JPH05112817A - Method for heat treating adi parts - Google Patents

Method for heat treating adi parts

Info

Publication number
JPH05112817A
JPH05112817A JP3185848A JP18584891A JPH05112817A JP H05112817 A JPH05112817 A JP H05112817A JP 3185848 A JP3185848 A JP 3185848A JP 18584891 A JP18584891 A JP 18584891A JP H05112817 A JPH05112817 A JP H05112817A
Authority
JP
Japan
Prior art keywords
temperature
cooling
adi
temp
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3185848A
Other languages
Japanese (ja)
Inventor
Toshimi Sasaki
敏美 佐々木
Kaoru Hoshino
薫 星野
Haruki Sumimoto
治喜 炭本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JAPAN SMALL CORP
Original Assignee
JAPAN SMALL CORP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JAPAN SMALL CORP filed Critical JAPAN SMALL CORP
Priority to JP3185848A priority Critical patent/JPH05112817A/en
Publication of JPH05112817A publication Critical patent/JPH05112817A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE:To provide the method capable of improving the mass effect of heat treatment only by the selection of heat teating conditions without the addition of expensive alloy elements. CONSTITUTION:In the austempering treatment of ADI (austempered spheroidal graphite cast iron) parts, at the time of executing rapid cooling from the austenitization temp. to the bainitization temp., this parts are subjected to primary cooling to a temp. at which the difference with the austenitization temp. is >=600 deg.C in the temp. range of 225 to <300 deg.C, are thereafter held to the bainitization temp. and are subjected to austermpering.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、オーステナイト化温度
からベイナイト化温度まで冷却する際に特定温度差の第
一段冷却工程を付加し、冷却速度を大きくすることによ
り熱処理の質量効果を小さくし得るオーステンパー球状
黒鉛鋳鉄(以下、ADIという)部品の熱処理方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention adds a first stage cooling step of a specific temperature difference when cooling from an austenitizing temperature to a bainizing temperature and reduces the mass effect of heat treatment by increasing the cooling rate. The present invention relates to a heat treatment method for austempered spheroidal graphite cast iron (hereinafter referred to as ADI) parts.

【0002】[0002]

【従来の技術及びその問題点】一般に、ADI部品は球
状黒鉛鋳鉄(FCD)をオーステンパーすることによっ
て引張り強さ約1000N/mm2、伸び約10%と著
しく強靱化できることから、機械部品の小型軽量化の要
請に応えるべく自動車や建設機械等への採用が拡大しつ
つある。強靱化の理由は、オーステンパーによって高炭
素のベイナイトや残留オーステナイトが多量に出現する
ためで、残留オーステナイトは外部から応力が加わると
マルテンサイトに変態して硬くなり、著しい変形抵抗を
示すと言われている。
2. Description of the Related Art Generally, ADI parts can be remarkably toughened with a tensile strength of about 1000 N / mm 2 and an elongation of about 10% by austempering spheroidal graphite cast iron (FCD), so that mechanical parts can be made compact. In order to meet the demand for lighter weight, adoption in automobiles and construction machinery is expanding. The reason for toughening is that austenite causes a large amount of high carbon bainite and retained austenite to appear, and it is said that the retained austenite transforms to martensite and becomes hard when external stress is applied, and it is said that it exhibits remarkable deformation resistance. ing.

【0003】通常、ADI部品を製造するための熱処理
は図1に示されるオーステンパー法が用いられる。図1
の従来法によるオーステンパーは、球状黒鉛鋳鉄部品を
800〜950℃のオーステナイト化加熱し、その温度
に0.5〜3時間加熱保持して素地組織をオーステナイ
ト化した後、300〜400℃のベイナイト化温度まで
急冷してそのまま0.5〜4時間保持し、等温変態させ
て素地組織をベイナイトと残留オーステナイトとし、そ
の後空冷することにより行う。このようにして製造され
たADI部品は、球状黒鉛鋳鉄としてJIS FCD4
50を用いた場合に、引張強さ1000N/mm2,伸
び10%程度と著しく強靱化される。この値はFCD4
50の引張強さ約500N/mm2、伸び10%に対
し、同じ伸び値を保持しながら引張強さを2倍に向上し
た画期的なものである。
Usually, the austempering method shown in FIG. 1 is used for the heat treatment for manufacturing ADI parts. Figure 1
The austemper according to the conventional method is austenitic heating of spheroidal graphite cast iron parts at 800 to 950 ° C., and heating and holding at that temperature for 0.5 to 3 hours to austenite the base structure, and then bainite at 300 to 400 ° C. It is cooled by quenching to the oxidization temperature and kept as it is for 0.5 to 4 hours, and isothermically transformed into bainite and retained austenite, and then air-cooled. The ADI parts manufactured in this way are manufactured according to JIS FCD4 as spheroidal graphite cast iron.
When 50 is used, the tensile strength is 1000 N / mm 2 , and the elongation is about 10%, and the material is significantly toughened. This value is FCD4
This is an epoch-making product in which the tensile strength of 50 is about 500 N / mm 2 and the elongation is 10%, while the tensile strength is doubled while maintaining the same elongation value.

【0004】しかしながら、周知のように熱処理には質
量効果があり、被熱処理品が大きくなるに従って得られ
る機械的性質が低下するのはADIでも同様である。こ
れは、オーステナイト化温度から等温保持温度へ冷却す
る時の冷却速度が、被熱処理品の質量が大きくなるに従
って小さくなる結果、素地組織にパーライトが現われる
ようになり、引張強さや特に伸びを小さくするからであ
る。
However, as is well known, the heat treatment has a mass effect, and the mechanical properties obtained decrease as the size of the heat-treated product increases. This is because the cooling rate at the time of cooling from the austenitizing temperature to the isothermal holding temperature becomes smaller as the mass of the heat-treated product becomes larger, so that pearlite appears in the matrix structure, and the tensile strength and especially the elongation become small. Because.

【0005】この質量効果を小さくするには、図2の等
温変態曲線において、(1)パーライト変態点を長時間
側に移動させる、(2)被熱処理品の冷却曲線を左側へ
移動させる、ことの2通りの手段が考えられる。従来、
例えば特公昭55−3422号公報、特公昭59−10
988号公報等では、FCDにMo,Cu,Ni等の合
金元素を適量添加して等温変態曲線を図2ののように
右側に移動させることにより、大質量のものでもADI
化することが知られている。この従来技術は上記2方法
の内、(1)の方法によるものである。
In order to reduce this mass effect, in the isothermal transformation curve of FIG. 2, (1) move the pearlite transformation point to the long side, and (2) move the cooling curve of the heat-treated product to the left. There are two possible ways. Conventionally,
For example, JP-B-55-3422 and JP-B-59-10.
No. 988, etc., a large amount of ADI can be obtained by adding an appropriate amount of alloying elements such as Mo, Cu and Ni to FCD and moving the isothermal transformation curve to the right side as shown in FIG.
It is known to change. This prior art is based on the method (1) of the above two methods.

【0006】しかし、高価な合金元素を添加することは
そのまま製品のコストを押し上げることになる。また、
一般には、非合金鋳鉄鋳造ラインと合金鋳鉄鋳造ライン
が共存又は混在することになるので、鋳仕上げ後の戻し
材の管理コストが上昇するという問題点を有する。
However, the addition of expensive alloying elements directly increases the cost of the product. Also,
In general, the non-alloy cast iron casting line and the alloy cast iron casting line coexist or coexist, which causes a problem that the management cost of the return material after the casting finish increases.

【0007】本発明は、上記した質量効果の改善を
(2)の手段、すなわち高価な合金元素の添加を不用と
し、熱処理条件の選択のみにより実施できる方法を提供
することを目的とする。
It is an object of the present invention to provide a method capable of improving the above-mentioned mass effect by means of (2), that is, without adding an expensive alloying element, and only by selecting a heat treatment condition.

【0008】[0008]

【問題点を解決するための手段】本発明は、ADI部品
のオーステンパー処理において、オーステナイト化温度
からベイナイト化温度まで急速冷却を行うに際し、22
5℃以上300℃未満の温度範囲の中で、オーステナイ
ト化温度との差が600℃以上である温度に第一段冷却
を行い、その後ベイナイト化温度に保持してオーステン
パーすることにより、前記問題点を解決したものであ
る。
According to the present invention, in the austempering of ADI parts, rapid cooling from an austenitizing temperature to a bainizing temperature is performed.
In the temperature range of 5 ° C. or more and less than 300 ° C., the first stage cooling is performed to a temperature having a difference of 600 ° C. or more from the austenitizing temperature, and then the temperature is maintained at the bainitizing temperature and austempered, whereby It is a solution to the problem.

【0009】以下に本発明を主として添付図面を参照し
て説明する。図3は、25mmφ×220mmLのFC
D450試験片を、オーステナイト化温度850及び9
00℃から375℃のベイナイト化温度に冷却した時の
冷却曲線を、表面部及び中心部についてそれぞれ測定し
た結果である。各オーステナイト化温度での冷却曲線を
比較すると、表面部、中心部のいずれの場合もオーステ
ナイト化温度900℃と高い方が明らかに大きな冷却速
度を示している。特に、500〜700℃の範囲でその
差が最も大きい。一般に、オーステナイト化温度の高い
方が試験片の保有する熱量が大きくなるので、同じ温度
に冷却した場合の冷却速度は小さくなると考えられてい
た。しかし、図3に示されるように、ADI熱処理条件
では、実際にオーステナイト化温度とベイナイト化温度
の差の大きい方が大きな冷却速度を示している。
The present invention will be described below mainly with reference to the accompanying drawings. Fig. 3 shows FC of 25mmφ x 220mmL
D450 specimens were austenitized at temperatures 850 and 9
It is the result of having measured the cooling curve at the time of cooling to the bainitizing temperature of 00 degreeC to 375 degreeC about the surface part and the center part, respectively. Comparing the cooling curves at the respective austenitizing temperatures, the higher the austenitizing temperature of 900 ° C. is, the higher the cooling rate is obviously in both the surface portion and the central portion. Especially, the difference is the largest in the range of 500 to 700 ° C. Generally, the higher the austenitizing temperature, the larger the amount of heat held by the test piece, so it was thought that the cooling rate when cooled to the same temperature would be lower. However, as shown in FIG. 3, under the ADI heat treatment conditions, the larger the difference between the austenitizing temperature and the bainitizing temperature, the larger the cooling rate.

【0010】図4はこれらの試験片の中心部の顕微鏡組
織を示したものであるが、900℃から冷却した試験片
中心部が95%ベイナイト組織を示すのに対し、850
℃から冷却されたものは30%程度のパーライトを析出
している。
FIG. 4 shows the microscopic structure of the center part of these test pieces. The center part of the test piece cooled from 900 ° C. shows a 95% bainite structure, while 850
Those cooled from 0 ° C deposit about 30% of pearlite.

【0011】オーステナイト化温度850℃に加熱した
クェンチテストのセンサを、ベイナイト化温度200、
225、250及び375℃の各温度に保持した塩浴槽
に投入し、撹拌せずに冷却曲線及び冷却速度を測定した
結果を図5に示す。図5から明らかなように、一般的な
ベイナイト化温度である375℃への冷却は、200〜
250℃のようのベイナイト化温度としては低すぎる温
度への冷却に比較して著しく小さい冷却速度を示してい
る。
A sensor of the quench test heated to an austenitizing temperature of 850 ° C. was put into a bainizing temperature of 200,
FIG. 5 shows the results of measuring the cooling curve and the cooling rate without adding the salt bath, which was maintained at the temperatures of 225, 250 and 375 ° C., without stirring. As is clear from FIG. 5, the cooling to 375 ° C., which is a general bainizing temperature, is 200 to 200 ° C.
It shows a remarkably small cooling rate as compared with cooling to a temperature too low as a bainizing temperature such as 250 ° C.

【0012】一般に、最も多く使用されるベイナイト化
温度は350〜400℃で、この場合はオーステナイト
化温度を950〜1000℃にとれば、600℃を超え
る温度差を保持できるが、このような高いオーステナイ
ト化温度では結晶粒成長等による脆弱化が著しく、オー
ステンパーの目的とする強靱化は達成できなくなる。従
って、オーステナイト化温度を上昇させて通常のベイナ
イト化温度との温度差を600℃以上とることは熱処理
の本来の目的に反する結果となる。
Generally, the most frequently used bainizing temperature is 350 to 400 ° C. In this case, if the austenitizing temperature is set to 950 to 1000 ° C., a temperature difference of more than 600 ° C. can be maintained, but such a high temperature is required. At the austenitizing temperature, brittleness due to crystal grain growth or the like is remarkable, and the target toughness of the austemper cannot be achieved. Therefore, increasing the austenitizing temperature to set the temperature difference from the normal bainizing temperature to 600 ° C. or more results in contrary to the original purpose of the heat treatment.

【0013】そこで、本発明では、ADI品を800〜
950℃にオーステナイト化後、ベイナイト化温度への
冷却前に、一旦225〜300℃未満の温度範囲の中
で、オーステナイト化温度との差が600℃以上である
温度に第一段冷却を行い、その後、所定のベイナイト化
温度に保持して、オーステンパーを行い、パーライト変
態温度の500〜700℃付近での冷却速度を大きくと
り、パーライトの析出を極力少量に抑えるようにしたも
のである。この本発明の熱処理線図を図6(a),
(b)に示す。
Therefore, in the present invention, the ADI product is
After austenitizing to 950 ° C., before cooling to the bainizing temperature, once in a temperature range of 225 to less than 300 ° C., first stage cooling is performed to a temperature at which the difference from the austenitizing temperature is 600 ° C. or more, After that, a predetermined bainizing temperature is maintained and austempering is performed to increase the cooling rate near the pearlite transformation temperature of 500 to 700 ° C. to suppress the precipitation of pearlite to a minimum. This heat treatment diagram of the present invention is shown in FIG.
It shows in (b).

【0014】図6(b)は本発明の方法と従来の方法の
温度条件を、縦軸にオーステナイト化温度γをとり、横
軸にベイナイト化温度Bをとって図示したものである。
この図6(b)において、四辺形PQTSは本発明の第
一段の冷却の温度条件を、矩形QRVUは従来の方法の
温度条件を示し、直線STの上部はオーステナイト化温
度とベイナイト化温度との差が600℃以上である温度
域を示している。
FIG. 6B shows the temperature conditions of the method of the present invention and the conventional method with the austenitizing temperature γ on the vertical axis and the bainizing temperature B on the horizontal axis.
In FIG. 6 (b), the quadrangle PQTS indicates the temperature condition of the first stage cooling of the present invention, the rectangle QRVU indicates the temperature condition of the conventional method, and the upper part of the straight line ST indicates the austenitizing temperature and the bainizing temperature. Indicates a temperature range in which the difference of 600 ° C. or more.

【0015】図6(a),(b)における一回目冷却の
下限温度は225℃である。これは、一般の非合金FC
Dのマルテンサイト変態点が200〜220℃にあり、
この冷却でマルテンサイト変態を起こすことは他の強靱
化機構に依存することになり、このことについては既に
他の特許、例えば特開昭61−76612号、特公平1
−42326号公報等により明らかにされている。
The lower limit temperature of the first cooling in FIGS. 6A and 6B is 225 ° C. This is a general non-alloy FC
The martensite transformation point of D is in the range of 200 to 220 ° C,
The occurrence of martensitic transformation by this cooling depends on another toughening mechanism, and this has already been described in other patents, for example, JP-A-61-76612, Japanese Patent Publication No.
-42326 and the like.

【0016】一回目冷却の上限温度299℃は、通常の
ベイナイト化温度の下限300℃に最も近い温度であ
る。また、オーステナイト化温度及びベイナイト化温度
は、ADIの材質、形状寸法、所要の機械的性質等によ
って決まるものであり、本発明による制約は受けない。
The upper limit temperature 299 ° C. of the first cooling is the temperature closest to the lower limit 300 ° C. of the normal bainizing temperature. Further, the austenitizing temperature and the bainizing temperature are determined by the material, shape and size of ADI, required mechanical properties, etc., and are not restricted by the present invention.

【0017】以下に実施例を示す。Examples will be shown below.

【実施例】図7は、クエンチテストによって、850℃
→225℃→375℃及び850℃→250℃→375
℃の本発明によるオーステンパーを行った時の冷却曲線
及び冷却速度を測定した結果を示す。これを図5の結果
と比較すると、500℃〜700℃のパーライト析出範
囲の冷却が225〜250℃への冷却と同様に速くな
り、冷却後、20秒で375℃に到達してベイナイト温
度保持されるようになる。375℃への冷却(図5)で
は、60秒後からやっとベイナイト温度へ保持される。
EXAMPLE FIG. 7 shows a quench test at 850 ° C.
→ 225 ° C → 375 ° C and 850 ° C → 250 ° C → 375
The results of measuring the cooling curve and cooling rate when performing the austempering according to the present invention at ℃ are shown. Comparing this with the results of FIG. 5, the cooling in the pearlite precipitation range of 500 ° C. to 700 ° C. becomes as fast as the cooling to 225 to 250 ° C., and after cooling, it reaches 375 ° C. in 20 seconds and the bainite temperature is maintained. Will be done. With cooling to 375 ° C. (FIG. 5), the bainite temperature is finally maintained after 60 seconds.

【0018】900℃でオーステナイト化し、375℃
でベイナイト化した25mmφ及び50mmφ×220
mmLのADI試験片からJIS4号試験片を加工して
引張試験を行った結果を、従来法と本発明方法とにつき
比較して次表に示す。なお、本発明による場合の最初の
冷却温度は225℃である。
Austenite at 900 ° C., 375 ° C.
25mmφ and 50mmφ × 220 bainized
The following table shows the results obtained by processing the JIS No. 4 test piece from the mmL ADI test piece and performing the tensile test for the conventional method and the method of the present invention in comparison. The initial cooling temperature in the case of the present invention is 225 ° C.

【0019】 [0019]

【0020】上表より、本発明によるADI熱処理法に
よれば、25mmφでは引張強さの改善が、また50m
mφでは伸びの改善が著しいことが明らかである。
From the above table, according to the ADI heat treatment method of the present invention, the improvement of the tensile strength at 25 mmφ is 50 m.
It is clear that the improvement in elongation is significant for mφ.

【0021】[0021]

【発明の効果】以上のように、本発明による引張強さの
改善は25mmφで15%、伸びの改善は50mmφで
44%に及ぶ。このような効果は強靱なADIの採用を
促進し、自動車や建設機械の軽量化から燃費節減に至
り、その効果は大きい。
As described above, the improvement in tensile strength according to the present invention is 15% at 25 mmφ and the improvement in elongation is 44% at 50 mmφ. Such an effect promotes the adoption of a tough ADI, leads to a reduction in fuel consumption due to the weight reduction of automobiles and construction machinery, and has a great effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来法によるADIのオーステンパー熱処理線
図である。
FIG. 1 is an austempering heat treatment diagram of ADI according to a conventional method.

【図2】質量効果を小さくするためのFCDのTTT曲
線図である。
FIG. 2 is a TTT curve diagram of FCD for reducing the mass effect.

【図3】オーステナイト化温度の相違による冷却曲線の
差を示す説明図である。
FIG. 3 is an explanatory diagram showing a difference in cooling curves due to a difference in austenitizing temperature.

【図4】オーステナイト化温度の相違による金属組織の
顕微鏡写真の差を示す説明図である。
FIG. 4 is an explanatory diagram showing a difference in micrographs of a metal structure due to a difference in austenitizing temperature.

【図5】各種ベイナイト化温度と冷却曲線及び冷却速度
の関係を示す説明図である。
FIG. 5 is an explanatory diagram showing a relationship between various bainizing temperatures, a cooling curve, and a cooling rate.

【図6】(a)は本発明によるオーステンパー熱処理線
図、(b)は本発明方法と従来法との温度範囲を示す説
明図である。
6 (a) is an austemper heat treatment diagram according to the present invention, and FIG. 6 (b) is an explanatory diagram showing temperature ranges of the method of the present invention and the conventional method.

【図7】本発明によった場合の冷却曲線と冷却速度の説
明図である。
FIG. 7 is an explanatory diagram of a cooling curve and a cooling rate according to the present invention.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ADI(オーステンパー球状黒鉛鋳鉄)
部品のオーステンパー処理において、オーステナイト化
温度からベイナイト化温度まで急速冷却を行うに際し、
225℃以上300℃未満の温度範囲の中で、オーステ
ナイト化温度との差が600℃以上である温度に第一段
冷却を行い、その後ベイナイト化温度に保持してオース
テンパーすることを特徴とするADI部品の熱処理方
法。
1. ADI (Austempered spheroidal graphite cast iron)
When performing rapid cooling from austenitizing temperature to bainizing temperature in austempering of parts,
In the temperature range of 225 ° C. or higher and lower than 300 ° C., the first stage cooling is performed to a temperature having a difference of 600 ° C. or higher from the austenitizing temperature, and then the temperature is maintained at the bainizing temperature for austempering. Heat treatment method for ADI parts.
JP3185848A 1991-07-01 1991-07-01 Method for heat treating adi parts Pending JPH05112817A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3185848A JPH05112817A (en) 1991-07-01 1991-07-01 Method for heat treating adi parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3185848A JPH05112817A (en) 1991-07-01 1991-07-01 Method for heat treating adi parts

Publications (1)

Publication Number Publication Date
JPH05112817A true JPH05112817A (en) 1993-05-07

Family

ID=16177941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3185848A Pending JPH05112817A (en) 1991-07-01 1991-07-01 Method for heat treating adi parts

Country Status (1)

Country Link
JP (1) JPH05112817A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6149743A (en) * 1997-08-01 2000-11-21 Ovako Steel Ab Method of complete bainite hardening
JP2010513707A (en) * 2006-12-16 2010-04-30 インデクスター アクチボラゲット Austempered ductile iron, method for producing the iron, and component containing the iron
WO2014145421A2 (en) * 2013-03-15 2014-09-18 Wayne State University Development of nanostructure austempered ductile iron with dual phase microstructure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58207354A (en) * 1982-05-26 1983-12-02 Sugiyama Chuzo Kk Manufacture of crane parts made of spheroidal graphite cast iron
JPS60243216A (en) * 1984-05-16 1985-12-03 Toyota Motor Corp Heat treatment of spheroidal graphite cast iron
JPS6283419A (en) * 1985-10-08 1987-04-16 Hitachi Metals Ltd Heat treatment for spheroidal graphite cast iron

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58207354A (en) * 1982-05-26 1983-12-02 Sugiyama Chuzo Kk Manufacture of crane parts made of spheroidal graphite cast iron
JPS60243216A (en) * 1984-05-16 1985-12-03 Toyota Motor Corp Heat treatment of spheroidal graphite cast iron
JPS6283419A (en) * 1985-10-08 1987-04-16 Hitachi Metals Ltd Heat treatment for spheroidal graphite cast iron

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6149743A (en) * 1997-08-01 2000-11-21 Ovako Steel Ab Method of complete bainite hardening
JP2010513707A (en) * 2006-12-16 2010-04-30 インデクスター アクチボラゲット Austempered ductile iron, method for producing the iron, and component containing the iron
WO2014145421A2 (en) * 2013-03-15 2014-09-18 Wayne State University Development of nanostructure austempered ductile iron with dual phase microstructure
WO2014145421A3 (en) * 2013-03-15 2014-11-06 Wayne State University Development of nanostructure austempered ductile iron with dual phase microstructure
US10066278B2 (en) 2013-03-15 2018-09-04 Wayne State University Development of nanostructure austempered ductile iron with dual phase microstructure

Similar Documents

Publication Publication Date Title
JP5135562B2 (en) Carburizing steel, carburized steel parts, and manufacturing method thereof
JP5135563B2 (en) Carburizing steel, carburized steel parts, and manufacturing method thereof
JP4435953B2 (en) Bar wire for cold forging and its manufacturing method
US7597768B2 (en) Steel wire for hard drawn spring excellent in fatigue strength and resistance to settling, and hard drawn spring and method of making thereof
JP2001240941A (en) Bar wire rod for cold forging and its production method
US5876523A (en) Method of producing spheroidal graphite cast iron article
WO2004007785A1 (en) Quenched and tempered steel wire with superior cold forging characteristics
EP2982769A1 (en) Austempered steel, method for producing it, component and semi-finished bad
WO2008156295A2 (en) High strength and toughness spring having excellent fatigue life, steel wire rod and steel wire for the same and producing method of said steel wire and spring
JPS58185745A (en) Spherical graphite cast iron parts and their manufacture
CN105624376A (en) Toughening-strengthening heat treatment method of high nitrogen austenitic stainless steel
JP2004204263A (en) Steel material for case hardening superior in cold workability and coarse-particle-preventing property in carburization, and manufacturing method therefor
JPH05320749A (en) Production of ultrahigh strength steel
CN114929922A (en) Wire rod and member for cold forging each having excellent delayed fracture resistance characteristics and method for manufacturing the same
JPH039168B2 (en)
JP2010053430A (en) Method for manufacturing high-strength non-heat-treated hot-forged steel
JPH05112817A (en) Method for heat treating adi parts
KR100957306B1 (en) Forging steel using high frequency heat treatment and method for manufacturing the same
JP2000336460A (en) Hot rolled wire rod and steel bar for machine structure and manufacture of the same
EP0020357A4 (en) Lower bainite alloy steel article.
JP2802155B2 (en) Method for producing high-strength steel wire without heat treatment and excellent in fatigue resistance and wear resistance
JP3823347B2 (en) High yield strength, high ductility cast iron and manufacturing method thereof
JP6752624B2 (en) Manufacturing method of carburized steel
JPH07310118A (en) Production of case hardening steel suitable for cold-working
JP4103191B2 (en) High hardness steel for induction hardening with excellent corrosion resistance