JPH0511225A - Optical crystal added with different elements and production thereof and optical device - Google Patents

Optical crystal added with different elements and production thereof and optical device

Info

Publication number
JPH0511225A
JPH0511225A JP16304291A JP16304291A JPH0511225A JP H0511225 A JPH0511225 A JP H0511225A JP 16304291 A JP16304291 A JP 16304291A JP 16304291 A JP16304291 A JP 16304291A JP H0511225 A JPH0511225 A JP H0511225A
Authority
JP
Japan
Prior art keywords
crystal
growth
optical
light
optical crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16304291A
Other languages
Japanese (ja)
Inventor
Yasushi Obayashi
寧 大林
Hideo Suzuki
英夫 鈴木
Takashi Suzuki
孝 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP16304291A priority Critical patent/JPH0511225A/en
Publication of JPH0511225A publication Critical patent/JPH0511225A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To provide the optical crystal which can prevent the scattering of incident light by the growth fringes in a single crystal and the process for production of this crystal and the optical device. CONSTITUTION:The opposite surfaces 10a, 10b parallel with each other of the crystal 3 added with different elements are polished and the growth fringes are parallel with these opposite surfaces 10a, 10b. The crystal 3 is produced by pulling up the crystal in a y-axis direction from the melt 2 in a platinum crucible 1 and further adding the different elements thereto. The growth fringes 4 are formed in the direction perpendicular to the y-axis in this way. The direction of the incident light aligns to the direction perpendicular to the growth fringes 4, i.e., agrees with the y-axis direction. Then, the crystal is homogeneous within the plane including the growth fringes 4 and, therefore, beam patterns are prevented from being disturbed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光学的な応用に用いる
単結晶に種々の付加機能をもたせるため、異種元素を添
加してチョクラルスキー法により引上げ育成を行った光
学結晶に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical crystal obtained by pulling and growing by a Czochralski method by adding different elements in order to give a single crystal used for optical applications various additional functions. .

【0002】[0002]

【従来の技術】従来より、光学的応用に有効利用できる
単結晶の多くはチョクラルスキー法により引上げ育成さ
れてきたが、その引上軸はほとんどの場合統一されてお
り、z軸(あるいはc軸)で行われることが多かった。
これは、この軸が結晶構造上最も引き上げ易いという理
由、及び育成後の加工性(所定の方位に切り出した時に
無駄になる部分が少なく効率が良い)によるものであ
る。
2. Description of the Related Art Conventionally, most of single crystals that can be effectively used for optical applications have been grown by pulling by the Czochralski method, but the pulling axis is almost unified in most cases, and the z axis (or c Axis) was often done.
This is because this axis is the most easily pulled up in terms of the crystal structure, and the workability after growth (there are few parts that are wasted when cut out in a predetermined orientation and the efficiency is good).

【0003】近年、光学結晶に新たな機能を持たせるた
め、上述のチョクラルスキー法において、単結晶のホス
ト(マトリックス)材料に異種元素を添加し、単結晶を
作製するようになってきた。この場合、レーザー・ホス
トとなる結晶に活性イオンをドープしたり、例えばLi
NbO3 単結晶の欠点であった光損傷に対する弱さを補
うためにMgを添加したり、その他様々な光学的応用に
適用できるようにNd、Zn、Fe、Ti、Cr、H
o、Vなどを添加して光学結晶を作製している。
In recent years, in order to give an optical crystal a new function, in the above-mentioned Czochralski method, a different element is added to a single crystal host (matrix) material to produce a single crystal. In this case, a crystal serving as a laser host is doped with active ions, and for example, Li
Nd, Zn, Fe, Ti, Cr, and H are added so that Mg can be added to compensate for the weakness of the NbO 3 single crystal with respect to optical damage and various other optical applications.
Optical crystals are produced by adding o, V and the like.

【0004】[0004]

【発明が解決しようとする課題】チョクラルスキー法に
よる結晶の育成においては、引き上げ中に、既に引き上
げられて固化した部分と、ルツボ中で融けている原料
(メルト)との固液界面に沿った成長縞(ストリエーシ
ョン)が、引き上がった結晶内に入ってしまう。この成
長縞は光の散乱の原因になるので、光学的応用に用いる
結晶には好ましくない。従来のノンドープ光学結晶では
成長縞はほとんど観察されず問題とならなかったが、新
たな機能を持たせるために異種元素を添加した光学結晶
には肉眼で観察できるほどの成長縞が入る。例えば図5
(a)に示されているように、白金るつぼ1内の融液2
からMgを添加したLiNbO3 単結晶3をz軸方向に
引き上げる。この時単結晶3内には固液界面4に沿った
成長縞4が発生する。添加するMg濃度が1mol%未
満の濃度であっても約1mm間隔の成長縞4が単結晶3
内部にまで生じていることが観察された。
In the growth of crystals by the Czochralski method, along the solid-liquid interface between the part that has already been pulled and solidified during pulling and the raw material (melt) that has melted in the crucible during pulling. Growth fringes (striations) enter the pulled-up crystal. This growth fringe causes light scattering, and is not preferable for crystals used for optical applications. Growth fringes were hardly observed in conventional non-doped optical crystals, which was not a problem, but growth fringes that can be observed with the naked eye are included in optical crystals to which a different element is added to have a new function. For example, in FIG.
As shown in (a), the melt 2 in the platinum crucible 1
The LiNbO 3 single crystal 3 added with Mg is pulled in the z-axis direction. At this time, growth stripes 4 are formed along the solid-liquid interface 4 in the single crystal 3. Even if the added Mg concentration is less than 1 mol%, the growth fringes 4 at intervals of about 1 mm are single crystals 3.
It was observed that it had even occurred inside.

【0005】図5(b)に示された単結晶3の破線部分
を第二高調波発生(SHG)に用いた場合、最も好まし
いノンクリティカルな位相整合を達成できるのは、z軸
に対し90°の方向、即ちy軸方向より光を入射させた
場合である。したがって、前述のように引上げの容易性
と育成後の加工性の容易性とを考慮して、z軸方向に引
き上げたときには、引上げ方向と垂直に光を入射させる
ことになるので、光の入射面には成長縞4が現れ、これ
を通過した光のビーム・パターンは図5(c)に示され
るように劣化する。
When the broken line portion of the single crystal 3 shown in FIG. 5B is used for the second harmonic generation (SHG), the most preferable non-critical phase matching can be achieved at 90 with respect to the z axis. This is the case when light is incident in the direction of °, that is, the y-axis direction. Therefore, considering the ease of pulling up and the workability after growth as described above, when pulling up in the z-axis direction, light is incident perpendicularly to the pulling direction. Growth stripes 4 appear on the surface, and the beam pattern of the light passing through the surface deteriorates as shown in FIG. 5C.

【0006】本発明は、単結晶に入射した光のビームが
成長縞によって乱れることを防ぐことができる光学結晶
を作製することを目的とする。
An object of the present invention is to manufacture an optical crystal capable of preventing a beam of light incident on a single crystal from being disturbed by growth fringes.

【0007】[0007]

【課題を解決するための手段】本発明の光学結晶は、ホ
スト材料に異種元素を添加することにより互いに平行な
成長縞が内部に生成された単結晶で構成され、それぞれ
鏡面仕上げされた一組の対向面が、成長縞に平行に形成
されていることを特徴とする。
The optical crystal of the present invention is composed of a single crystal in which growth fringes parallel to each other are formed inside by adding a different element to a host material, and each set is mirror-finished. The opposing surface of is formed parallel to the growth stripes.

【0008】前述の光学結晶は、ホスト材料に異種元素
を添加し、チョクラルスキー法により単結晶を引き上げ
る第1のステップと、引き上げた単結晶を、引上げ方向
と直交する対向面で鏡面に研磨する第2のステップとに
よって作製されることを特徴とし、異種元素はMg、N
d、Zn、Ti、Cr、Fe、Ho、V、もしくはこれ
らの酸化物であることが望ましい。
In the above-mentioned optical crystal, the first step of adding a different element to the host material and pulling the single crystal by the Czochralski method, and the pulled single crystal is mirror-polished on the facing surface orthogonal to the pulling direction. The second element is Mg, N
Desirably, d, Zn, Ti, Cr, Fe, Ho, V, or an oxide thereof is used.

【0009】また、本発明の光学デバイスは、ホスト材
料に異種元素を添加することによって、互いに平行な成
長縞が内部に生成された単結晶からなる光学結晶と、こ
の光学結晶の光入射端面から内部に光を入射する光源と
を有し、光源から発せられる光は光学結晶の成長縞と直
交する方向に伝播するよう構成されていることを特徴と
する。
In the optical device of the present invention, an optical crystal made of a single crystal in which growth fringes parallel to each other are formed inside by adding a different element to the host material and a light incident end face of the optical crystal are formed. It is characterized in that it has a light source for injecting light therein, and that the light emitted from the light source propagates in a direction orthogonal to the growth fringes of the optical crystal.

【0010】[0010]

【作用】本発明に係る異種元素を添加した光学結晶は、
鏡面仕上げされた一組の対向面が成長縞に平行に形成さ
れているため、その光学結晶の応用時に、対向面を介し
て成長縞に垂直に光を入射させることができる。
The optical crystal to which the different element according to the present invention is added,
Since a pair of mirror-finished facing surfaces are formed parallel to the growth fringes, it is possible to make light incident perpendicularly to the growth fringes through the facing surfaces when the optical crystal is applied.

【0011】なお、本発明に係る異種元素を添加した光
学結晶の作製方法によれば、単結晶の引上げ方向と直交
する対向面を鏡面状に研磨するため、その鏡面状の対向
面を引上げの際に形成される成長縞と平行に形成するこ
とができ、光入射端面とすることができる。
According to the method for producing an optical crystal to which a different element is added according to the present invention, the facing surface orthogonal to the pulling direction of the single crystal is mirror-polished, so that the mirror-facing surface is pulled up. It can be formed in parallel with the growth stripes formed at that time, and can be used as the light incident end face.

【0012】上述の光学結晶を光学デバイスに用いた場
合、光学結晶に入射した光は成長縞と直交する方向に伝
播する。このとき入射光が通過する成長縞を含む面内で
の結晶は均質であるため、光のビームは成長縞によって
散乱しない。したがって、異種元素を添加して新しい機
能を持たせつつ、光学結晶の成長縞に妨げられない光ビ
ームを出射する光学デバイスを得ることができる。
When the above-mentioned optical crystal is used for an optical device, the light incident on the optical crystal propagates in the direction orthogonal to the growth fringes. At this time, since the crystal in the plane including the growth fringes through which the incident light passes is homogeneous, the light beam is not scattered by the growth fringes. Therefore, it is possible to obtain an optical device that emits a light beam that is not disturbed by the growth fringes of the optical crystal while adding a different element to have a new function.

【0013】[0013]

【実施例】以下、本発明の実施例について説明する。EXAMPLES Examples of the present invention will be described below.

【0014】図1(a)は、本発明に係る光学結晶を示
している。異種元素が添加された結晶3の、互いに平行
な対向面10a、10bの表面は鏡面状になっており、
成長縞(図示せず)は、その対向面10a、10bに平
行になっている。このため、この光学結晶の応用時に
は、鏡面状の対向面10a、10bのどちらか一方を介
して、成長縞と直交する方向に光を入射させることがで
きる。
FIG. 1A shows an optical crystal according to the present invention. The surfaces of the opposing faces 10a and 10b parallel to each other of the crystal 3 to which the different element is added are mirror-finished,
The growth stripes (not shown) are parallel to the facing surfaces 10a and 10b. Therefore, when this optical crystal is applied, light can be incident in a direction orthogonal to the growth fringes through either one of the mirror-like facing surfaces 10a and 10b.

【0015】同図(b)は上述の光学結晶の作製方法を
示している。図示されるように、白金るつぼ1内の融液
2からy軸方向に引き上げて、Mgを添加したLiNb
3 単結晶3を作製した。同図(b)の破線部分でしめ
される単結晶3を用い、成長縞4と直交する方向に光を
入射させた。この入射光は成長縞4を垂直に通過し、成
長縞4を含む面内では結晶は均質であるために乱れてい
ない。したがってそのビーム・パターンには同図(c)
に示されるように、縞が発生していない。
FIG. 1B shows a method for producing the above-mentioned optical crystal. As shown in the drawing, LiNb added with Mg is pulled from the melt 2 in the platinum crucible 1 in the y-axis direction.
O 3 single crystal 3 was produced. Using the single crystal 3 shown by the broken line portion in the same figure (b), light was made incident in the direction orthogonal to the growth stripes 4. This incident light passes through the growth stripes 4 vertically, and is not disturbed because the crystal is homogeneous in the plane including the growth stripes 4. Therefore, the beam pattern is shown in FIG.
As shown in, no stripes are generated.

【0016】なお、光学結晶としては本実施例で用いた
LiNbO3 の他にYAG、Al2 3 、Mg2 SiO
4 などが、異種元素としてはMgの他にNd、Zn、F
e、Ti、Cr、Ho、V、あるいはこれらの酸化物を
用いることができる。また、引上げ方向もy軸に限ら
ず、結晶の応用時に光を入射する方向を引上げ軸とすれ
ば、上述の光学結晶と同様の効果が得られる。
As the optical crystal, in addition to LiNbO 3 used in this embodiment, YAG, Al 2 O 3 and Mg 2 SiO are used.
4 and the like, other than Mg, Nd, Zn, F
e, Ti, Cr, Ho, V, or oxides thereof can be used. Further, the pulling direction is not limited to the y-axis, and the same effect as that of the above-mentioned optical crystal can be obtained if the pulling axis is the direction in which light is incident when the crystal is applied.

【0017】上述の作製方法で得られた光学結晶につい
て、成長縞の方向と結晶内の伝播光の方向との関係をシ
ュリーレン法によって確認した。この方法では図2
(a)に示すように、単結晶3の全面にHe−Neレー
ザーを照射し、透過してきた光をレンズで絞ってカメラ
に写すわけであるが、この時集光される部分に小さなA
l製のストッパーを置いて光を遮る。もし、単結晶3中
に光を散乱させるような欠陥があると、光の進行方向が
変えられストッパーの位置を通らなくなるので、光がも
れてきて単結晶3内の不均一性がわかるという仕組みで
ある。
With respect to the optical crystal obtained by the above-described manufacturing method, the relationship between the direction of growth fringes and the direction of propagation light in the crystal was confirmed by the Schlieren method. This method
As shown in (a), the whole surface of the single crystal 3 is irradiated with a He-Ne laser, and the transmitted light is focused by a lens and photographed by a camera. At this time, a small A
Place a stopper made of l to block the light. If there is a defect that scatters light in the single crystal 3, the traveling direction of the light is changed and the stopper cannot pass through the position, so that the light leaks and the non-uniformity in the single crystal 3 can be seen. It is a mechanism.

【0018】結果を図2(b)に示す。成長縞と直角に
交わるように伝播光が進行したときの透過光を同図に示
すが、光は結晶内部で散乱されることなく、レンズで一
点に集光されるため、ストッパーによって止められてカ
メラまで届いていなかった。一方、成長縞に沿って伝播
光が進行したときの透過光を図2(c)に示す。すでに
透過像において成長縞が観察されており、透過光は散乱
されて一点に集光しないので光がもれてカメラまで到達
した。以上の比較から、成長縞の影響を避けるために
は、伝播光が成長縞と直交するように用いることが望ま
しいことがわかった。
The results are shown in FIG. 2 (b). The transmitted light when the propagating light travels at right angles to the growth fringes is shown in the same figure, but the light is not scattered inside the crystal and is condensed at one point by the lens, so it is stopped by the stopper. I didn't reach the camera. On the other hand, FIG. 2C shows the transmitted light when the propagating light travels along the growth stripes. Growth fringes have already been observed in the transmission image, and the transmitted light is scattered and does not converge at one point, so the light leaks and reaches the camera. From the above comparison, it was found that it is desirable to use the propagating light so as to be orthogonal to the growth fringes in order to avoid the influence of the growth fringes.

【0019】続いて上述の光学結晶を用い、Nd−YA
Gレーザーの第2高調波発生(SHG)実験を行った。
図3(a)にその実験系を示す。基本波に用いたのはQ
スイッチ付Nd−YAGレーザーである。位相整合は9
0°位相整合、すなわちy軸に沿って光を伝播させて行
った。結晶長は20mmである。同図(b)に、入力パ
ワー密度に対する変換効率を示した。成長縞が伝播光と
直角になっている結晶を用いた場合は、成長縞が伝播光
に沿っている結晶を用いた場合より高い変換効率が得ら
れていた。
Then, using the above-mentioned optical crystal, Nd-YA
A second harmonic generation (SHG) experiment of a G laser was conducted.
The experimental system is shown in FIG. Q used for the fundamental wave
It is an Nd-YAG laser with a switch. Phase matching is 9
The phase was 0 °, that is, the light was propagated along the y axis. The crystal length is 20 mm. The conversion efficiency with respect to the input power density is shown in FIG. When the crystal in which the growth fringes are perpendicular to the propagating light was used, higher conversion efficiency was obtained than in the case where the crystal in which the growth fringes were along the propagating light was used.

【0020】上記の結果について図4を用いて検討す
る。成長縞4が伝播光に沿っている単結晶3を用いた場
合、入射光の一部は単結晶3内で散乱され伝播方向が曲
げられてしまうため、もはや位相整合条件を満たさな
い。すなわち、波長変換に寄与する光の量は実際に入力
した光の量より少なくなってしまう。これに対し、成長
縞4が伝播光と直角になっている単結晶3を用いた場合
は、光の散乱が無く、入射した光の全てが波長変換に寄
与するために少ない入力エネルギーで高い変換効率が得
られているものと推測する。
The above results will be examined with reference to FIG. When the single crystal 3 in which the growth fringe 4 is along the propagating light is used, a part of the incident light is scattered in the single crystal 3 and the propagation direction is bent, so that the phase matching condition is no longer satisfied. That is, the amount of light that contributes to wavelength conversion becomes smaller than the amount of light that is actually input. On the other hand, when the single crystal 3 in which the growth fringes 4 are perpendicular to the propagating light is used, there is no light scattering and all the incident light contributes to wavelength conversion, so that high conversion is possible with less input energy. It is assumed that the efficiency has been obtained.

【0021】以上の結果から、伝播光が単結晶3内部の
成長縞4と直交するように構成した光デバイスの有効性
が証明された。
From the above results, the effectiveness of the optical device constituted so that the propagating light is orthogonal to the growth fringes 4 inside the single crystal 3 was proved.

【0022】[0022]

【発明の効果】以上説明したように、本発明に係る異種
元素を添加した光学結晶は、その応用時に、鏡面仕上げ
された対向面の一方を介して成長縞に垂直に光を入射さ
せることができるため、その入射光は何等成長縞の影響
を受けることがない。
As described above, the optical crystal to which the different element according to the present invention is added can allow light to be vertically incident on the growth fringes through one of the mirror-finished facing surfaces. Therefore, the incident light is not affected by the growth fringes.

【0023】なお、本発明に係る異種元素を添加した光
学結晶の作製方法によれば、成長縞と平行になるように
形成した鏡面状の対向面を光入射端面とすることができ
るので、その光入射端面に入射した光は結晶の成長縞に
対し垂直に伝播しする。このとき、入射光が通過する成
長縞を含む面内での結晶は均質であるため、光のビーム
は乱れない。
According to the method for producing an optical crystal to which a different element is added according to the present invention, the mirror-like opposed surface formed parallel to the growth stripes can be used as the light incident end surface. The light incident on the light incident end face propagates perpendicularly to the growth fringes of the crystal. At this time, since the crystal in the plane including the growth fringes through which the incident light passes is homogeneous, the light beam is not disturbed.

【0024】以上のことから、光学結晶に異種元素を添
加して新しい機能を持たせつつ、成長縞に妨げられない
光ビームを出射することができ、さらに変換効率のよい
光学デバイスを得ることができる。
From the above, it is possible to add a different element to the optical crystal to give a new function and to emit a light beam which is not obstructed by the growth fringes, and to obtain an optical device with high conversion efficiency. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の作製方法により単結晶を引上げ育成す
る際の説明図である。
FIG. 1 is an explanatory view when pulling and growing a single crystal by the manufacturing method of the present invention.

【図2】本発明の光学結晶を用いた実験系を示す図であ
る。
FIG. 2 is a diagram showing an experimental system using the optical crystal of the present invention.

【図3】SHG実験系とその結果を示す図である。FIG. 3 is a diagram showing an SHG experimental system and its results.

【図4】成長縞と伝播光の関係図である。FIG. 4 is a relationship diagram between growth fringes and propagating light.

【図5】従来の作製方法を示す図である。FIG. 5 is a diagram showing a conventional manufacturing method.

【符号の簡単な説明】1…白金るつぼ 2…融液 3…単結晶 4…成長縞[Short description of code] 1 ... Platinum crucible 2 ... Melt 3 ... Single crystal 4 ... Growth stripes

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ホスト材料に異種元素を添加することに
より互いに平行な成長縞が内部に生成された単結晶で構
成され、それぞれ鏡面仕上げされた一組の対向面が、前
記成長縞に平行に形成されている異種元素を添加した光
学結晶。
1. A single crystal in which growth stripes parallel to each other are formed inside by adding a different element to a host material, and a pair of mirror-finished facing surfaces are parallel to the growth stripes. An optical crystal formed by adding a different element.
【請求項2】 ホスト材料に異種元素を添加し、チョク
ラルスキー法により単結晶を引き上げる第1のステップ
と、 引き上げた単結晶を、引上げ方向と直交する対向面で鏡
面に研磨する第2のステップとを備える異種元素を添加
した光学結晶の作製方法。
2. A first step of adding a different element to a host material and pulling a single crystal by the Czochralski method, and a second step of polishing the pulled single crystal to a mirror surface at an opposing surface orthogonal to the pulling direction. A method of manufacturing an optical crystal to which a different element is added, the method comprising:
【請求項3】 前記異種元素は、Mg、Nd、Zn、T
i、Cr、Fe、Ho、V、もしくはこれらの酸化物で
ある請求項2記載の異種元素を添加した光学結晶の作製
方法。
3. The different element is Mg, Nd, Zn, T
The method for producing an optical crystal according to claim 2, wherein the optical crystal is i, Cr, Fe, Ho, V, or an oxide thereof.
【請求項4】 ホスト材料に異種元素を添加することに
より、互いに平行な成長縞が内部に生成された単結晶か
らなる光学結晶と、この光学結晶の光入射端面から内部
に光を入射する光源とを有し、 前記光源から発せられる光は前記光学結晶の成長縞と直
交する方向に伝播するよう構成されていることを特徴と
する光学デバイス。
4. An optical crystal made of a single crystal in which growth fringes parallel to each other are formed inside by adding a different element to a host material, and a light source for making light incident inside from a light incident end face of the optical crystal. And an optical device configured so that the light emitted from the light source propagates in a direction orthogonal to the growth fringes of the optical crystal.
JP16304291A 1991-07-03 1991-07-03 Optical crystal added with different elements and production thereof and optical device Pending JPH0511225A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16304291A JPH0511225A (en) 1991-07-03 1991-07-03 Optical crystal added with different elements and production thereof and optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16304291A JPH0511225A (en) 1991-07-03 1991-07-03 Optical crystal added with different elements and production thereof and optical device

Publications (1)

Publication Number Publication Date
JPH0511225A true JPH0511225A (en) 1993-01-19

Family

ID=15766082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16304291A Pending JPH0511225A (en) 1991-07-03 1991-07-03 Optical crystal added with different elements and production thereof and optical device

Country Status (1)

Country Link
JP (1) JPH0511225A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6189546B1 (en) * 1999-12-29 2001-02-20 Memc Electronic Materials, Inc. Polishing process for manufacturing dopant-striation-free polished silicon wafers
US7848011B2 (en) 2005-03-25 2010-12-07 Panasonic Corporation Wavelength converting element

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5865416A (en) * 1981-10-15 1983-04-19 Tohoku Metal Ind Ltd Ultrasonic optical modulating medium
JPH0324505A (en) * 1989-06-21 1991-02-01 Hitachi Metals Ltd Lithium niobate optical element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5865416A (en) * 1981-10-15 1983-04-19 Tohoku Metal Ind Ltd Ultrasonic optical modulating medium
JPH0324505A (en) * 1989-06-21 1991-02-01 Hitachi Metals Ltd Lithium niobate optical element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6189546B1 (en) * 1999-12-29 2001-02-20 Memc Electronic Materials, Inc. Polishing process for manufacturing dopant-striation-free polished silicon wafers
US7848011B2 (en) 2005-03-25 2010-12-07 Panasonic Corporation Wavelength converting element
JP4860605B2 (en) * 2005-03-25 2012-01-25 パナソニック株式会社 Wavelength conversion element

Similar Documents

Publication Publication Date Title
JP5083865B2 (en) Optical waveguide substrate and harmonic generation device
CN102318151B (en) Planar waveguide laser apparatus
JP3432993B2 (en) Manufacturing method of optical waveguide device
JPH01105220A (en) Optical wavelength converting element
US20030012540A1 (en) Method for producing optical waveguides, optical waveguides and frequency converting devices
US20020191934A1 (en) Method for producing optical waveguides, optical waveguides and frequency converting devices
KR101407842B1 (en) Wavelength converting devices
JPH1082921A (en) Optical waveguide substrate, optical waveguide parts, second harmonics generating device and manufacturing method of optical waveguide substrate
JPH0511225A (en) Optical crystal added with different elements and production thereof and optical device
JP2751914B2 (en) Optical waveguide device
JP3090293B2 (en) Optical circuit and manufacturing method thereof
JP2895204B2 (en) Optical wavelength conversion element and method of manufacturing the same
WO1994015248A1 (en) Doped ktp and its isomorphs with increased birefringence for type ii phase matching
Hinkov et al. Acoustic properties of proton exchanged LiNbO 3 investigated by Brillouin scattering
DE69924423T2 (en) Device for generating the second harmonic wave
US5343484A (en) SHG (second-harmonic generation) device
JPH05232538A (en) Wavelength converting element and its production
DE112014001386B4 (en) Evanescent light generating device and method for generating an evanescent light
JPH07159819A (en) Light source device
JP2973463B2 (en) Optical waveguide device
JPH05210023A (en) Optical waveguide
JPH0529710A (en) Manufacture of optical waveguide
JP2643905B2 (en) Beta barium borate crystal growing method and wavelength conversion element processing method
JPH06224510A (en) Light exciting waveguide type solid-state laser and its production
JPH0792514A (en) Wavelength conversion solid-state laser element