗体の諸電気
特性はガラス中に溶解した導電性物質と密接に関係する
とされている。そして、この関係を明らかにすべく種々
の検討がなされている。その一つにガラス中のRu量の
測定がある。
The case where a Ru compound is used as a conductor will be explained as an example. During the firing, the Ru compound is partially reduced to Ru during firing, and is further oxidized again to R.
It becomes uO 2 , RuO 3 , RuO 4, etc., and part of it dissolves in the glass. The amount of Ru dissolved in glass is extremely small, from several ppm to several hundred ppm, and its form is still unknown. Then, a small amount of Ru dissolved in the glass mediates electric conduction. Therefore, it is said that the electrical characteristics of the thick film resistor are closely related to the conductive substance dissolved in the glass. And various studies have been made to clarify this relationship. One of them is the measurement of the amount of Ru in glass.

【0005】ガラス中に溶解したRuの量を測定する手
段としてはベストらの方法1)、2)がある。 1)A.Prabhu,G.L.Fuller and R.W.Vest, “Solubility
of RuO2 in a lead−bor-osilicate glass",J.Am.Cera
m.Soc.,Vol.57,pp.408-409(1974) 2)P.Palanisamy,D.H.R. Sarma and R.W.Vest, “Solu
bility of ruthenium di-oxide in lead borosilicate
glasses",J.Am.Ceram.Soc.,Vol.72,pp.1755-6(1989)
As a means for measuring the amount of Ru dissolved in glass, there are methods 1) and 2) of Best et al. 1) A. Prabhu, GLFuller and RWVest, “Solubility
of RuO 2 in a lead−bor-osilicate glass ", J.Am.Cera
m.Soc., Vol.57, pp.408-409 (1974) 2) P.Palanisamy, DHR Sarma and RWVest, “Solu
bility of ruthenium di-oxide in lead borosilicate
glasses ", J.Am.Ceram.Soc., Vol.72, pp.1755-6 (1989)

【0006】これらの方法は湿式分析法であり、ガラス
とRu化合物との混合焼成物を塩酸やフッ酸で溶解し、
不溶解分を除去し、得た溶液中のRu量を原子吸光法や
プラズマ分光法で求めるものである。しかし、この方法
はガラス中のRuの形態を酸可溶性と仮定し、用いる塩
酸やフッ酸にRuO2やPb2Ru27-xといった導電性
物質が不溶性であるという仮定の上に成立しているもの
であり、得られた値が真にガラス中に固溶したRuの量
であるかどうか疑問がある。又、仮にこの仮定が正しい
としても、得られる値が平均値に過ぎないことは明らか
である。
These methods are wet analysis methods, in which a mixed fired product of glass and a Ru compound is dissolved with hydrochloric acid or hydrofluoric acid,
The insoluble matter is removed, and the Ru amount in the obtained solution is determined by an atomic absorption method or plasma spectroscopy. However, this method is based on the assumption that the form of Ru in glass is acid-soluble, and that the conductive substances such as RuO 2 and Pb 2 Ru 2 O 7-x are insoluble in the hydrochloric acid and hydrofluoric acid used. However, it is doubtful whether the obtained value is truly the amount of Ru dissolved in glass. Moreover, even if this assumption is correct, it is clear that the obtained value is only an average value.

【0007】厚膜抵抗体の電気特性の改良のために必要
とされるものは単にRuのガラス中への平均溶解量のみ
ではなく、ガラス領域中でのRuの分布や拡散状態の解
明も導電機構の解明の手掛かりの一つとなるものと考え
られる。しかしながら、このような分布や拡散状態を明
らかにする手段は未だ開示されていない。
What is needed to improve the electrical characteristics of the thick film resistor is not only the average amount of Ru dissolved in the glass, but also the elucidation of the distribution and diffusion state of Ru in the glass region. It is considered to be one of the clues to clarify the mechanism. However, a means for clarifying such distribution and diffusion state has not been disclosed yet.

【0008】[0008]

【発明が解決しようとする課題】本発明の目的は厚膜抵
抗体を作る抵抗ペーストに配合する導電性粉末の種類や
量と、抵抗値やCTRとの関係を解明する手掛かりの提
供にある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a clue for clarifying the relationship between the resistance value and CTR, and the kind and amount of conductive powder blended in a resistance paste for making a thick film resistor.

【0009】[0009]

【課題を解決するための手段】上記課題を解決する本発
明の方法は、粒径0.2μm以上の導電性粉末を2〜2
5重量%含有するガラスフリットと、有機ビヒクルとの
混合物を、セラミック基板に印刷し焼成してセラミック
基板上に厚膜抵抗体を形成し、得られた基板から厚膜抵
抗体を有する試料を作成し、該試料から厚さ100nm
以下の厚膜抵抗体のみの部分を形成して、該厚さ100
nm以下の厚膜抵抗体の部分を透過型電子顕微鏡で観察
し、厚膜抵抗体中のガラス領域を横切る線に沿い所定位
置から複数の異なる距離でのエネルギー分散型X線スペ
クトルを求め、各スペクトル中の同一成分量を距離の大
小の順序にプロットしてグラフとして厚膜抵抗体のガラ
ス領域中の導電性物質の分布状態を求めることにある。
According to the method of the present invention for solving the above-mentioned problems, a conductive powder having a particle diameter of 0.2 μm or more is added to 2 to 2 particles.
A mixture of glass frit containing 5% by weight and an organic vehicle is printed on a ceramic substrate and fired to form a thick film resistor on the ceramic substrate, and a sample having a thick film resistor is prepared from the obtained substrate. The thickness of the sample is 100 nm
The following thick film resistor only portion is formed to obtain the thickness 100
The portion of the thick film resistor having a thickness of nm or less is observed with a transmission electron microscope to obtain energy dispersive X-ray spectra at a plurality of different distances from a predetermined position along a line crossing the glass region in the thick film resistor. This is to plot the same component amount in the spectrum in the order of increasing and decreasing distances and obtain the distribution state of the conductive material in the glass region of the thick film resistor as a graph.

【0010】[0010]

【作用】本発明において、導電性粉末の粒径を0.2μ
m以上とするのは、これよりも粒径が小さいと、該粒径
がX線励起領域の大きさに近付くため導電性粉末により
ガラス領域の測定点の位置の取り方が難しくなり、且つ
導電性粉末がガラス中に細かく分散し、X線励起領域内
に導電性粉末の存在しないガラス領域を見付けることが
困難になるからである。
In the present invention, the particle size of the conductive powder is 0.2 μm.
If the particle size is smaller than m, the particle size approaches the size of the X-ray excitation region and the conductive powder makes it difficult to set the position of the measurement point in the glass region. This is because the conductive powder is finely dispersed in the glass and it becomes difficult to find the glass region in which the conductive powder does not exist in the X-ray excitation region.

【0011】導電性粉末の混合割合をガラスフリットに
対して2〜25重量%(以下「%」と示す)としたの
は、2%未満ではガラス領域中に溶解する導電性物質の
含有量が極めて少なくなり、エネルギー分散型X線分光
スペクトルのカウント数の誤差内となり、含有量を知り
にくくなるからであり、25%を超えると導電性粉末が
多くなり過ぎて、十分広いガラス領域を見付け難くなる
からである。被検鏡部分の厚さを100nm以下とする
のは、そうしないと電子線が当該試料を透過しないから
である。
The mixing ratio of the conductive powder to the glass frit is set to 2 to 25% by weight (hereinafter referred to as "%") because the content of the conductive substance dissolved in the glass region is less than 2%. This is because the amount becomes extremely small and falls within the error of the count number of the energy dispersive X-ray spectroscopic spectrum, and it becomes difficult to know the content. When it exceeds 25%, the conductive powder becomes too much and it is difficult to find a sufficiently wide glass region. Because it will be. The thickness of the portion to be inspected is set to 100 nm or less because otherwise the electron beam does not pass through the sample.

【0012】使用する基板は特にこだわらないが、基板
成分がガラス中に拡散しないものが望ましく、アルミナ
基板の他、ベリリア基板やプラチナ箔を基板とすること
が好ましい。以下、実施例を用いて本発明を更に説明す
る。
The substrate to be used is not particularly limited, but it is preferable that the substrate components do not diffuse into the glass, and it is preferable to use a beryllia substrate or a platinum foil in addition to the alumina substrate. The present invention will be further described below with reference to examples.

【0013】[0013]

【実施例】高純度のPbO 59.8重量部、SiO2
5.2重量部、B23 9.7重量部、Al23 5.3重
量部をライ潰機を用いて混合し、白金坩堝に装入し、電
気炉内で1200℃に加熱して溶解し、30分間その温
度で保持し、次いでグラファイトの鋳型に流し込み、急
冷してスタンプミルで粉砕し、次いでボールミルで粉砕
して平均粒径2.54μmのガラスフリット 50gを作
成した。
EXAMPLE High-purity PbO 59.8 parts by weight, SiO 2 2
5.2 parts by weight, 9.7 parts by weight of B 2 O 3 and 5.3 parts by weight of Al 2 O 3 were mixed using a rye crusher, charged into a platinum crucible and heated to 1200 ° C. in an electric furnace. Melted, held at that temperature for 30 minutes, then poured into a graphite mold, quenched, ground with a stamp mill and then ground with a ball mill to make 50 g of a glass frit with an average particle size of 2.54 μm.

【0014】これに導電性粉末として粒径1.0μm以
上のRuO2を10%の割合で混合し、テルピネオール
とエチルセルロースを主成分とする有機ビヒクルとを加
えて混練し、抵抗体用ペーストを得た。このペーストを
アルミナ基板上に印刷し、15mm×15mmのペースト塗
布部分を作成した。この基板を電気炉内に入れ、400
℃で通気しながら1時間加熱し、次いで900℃で1時
間焼成した。
RuO 2 having a particle size of 1.0 μm or more was mixed as a conductive powder at a ratio of 10%, and terpineol and an organic vehicle containing ethyl cellulose as a main component were added and kneaded to obtain a resistor paste. It was This paste was printed on an alumina substrate to form a 15 mm × 15 mm paste applied portion. Put this substrate in an electric furnace and
The mixture was heated for 1 hour at 90 ° C. under aeration and then calcined at 900 ° C. for 1 hour.

【0015】基板を放冷後、超音波ディスクカッター
(ガタン社製 Model 601)を用いて直径3mmの円盤状試
料を切り出し、アルミナ基板部をアルミナ基板の厚さが
10〜100μmになるまで研磨除去し、次いで凹面研
磨機(VCR社製 Model D500)でアルミナ基板側を凹
面状に研磨し、抵抗体部のみとなった最も薄い凹部中心
の厚さを10μmとした。その後、イオン研磨機(日本
電子製 JIT−100)を用いて4kvで加速したArイオン
を凹部の中心線に対して15°に傾けて試料に照射して
小さな穴をあけ、穴の回りに100nm以下の厚さの抵
抗体の部分を作成した。
After allowing the substrate to cool, a disc-shaped sample having a diameter of 3 mm was cut out using an ultrasonic disc cutter (Model 601 manufactured by Gatan Co., Ltd.), and the alumina substrate portion was polished and removed until the thickness of the alumina substrate became 10 to 100 μm. Then, the alumina substrate side was polished into a concave shape by a concave surface polishing machine (Model D500 manufactured by VCR), and the thickness of the thinnest recessed portion centering only the resistor portion was set to 10 μm. Then, using an ion polisher (JIT-100 manufactured by JEOL Ltd.), Ar ions accelerated at 4 kv were tilted at 15 ° with respect to the center line of the recess to irradiate the sample to make a small hole, and 100 nm was formed around the hole. A resistor portion having the following thickness was created.

【0016】エネルギー分散型X線分光器(トレイカー
ノザーン社製 TN−2000−5)付き透過型電子顕微鏡
(日本電子製 JEM−2000EX)を用いて上記の試料を観
察し、視野中にRuO2粒子とその近傍のガラス領域を
入れ、RuO2粒子とガラス領域の境界を起点として、
境界を横切る直線に沿い、起点からの異なる数個の距離
でビーム幅8mmの電子線を用いて、それぞれの位置で
のエネルギー分散型X線(EDX)スペクトルを測定し
た。
The above sample was observed using a transmission electron microscope (JEM-2000EX, manufactured by JEOL Ltd.) equipped with an energy dispersive X-ray spectrometer (TN-2000-5, manufactured by Traykernozan Co., Ltd.), and RuO 2 was observed in the visual field. The particles and the glass region in the vicinity thereof are put in, and the boundary between the RuO 2 particles and the glass region is used as a starting point,
Energy dispersive X-ray (EDX) spectra were measured at each position along the straight line crossing the boundary using electron beams with a beam width of 8 mm at several different distances from the origin.

【0017】図2にRuO2粒子とガラス領域の境界か
ら、RuO2粒子内に2288Å移動した位置でのエネ
ルギー分散型X線(EDX)スペクトル図を示す。また
RuO2粒子とガラス領域の境界から、ガラス領域に2
065Å移動した位置でのEDXスペクトル図を図3
に、同じく5548Å移動した位置でのEDXスペクト
ル図を図4に示す。このようにして得られた多数の位置
のEDXスペクトル図から、距離に従い各成分の含有量
を図にプロットしてプロット点を線で結んでグラフとし
たものが図1である。
FIG. 2 shows an energy dispersive X-ray (EDX) spectrum diagram at a position moved 2288Å into the RuO 2 particle from the boundary between the RuO 2 particle and the glass region. In addition, from the boundary between the RuO 2 particles and the glass region, 2
Figure 3 shows the EDX spectrum at the position where 065Å moved.
Similarly, FIG. 4 shows an EDX spectrum diagram at the same position moved by 5548Å. FIG. 1 is a graph obtained by plotting the content of each component according to the distance from the EDX spectrum diagram at a large number of positions thus obtained and connecting the plot points with a line.

【0018】図1より、RuはX線カウント数の統計誤
差や厚さの変化に伴う誤差以上に、場所により濃度が変
化していることから、単純に拡散している訳ではなく、
金属粒子のクラスター様に存在している可能性を示唆し
ている。このようなグラフを作成すれば、金属としてガ
ラス領域に存在するものだけでなく、ガラス領域中の導
電性の酸化物などの分布も知ることができ、このグラフ
を試料として、抵抗ペーストに配合する導電性粉末の種
類や量と抵抗値やCTRとの関係を解明する手掛かりと
することができる。
From FIG. 1, the concentration of Ru changes more than the statistical error of the X-ray count number and the error caused by the change of thickness, and therefore, the concentration of Ru does not simply diffuse.
It suggests that they may exist like clusters of metal particles. By creating such a graph, it is possible to know not only what is present in the glass region as a metal, but also the distribution of conductive oxides in the glass region. It can be used as a clue to clarify the relationship between the kind and amount of the conductive powder and the resistance value or CTR.

【0019】[0019]

【発明の効果】本発明方法によれば、従来は知ることの
出来なかった、ガラス領域中の導電性物質の分布や分布
形態を推定することが出来るので、これを試料として、
抵抗ペーストに配合する導電性粉末の種類や量と抵抗値
やCTRとの関係を解明する手掛かりとすることが出来
る。
According to the method of the present invention, it is possible to estimate the distribution and the distribution form of the conductive substance in the glass region, which could not be known in the past.
It can be used as a clue to elucidate the relationship between the resistance value and CTR and the type and amount of the conductive powder compounded in the resistance paste.

【図面の簡単な説明】[Brief description of drawings]

【図1】多数の位置でのエネルギー分散型X線スペクト
ル図から距離に従い各成分の含有量を図にプロットして
プロット点を線で結んでグラフとした図である。
FIG. 1 is a graph in which the content of each component is plotted according to the distance from an energy dispersive X-ray spectrum diagram at a number of positions, and the plot points are connected by lines.

【図2】RuO2粒子とガラス領域の境界から、RuO2
粒子内に2288Å移動した位置でのエネルギー分散型
X線スペクトル図を示す。
[2] from the boundary of the RuO 2 particles and the glass area, RuO 2
The energy dispersive X-ray spectrum diagram in the position which moved 2288Å in the particle is shown.

【図3】RuO2粒子とガラス領域の境界から、ガラス
領域に2065Å移動した位置でのエネルギー分散型X
線スペクトル図を示す。
FIG. 3 is an energy dispersive X at a position moved 2065Å from the boundary between the RuO 2 particles and the glass region to the glass region.
A line spectrum diagram is shown.

【図4】RuO2粒子とガラス領域の境界から、ガラス
領域に5548Å移動した位置でのエネルギー分散型X
線スペクトル図を示す。
FIG. 4 is an energy dispersive X at a position moved from the boundary between the RuO 2 particle and the glass region to the glass region by 5548Å.
A line spectrum diagram is shown.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 粒径0.2μm以上の導電性粉末を2〜
25重量%含有するガラスフリットと、有機ビヒクルと
の混合物を、セラミック基板に印刷し焼成してセラミッ
ク基板上に厚膜抵抗体を形成し、得られた基板から厚膜
抵抗体を有する試料を作成し、該試料から厚さ100n
m以下の厚膜抵抗体のみの部分を形成して、該厚さ10
0nm以下の厚膜抵抗体の部分を透過型電子顕微鏡で観
察し、厚膜抵抗体中のガラス領域を横切る線に沿い所定
位置から複数の異なる距離でのエネルギー分散型X線ス
ペクトルを求め、各スペクトル中の同一成分量を距離の
大小の順序にプロットしてグラフとする厚膜抵抗体のガ
ラス領域中の導電性物質の分布状態の分析法。
1. A conductive powder having a particle size of 0.2 μm or more
A mixture of glass frit containing 25% by weight and an organic vehicle is printed on a ceramic substrate and baked to form a thick film resistor on the ceramic substrate, and a sample having a thick film resistor is prepared from the obtained substrate. The thickness of the sample is 100 n
A thick film resistor only having a thickness of 10 m or less is formed to have a thickness of 10
The thick film resistor portion of 0 nm or less is observed with a transmission electron microscope, and energy dispersive X-ray spectra are obtained at a plurality of different distances from a predetermined position along a line crossing the glass region in the thick film resistor. A method for analyzing the distribution state of a conductive substance in the glass region of a thick film resistor by plotting the same component amounts in the spectrum in order of increasing and decreasing distances.
JP3302318A 1991-10-22 1991-10-22 Analysis of distribution state of conductive substance in glass region of thick film resistor Pending JPH05113394A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3302318A JPH05113394A (en) 1991-10-22 1991-10-22 Analysis of distribution state of conductive substance in glass region of thick film resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3302318A JPH05113394A (en) 1991-10-22 1991-10-22 Analysis of distribution state of conductive substance in glass region of thick film resistor

Publications (1)

Publication Number Publication Date
JPH05113394A true JPH05113394A (en) 1993-05-07

Family

ID=17907506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3302318A Pending JPH05113394A (en) 1991-10-22 1991-10-22 Analysis of distribution state of conductive substance in glass region of thick film resistor

Country Status (1)

Country Link
JP (1) JPH05113394A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1703526A1 (en) * 2005-03-17 2006-09-20 Sumitomo Metal Mining Co., Ltd. Resistance paste and resistor obtained from this paste

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1703526A1 (en) * 2005-03-17 2006-09-20 Sumitomo Metal Mining Co., Ltd. Resistance paste and resistor obtained from this paste

Similar Documents

Publication Publication Date Title
Kasemann et al. Boron and oxygen isotope composition of certified reference materials NIST SRM 610/612 and reference materials JB‐2 and JR‐2
Åmli et al. Microprobe analysis of REE minerals using empirical correction factors
EP0071190B1 (en) Thick film resistor compositions
Morgan et al. Test of a quantitative approach to secondary ion mass spectrometry on glass and silicate standards
JPH0764588B2 (en) Glass composition for coating
EP0095775A1 (en) Compositions for conductive resistor phases and methods for their preparation including a method for doping tin oxide
EP0132810A1 (en) Borosilicate glass composition
US4175061A (en) Method of manufacturing resistor paste
US7951311B2 (en) Non-lead resistor composition
US8465794B2 (en) Glass compositions used in conductors for photovoltaic cells
Qian et al. Direct current glow discharge mass spectrometric analysis of non-conducting materials using a surface coating method
Cubadda et al. Influence of laboratory homogenization procedures on trace element content of food samples: an ICP-MS study on soft and durum wheat
EP0146120B1 (en) Resistor compositions
EP1679288B1 (en) Method for producing glass article
JPH05113394A (en) Analysis of distribution state of conductive substance in glass region of thick film resistor
Rogers et al. Accuracy of standardless nuclear microprobe trace element analyses
US6989111B2 (en) Thick film compositions containing pyrochlore-related compounds
Hoskin SIMS Determination of μg g− 1‐Level Fluorine in Geological Samples and its Concentration in NIST SRM 610
Stephenson Improved flux-fusion technique for x-ray emission analysis
US5081352A (en) Technique for the analysis of insulating materials by glow discharge mass spectrometry
Heumann High accuracy in the element analysis by mass spectrometry
Borisov et al. Laser ablation inductively coupled plasma mass spectrometry of pressed pellet surrogates for Pu materials disposition
EP0146118A1 (en) Borosilicate glass compositions
Corrias et al. X‐ray diffraction investigation of Co (II) ions in borosilicate glasses
JPH0680462A (en) Solid electrolyte